
A Framework for Integrating XML Transformations

Ce Dong James Bailey

NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, VIC 3010, Australia

{cdong, jbailey}@csse.unimelb.edu.au

Abstract. XML is the de facto standard for representing and exchanging
data on the World Wide Web and XSLT is a primary language for XML
transformation. Integration of XML data is an increasingly important prob-
lem and many methods have been developed. In this paper, we study the re-
lated and more difficult problem of how to integrate XSLT programs. Pro-
gram integration can be particularly important for server-side XSLT applica-
tions, where it is necessary to generate a global XSLT program, that is a
combination of some initial XSLT programs and which is required to operate
over a newly integrated XML database. This global program should inherit as
much functionality from the initial XSLT programs as possible, since design-
ing a brand new global XSLT program from scratch could be expensive, slow
and error prone, especially when the initial XSLT programs are large or/and
complicated. However, it is a challenging task to develop methods to support
XSLT integration. Difficulties such as template identification, unmapped
template processing and template equivalence all need to be resolved. In this
paper, we propose a framework for semi-automatic integration of XSLT pro-
grams. Our method makes use of static analysis techniques for XSLT and
consists of four key steps: i) Pattern Specialization, ii) Template Translation,
iii) Lost Template Processing and iv) Program Integration. We are not aware
of any previous work that deals with integrating XML transformations.

1 Introduction

XML [6] is rapidly emerging as a dominant standard for data representation and
exchange on the Web [11]. The eXtensible Stylesheet Language Transformations
(XSLT) standard [8, 26] is a primary language for transforming, reorganizing, query-
ing and formatting XML data. In particular, server-side XSLT [23] is an extremely
popular technology for processing and presenting results in response to user queries
issued to a server side XML database. An XSLT program consists of a set of tem-
plates. Execution of the program is by recursive application of individual templates
to the source XML document.

The availability of large amounts of homogeneous Web databases necessitates
XML integration [5, 7, 12, 15, 20, 22, 27, 29], e.g. when two organizations which

have similar XML information databases are amalgamated. Such XML integration
is typically DTD-directed, that is, the integration task is constrained by a predefined
DTD, to which the target XML document is required to conform [11]. A set of map-
ping rules between the initial DTDs and the global DTD must be provided.

However, when databases are amalgamated, it is not just static information which
needs to be combined. XML repositories will often have associated dynamic as-
pects as well, such as XSLT programs or stylesheets, that have been designed to
transform or present the XML information. When repositories are combined, so too
must be the dynamic aspects. In other words, we require a new (global) XSLT pro-
gram to access the integrated XML database. It is likely that this program will be
required to inherit much of the functionality that was present in the initial XSLT
programs, which operated over the original XML repositories.

Different from the language XQuery [4], an XSLT program consists of templates,
which can be regarded as the basic program unit for building the global XSLT pro-
gram during integration. Also, different from static XML data or schema integra-
tion [5, 7, 12, 15, 20, 22, 27, 29], XSLT integration is additionally challenging,
because it must deal with the dynamic aspects. Some difficulties are faced: 1) A
specific XSLT template might match, by means of selection patterns, multiple XML
elements. This can cause confusion when mapping the template from the initial
XSLT program to the global XSLT program, using the element mapping rules. 2)
Two initial templates (from different initial programs) which match the same XML
element, will need to be combined together within the global XSLT program. How-
ever, it is difficult to identify the conflicts and relationships (equivalence, contain-
ment and intersection) between their functionalities, when generating the global
template body. 3) Some initial templates might not be mapped to and included in
the global XSLT program, based on the element mapping rules. However, their
absence might strongly affect the execution result and thus they must be properly
combined within the global XSLT program. 4) Some templates contain functionality
which is valid for an initial XSLT program, but which is no longer useful or even
invalid for the global XSLT program. This needs to be detected and reconciled.

The integration framework proposed in this paper has four main components: 1)
Pattern Specialization is used to specialize the template selection patterns and con-
struction patterns and consequently lessen element reference ambiguity; 2) Template
Translation is used to translate template selection patterns and construction patterns
to conform to the global DTD; 3) Lost Template Processing is used to process the
templates which match XML elements not existing in the mapping rule list; 4) Pro-
gram Integration is used to generate the global XSLT program and mark any prob-
lematic templates for further consideration by the program designer.

The problem of XSLT integration is a new and challenging research issue. We
are not aware of any other similar work that addresses this topic.

The remainder of this paper is organized as follows. We first review some basic
concepts in section 2. Then, in section 3 we introduce XML integration approaches
and related terminology. Next, in section 4, we propose the XSLT integration frame-
work step by step. Related work is surveyed in section 5 and finally in section 6, we
conclude our research and give the discussion of future work.

2 Background

We begin by briefly reviewing some concepts regarding DTDs, XSLT and XPath,
assuming the reader already has basic knowledge in these areas.

2.1 DTDs and DTD-Graph

An XML DTD [6, 19] provides a structural specification for a class of XML docu-
ments and is used for validating the correctness of XML data. Based on the DTD,
we can create a data structure to summarize the hierarchical information within a
DTD, called the DTD-Graph. It is a rooted, node-labeled graph, where each node
represents either an element or an attribute from the DTD and the edges indicate
element nesting. The DTD-Graph developed in our previous work [10] is similar to
the Dataguide structure described by Goldman and Widom in 1997[13]. It is an
important data structure used to validate the XPath expressions (selection patterns
and construction patterns) of XSLT programs during XSLT integration.

2.2 XSLT and Functionality Blocks

XSLT is a recursive XML transformation language [8, 16, 17, 18]. An XSLT pro-
gram can be thought of as an ordered collection of templates. Each template has an
associated pattern (selection pattern) and contains a nested set of construction rules.
A template processes XML-tree [8] nodes that match the selection pattern and con-
structs output according to the construction rules [23].

An XSLT program is also an XML document, with a corresponding tree structure,
having a 'root element' node of <xsl:stylesheet> that has <xsl:template> child nodes.
We refer to the sub-trees which are children of the <xsl:template> nodes as “func-
tionality blocks”.

2.3 XPath

The primary purpose of XPath is to address parts of an XML document using path
expressions. It also provides basic facilities for manipulation of strings, numbers and
booleans.[28]. A location path is an XPath expression which selects a set of nodes
relative to the context node. If we remove ‘predicate(s)’ from the location path, we
can get an XPath expression consisting of ‘axes’, ‘steps’ and ‘/’, called a distin-
guished XPath [2] expression. The selection patterns and construction patterns in an
XSLT program are expressed using XPath. Selection patterns can only use the axes
of ‘child’ and ‘attribute’, whereas construction patterns may be full XPath expres-
sions. XPath expressions starting with ‘/’ or ‘//’ are called absolute XPath expres-
sions. Otherwise (e.g. starting with ‘.’ or ‘node name’), they are called relative
XPath expressions. Simple XPath (similar to [2]) is a fragment of XPath which disal-
lows the use of any ‘function’, ‘predicate’ and ‘axes’ other than ‘child’, ‘self’, and
‘descendant-or-self’. Oppositely, XPath expressions which contain ‘functions’ or
‘predicates’ or ‘axes’ other than those above, we will term rich XPath. Our XSLT
integration framework can deal with simple XPath expressions automatically and
handles rich XPath expressions via human interaction (to be discussed in section 4).

We further define full-absolute XPath expressions to be those starting with ‘/’,
followed by a sequence of node names separated by ‘/’ (e.g. ‘/a/b/c/d’). We define
full-relative XPath expressions to be those starting with ‘./’ or ‘node name’, fol-
lowed by a sequence of node names separated by ‘/’ (e.g. ‘./b/c/d’ and ‘b/c/d’).
These concepts are important for supporting the descriptions of the XSLT integra-
tion framework in section 4.3 and 4.4.

2.4 The Template and Association Graph (TAG) of an XSLT Program

XSLT syntactic structure gives rise to calling relationships between templates [14,
17]. In our previous work [10], we designed a Template and Association Graph
(TAG), which is a rooted node-labeled directed graph used to describe the calling
relationships between XSLT templates. The TAG can be used to analyze an XSLT
program and help to find bugs in XSLT program design [10]. In this paper, we use
the TAG to eliminate unreachable templates, missing templates and invalid calling
relationships [10], that are generated as ‘side-effects’ during the XSLT integration
process.

2.5 Server-Side XSLT

Server-side XSLT [23] is a popular solution for data exchange and querying on the
Web. It is often deployed in e-commerce, e-publishing and information services
applications. Transforming the content on the server has advantages such as provid-
ing convenience for business logic design and code reuse, cheaper data access and
security and smaller client downloads [18]. XSLT integration is more meaningful
for server-side XSLT (as opposed to client side XSLT), since a global XSLT pro-
gram must be constructed after the server XML databases are merged.

3 XML Integration

Suppose we have XML databases associated with a server-side XSLT system. There
are then two major different approaches which can be used for XML integration [3,
22, 24]. One is virtual integration, where no physically integrated XML needs to be
built. Specifically, virtual integration publishes a global XML schema (e.g. a DTD)
which is ‘integrated’ from the initial distributed XML database schemas. A user
query over the global schema passed to the system is then re-written into distributed
queries (i.e. parameters to distributed XSLT programs) to access the distributed
XML databases (initial XMLs). A combined result is returned to the user. Another
kind of XML integration is called instance integration, since a global XML is physi-
cally built. Specifically, based on a predefined global XML schema, the data of the
initial XMLs is merged into the global XML. A user query based on the global DTD
is evaluated directly over the integrated XML database. Our XSLT integration
framework is designed to integrate the initial XSLT programs according to instance
based integrated XML. Hereafter, when we refer XML integration, this should be
understood to mean instance based XML integration. In the following definitions,
Doc_XML1 and Doc_XML2 denote the initial XMLs and Doc_XML3 denotes the
global XML.

! Mapping rule: A pair containing an initial element and a global element. It
indicates that the initial element describes the same object as the global ele-
ment. The XML elements are expressed using full-absolute XPath expressions.
For example, (‘/a/b/c’, ‘/X/Y/Z’) denotes that the ‘c’ node of parent node ‘b’
and grand parent node ‘a’ under the ‘root’ in the initial XML is mapped to the
‘Z’ node of parent node ‘Y’ and grand parent node ‘X’ under the ‘root’. XML
integration refers to two sets of mapping rules: i) MAP1 contains all the map-
ping rules from Doc_XML1 to Doc_XML3, ii) MAP2 contains all the mapping
rules from Doc_XML2 to Doc_XML3.

! Name Change: This term refers the situation when the name of element of an
initial XML element is mapped to a different name in the global XML, based
on the mapping rules (e.g. initial element ‘c’ is mapped to global element ‘Z’).

! Structure Change: This term is used to refer the situation when a parent-child
relationship between elements in the initial XML doesn’t exist between their
mapped elements in the global XML, based on the mapping rules.

! Lost Element: This term is used to refer to an element in an initial XML docu-
ment which doesn’t have a corresponding (mapped) element in the global
XML document, according to the mapping rules.

4 XSLT Integration

XSLT program integration concerns not only schema mapping, but also compari-
sons between template selection patterns and the relationships between template
bodies (functionality). We now define some terminology that will be useful when
we discuss comparison of templates.

Definition_1: Potentially Conflicting Template Pair is used to refer a pair of
XSLT templates, each from different initial XSLT programs that are awaiting inte-
gration, and which have the same distinguished XPath selection pattern.

Definition_2: Rich Template is used to refer to templates whose selection pattern
or/and construction pattern(s) are rich XPath expressions.

We also have some restrictions and assumptions on our model.
! The initial XSLT programs are well-formed and valid (error free).
! The output of the XSLT transformations is HTML or XML (the most

popular cases used in XSLT transformations).
! The template(s) for the ‘root’ (‘/’) and ‘root element’ must exist (XSLT

program traverses the XML-tree from the top).
 For simplicity, in this paper, the DTD-Graphs of Doc_XML1, Doc_XML2 and
Doc_XML3 are denoted by DG1, DG2 and DG3 respectively. XSL1, XSL2 and
XSL3 denote two initial XSLT programs and the global XSLT program respectively.
Their corresponding Template and Association Graphs are denoted by TAG1, TAG2

and TAG3 respectively. <T m=’selection pattern’> denotes XSLT element
<xsl:template match=’selction pattern’> and denotes
<xsl:apply-templates select=’construction pattern’>.

4.1 Overview of XSLT Integration

Our framework addresses the XSLT integration task in four principal steps.
Step_1: Pattern Specialization: The system converts all selection patterns and ab-

solute construction patterns into full-absolute XPath and specializes the relative
construction patterns containing ‘*’ and/or ‘//’ into full-relative XPath expressions.
Human interaction is required for processing ‘rich’ templates.

Step_2: Template Translation: This step translates all XPath expressions that
conformed to the initial DTD-Graphs (DG1 and DG2) into corresponding XPath
expressions conforming to the global DTD-Graph (DG3), based on mapping rules
(MAP1 and MAP2). Human interaction is also required to handle some special
situations of element mapping.

Step_3: Lost Template Processing: This follows the template translation step and
invokes special processing for templates or construction statements which refer to
lost elements. Human interaction is asked before applying the default processes.

Step_4: Program Integration: The pre-processed initial XSLT programs are inte-
grated into the global XSLT program XSL3, by means of integration algorithms.
Human interaction is required for rich templates and static analysis.

Finally, all problematic templates in XSL3 are detected and marked based on
TAG3, which can then be used as support for program further revision.

We use human interaction as a supplement to our XSLT integration framework.
A completely automatic method is clearly impossible, due to the undecidable nature
of much of the analysis required. This is also in line with the requirement of human
interaction for static and schema integration [5, 7, 12, 15, 20, 22, 27, 29]. The over-
all aim of our framework though, is to alleviate the burden on the designer as much
as possible, presenting them with a clear set of choices which need to be made.
Furthermore, different methods and static analysis techniques can be ‘plugged in’ to
the framework, according to their availability.

4.2 XSLT Integration Example

An XSLT integration example is provided here to help explain our method. It in-
cludes i) two synthetic initial server-side XSLT programs (XSL1 and XSL2), ii) the
corresponding DTD-Graphs (DG1 and DG2) and iii) the corresponding mapping
rules (MAP1 and MAP2). The scenario is based on integration between two XML
employee information databases. We omit the XMLs, since it is the structure of the
data which determines the XSLT integration workflow, not the data values.

Firstly, the initial DTD-Graphs (DG1 and DG2) and the global DTD-Graph (DG3)
are shown in figures 1 (a), (b) and (c) respectively.

Secondly, the sets of mapping rules of MAP1 (map from DG1 to DG3) and
MAP2 (map from DG2 to DG3) are listed respectively in tables 1 and table 2. For
example, the second row of table 1 shows that DTD-Graph node ‘/Factory/Name’ of
DG1 is mapped as node ‘/Factory/FN’ in the global DTD-Graph). From figure 1 and
tables 1 and table 2 we can see that the underlying XML integration covers scenar-
ios of ‘name change’, ‘structure change’ and ‘lost element’.

Thirdly, we show the initial XSLT programs to be integrated (i.e. XSL1 and
XSL2). Their functionality is for retrieving and displaying the information about

factory employees. Due to the space restrictions, we only show fragments of the
programs (figures 2 (a) and (b)).

(b)DG2

(c)DG3

Factory

Employees

Department

DN

PN Age

Employee

Contact

FN

Phone Address Email

Number Street PostCode

WorkIn

Group

Position

Factory

Employees

Department

DN

Name Age

Employee

Name

Phone Address Email

Number Street

Gender

(a)DG1

FactoryInfo

People

PN Age

Person

Position

Introduction

Unit

Address WorkIn

Number Street PostCode

Phone

Factory Group

Fig. 1. DTD-Graphs of Doc_XML1, Doc_XML2 and Doc_XML3

(' /Factory ', ' /Factory ')

(' /Factory /Nam e' , ' /Factory /FN')

(' /Factory /Department', ' /Factory /Department')

(' /Factory /Department/DN', ' /Factory /Department/DN')

(' /Factory /Department/Em ploy ees/Employ ees', ' /Factory /Departm ent/Em ploy ees/Employ ees')

(' /Factory /Department/Em ploy ees/Employ ees/Em ploy ee', ' /Factory /Department/Em ploy ees/Employ ees/Em ploy ee')

(' /Factory /Department/Em ploy ees/Employ ee/Name ', ' /Fac tory /Departm ent/Em ploy ees/Em ploy ee/PN')
�

(' /Factory Info', ' /Fac tory ')

(' /Factory Info/Introduction', '')

(' /Factory Info/People' , '/Factory /Department/Em ploy ees')

(' /Factory Info/People/Person', ' /Fac tory /Department/Employ ees/Employ ee')

(' /Factory Info/People/Person/WorkIn', ' /Factory /Department/Employ ees/Employ ee/WorkIn')

(' /Factory Info/People/Person/WorkIn/Factory ', ' /Factory /Name')

(' /Factory Info/People/Person/WorkIn/Unit' , '/Factory /Department/DN')

. . .

Table 1. The fragment of mapping rules between DG1 and DG3 Table 2. The fragment of mapping rules between DG2 and DG3

<?xml version="1.0" encoding ="UTF-8"?>
<xsl:stylesheet version ="2.0"
xmlns:xsl="http://www.w3.org/1999 /XSL/
Transform ">

…

<xsl:template match ="FactoryInfo ">
 Factory is : <xsl:apply-templates
select="Introduction "/>

<xsl:apply-templates select =".//Person"/>

</xsl: template>

…

<xsl:template match ="Introduction ">
<xsl:value-of select="."/>

</xsl: template>

…
</xsl:stylesheet >

(b)XSL2

<?xml version="1.0"
encoding ="UTF-8"?>
<xsl:stylesheet version ="2.0"
xmlns:xsl="http://www.w3.org/
1999 /XSL/Transform" >

…

<xsl:template match ="Name">
<xsl:value-of select="./text()"/>

</xsl: template>
</xsl:stylesheet >

(a) XSL1
Fig. 2. Fragments of the initial XSLT programs to be integrated

Next, based on the example shown above, we explain the details of our XSLT in-
tegration framework step by step.

4.3 Pattern Specialization
Selection patterns in XSLT can be either full-absolute or non-full-absolute XPath
expressions. A full-absolute XPath expression uniquely identifies a DTD-Graph
node (i.e. the mapping relationship between a full-absolute XPath expression and a
DTD-Graph node is 1 to 1), while a non-full-absolute XPath expression may identify
multiple DTD-Graph nodes (i.e. the mapping relationship between a non-full-
absolute XPath expression and a DTD-Graph node is 1 to N (N>=1)). Thus, when a
template selection pattern is a non-full-absolute XPath expression, we might not
sure which mapping rules should be chosen for translating the corresponding tem-
plate from the initial DTD based XSLT program into the global DTD based XSLT
program (step_2) and, consequently, can not continue the integration step to build
global XSLT XSL3 (step_4). For example, consider the XSL1 fragment shown in
figure 2 (a). The selection pattern of template <T m=’Name’> can refer to the node
of ‘/Factory/Name’ and also the node of
‘/Factory/Department/Employees/Employee/Name’ according to DG1 (show in
figure 1 (a)). It is not clear whether ‘Name’ should be mapped to ‘/Factory/FN’ or
to ‘/Factory/Department/Employees/Employee/PN’ according to MAP1 (shown in
table 1), during the translation from the initial structure (DG1) to the global struc-
ture (DG3). Wrong translation can result in an integrated XSLT program which
deviates from the original intentions of the initial XSLT program designers.

We choose to handle this ambiguity using a direct approach, which specialises
the non-full-absolute selection patterns in XSL1 and XSL2 into full-absolute XPath
expressions. This is called pattern specialization. In the case of a single template
selection pattern matching multiple DTD-Graph nodes, we create new templates,
one for each possible corresponding full-absolute selection pattern, and we then
delete the original template. Let’s examine the example of <T m=‘Name’> again -
the template will be replaced by two new templates: <T m=‘/Factory/Name’> and
<T m=‘/Factory/Department/Employees/Employee/Name’>, each with the same
body as the original <T m=‘Name’>.

For the same reason and in the same way as for selection pattern specialization,
we specialize construction patterns if i) they are absolute XPath expressions but not
full-absolute XPath expression or ii) they are relative XPath expressions, but not
full-relative XPath expressions. In the former case, the construction patterns are
specialised into full-absolute XPath expressions and, in the latter case, the construc-
tion patterns are specialised into the full-relative XPath expressions. When a con-
struction pattern indicates multiple nodes of DG1 (or DG2), we create a new con-
struction statement for each specialized construction pattern and delete the original
construction statement. For example, the construction statement
of template <T m=‘FactoryInfo’> in XSL2 (‘.//Person’ is a non-full-relative XPath
expression) is specialized to (‘./People/Person’ is a full-
relative XPath expression).

Figure 3 shows the fragments of the output of pattern specialization process,
named XSL1_S and XSL2_S. We omit showing the detailed programs here due to
the space restrictions.

<?xml version="1.0" encoding ="UTF-8"?>
<xsl:stylesheet version ="2.0" xmlns:xsl="http://www.w3.org/1999 /XSL /
Transform">

…

<xsl:template match ="/Factory /Name">
<xsl:value-of select ="./text ()"/>

</xsl:template >

<xsl:template match ="/Factory /Department /Employees /Employee /Name">
<xsl:value-of select ="./text ()"/>

</xsl:template >

…

</xsl:stylesheet >

(a) XSL1_S

<?xml version="1.0" encoding ="UTF-8"?>
<xsl:stylesheet version ="2.0" xmlns:xsl="http ://www.w3.org /
1999/XSL/Transform">

…

<xsl:template match ="/FactoryInfo ">
factory is : <xsl:value-of select ="Introduction "/>

<xsl:apply -templates select ="./People /Person"/>

</xsl:template >

<xsl:template match ="/FactoryInfo /People /Person">
PersonName: <xsl:apply -templates select ="PN "/>

 PersonAge : <xsl:value-of select ="Age "/>

 PersonPhone : <xsl:value-of select ="Phone "/>

<xsl:apply -templates select ="Address "/>
<xsl:apply -templates select ="Position "/>
<xsl:apply -templates select ="WorkIn"/>

</xsl:template >

…

<xsl:template match ="/FactoryInfo /People /Person/WorkIn">
 Work in :
 Group <xsl:value-of select ="Group"/> of
 <xsl:value-of select ="Unit"/> Unit of
 <xsl:value-of select ="Factory"/>

</xsl:template >

<xsl:template match ="/FactoryInfo /Introduction ">
Factory Introduction is :<xsl:value-of select ="."/>

</xsl:template >
</xsl:stylesheet >

(b) XSL2_S
Fig. 3. Fragments of the XSLT programs output after pattern specialization

 This kind of automatic resolution is not feasible for rich templates and human
interaction is needed to guide the process. Specifically, the designer is asked by the
system to give a new XPath expression based on the global DTD, to replace the
XPath expression based on the initial DTD. Then, these templates with new selec-
tion pattern(s) and/or construction pattern(s) will be marked and the subsequent
processing steps of template translation and lost template processing need not be
applied.

Pattern specialization is a direct way to determine accurately the DTD-Graph
node to which the selection pattern refers. However, it might generate some redun-
dant templates which could cause unreachable template(s), missing template(s) and
invalid template calling relationship(s) because i) the ‘new’ template selection pat-
tern may not be harmonious with its inner construction pattern (invalid template
calling relationship); ii) the created template which uses the ‘new’ full-absolute
selection pattern might never be called by another construction statement during
XSLT execution (unreachable template); iii) The newly created construction pattern
might call a non existent template (missing template). These possible ‘side-effects’
can be detected and eliminated by using Template Association Graph (TAG) [10].

4.4 Template Translation

After pattern specialization, XPath expressions next need to be translated so that
they use the vocabulary of the global DTD (DG3).

Let’s see an example. The mapping rule at row 4 of table 2 shows that XPath ex-
pression ’/FactoryInfo/People/Person’ over the initial schema is mapped to the
XPath expression ’/Factory/Department/Employees/Employee’ over the global
schema. Thus, the corresponding template <T m=’/FactoryInfo/People/Person’> in
XSL2_S (figure 3) will be translated into <T m=’/Factory/Depart-
ment/Employees/Employee’>.

Similar to the selection patterns, the construction patterns also need to be trans-
lated. The construction pattern using a full-absolute XPath expression can be trans-
lated based on the mapping rules directly. A construction pattern that uses a full-
relative XPath expression implies a relationship between the nodes located by the
selection and construction patterns in that template. E.g. suppose nodes ‘a’ and ‘b’
are in an ancestor-descendant relationship in one of the initial DTD-Graphs. Sup-
pose the nodes that each maps to in the global DTD-Graph are ‘A’ and ‘B’. We
then have two situations: 1) ‘B’ is a ‘descendant’ or ‘sibling’ or ‘preceding’ node of
‘A’; 2) ‘B’ is an ‘ancestor’ of ‘A’. In the former case, our method translates the
initial construction pattern automatically into a full-relative XPath expression of the
context node. In the latter case, human interaction is required to build the new tem-
plate manually. Specifically, if ‘B’ is the ‘descendant’ node of ‘A’, the construction
pattern is translated to the full-relative XPath expression based on the context node
‘A’. For example, the ancestor-descendant relationship between the selection pattern
of <T m=‘FactoryInfo’> and the construction pattern of
in XSL2_S (figure 3) based on DG2 (figure 1 (b)) is preserved in their mapped
nodes ‘/Factory’ and ‘/Factory/Department/Employees/Employee’ based on DG3
(figure 1 (c) and table 2). So, is translated as . If ‘B’ is ‘sibling’ or ‘preceding’ node of
‘A’, and if there exists node ‘C’, the closest common ancestor node of both ‘A’ and
‘B’ in the global DTD-Graph, the translated construction pattern is an XPath ex-
pression which starts with ‘ancestor::C’, followed by the full path from ‘C’ to ‘B’.
For example, in XSL2_S (figure 3 (b)), template <T m=‘WorkIn’> contains a con-
struction statement and node ‘WorkIn’ is the parent node of ‘Unit’ in
DG2. Based on MAP2, they are mapped to ‘WorkIn’ and ‘DN’ in DG3 and ‘DN’ is
the ‘preceding’ node of ‘WorkIn’ node. Thus, we find ‘Department’, the common
and closest ancestor node of ‘DN’ and ‘WorkIn’, and then create the construction
statement during the template translation step.

However, if ‘B’ is the ancestor of ‘A’, human interaction is required to do the
translation, due to the high degree of change in structure. The designer is asked to i)
provide the new XPath expression(s) for the selection pattern or construction pat-
tern(s) or both or; ii) provide a new template to replace the original one.

4.5 Lost Template Processing

During XSLT integration, there may be initial XSLT templates whose selection
pattern refers to XML elements which do not get mapped to any element in the
global DTD. This causes a problem when translating this initial template into a
global template. The same problem happens for construction patterns too. Looking
back at table 2 and figure 1 (b) of the XSLT integration example in section 4.2, the

node indicated by ‘/FactoryInfo/Introduction’ based on DG2 doesn’t have any
mapped to node in DG3. The corresponding template <T m=‘ Factory-
Info/Introduction’> has become a lost template in XSL2_S as a result of doing the
translation. We need to correct such lost templates during the integration process.

We cannot simply delete the lost template or
construction statement, since i) the body of the
lost template might contain valuable data proc-
essing, or ii) the inner construction statement of
the lost template might be the only caller of
another existing template, and in this case,
deleting the lost template will cause a new
missing template.

The integration system detects any lost tem-
plates and informs the designer, who then has

the task of deciding whether to delete the lost template, or whether to provide a new
XPath expression for its selection pattern and, consequently, confirm each element
inside this template (i.e provide a new construction pattern for that element or create
a new element to replace that element or just delete that element).

Some kinds of lost template cases (shown in figure 4) can be processed automati-
cally based on the integration framework. Looking at figure 4, (a) is an initial DTD-
Graph DG1, and (b) is a corresponding global DTD-Graph DG3. Nodes ‘a’, ‘b’, ‘d’,
‘e’, ‘f’, ‘g’ in DG1 are mapped to ‘A’, ‘B’, ‘D’, ‘E’, ‘F’, ‘G’ in DG3. Obviously, the
non-terminal element node ‘c’ is lost during the integration. Moreover, the children
nodes of ‘c’ (i.e. ‘e’ and ‘f’) are mapped to children nodes (‘E’ and ‘F’) of node ‘A’
in DG3. This is a common situation for data structure mapping in XML integration
and indeed it is reasonable to expect that a parent element covers all concepts of its
descendant element. Suppose the template that locates the lost element node ‘c’ is
<T m=‘/a/c’>, lost template processing replaces the selection pattern ‘/a/c’ with its
prefix selection pattern ‘/a’, and then, <T m=‘/a’> is translated into <T m=‘A’> in
XSL1_T (or XSL2_T) if there is no <T m=‘A’> already existing in XSL1_T (or
XSL2_T). If <T m=‘A’> exists in XSL1_T (or XSL2_T), the system only translates
the body of <T m=’/a/c’> and appends it at the end of the existing template <T
m=‘A’>. Based on the example shown in figure 4, if template <T m=‘/a/c’> con-
tains a construction statement , it will be translated to and
appended at the end of template <T m=‘A’>.

The output XSLT programs, after the template translation and lost template proc-
essing steps have been performed, are termed as XSL1_T and XSL2_T (we omit
these two programs due to the restrictions of space).

4.6 Program Integration

Following the steps of pattern specialization, template translation and lost template
processing, our XSLT integration framework applies the program integration step to
generate the global XSLT XSL3, based on XSL1_T and XSL2_T.

db

a

c

e f

(a)DG1

g

DB

A

E F

(b)DG3

G

Fig. 4. The example of mapping
lost

The templates among XSL1_T plus XSL2_T can be classified into two classes: i)
Unique templates, whose distinguished XPath selection pattern is unique among all
templates; ii) Potentially conflicting templates (recall Definition_1).

A unique template will be moved to XSL3 directly, without any modification,
since it is the only choice of template for a specific XML node or set of nodes.

For a potentially conflicting template pair, the framework (or designer) must
make its choice when generating the global template in XSL3. If one or both tem-
plate(s) has a ‘rich’ selection pattern or construction pattern, human interaction is
required. The designer needs to decide i) what new template needs to be generated
for XSL3, ii) what the template functionality should be.

The templates of potentially conflicting template pair that both use ‘simple’
XPath expression(s) as selection pattern(s), can be integrated semi-automatically.
We now discuss how to deal with this case.

Suppose <T1> is a template in XSL1_T with body B1 and <T2> is a template in
XSL2_T with body B2 and <T1> and <T2> are a pair of potentially conflicting
templates. Each body B is assumed to be a set of functionality blocks. There a
number of possible relationships between B1 and B2. Loosely speaking, these are: 1)
B1=B2 (the two templates are guaranteed to give exactly the same result), 2)
B1 ⊂ B2 or B1 ⊃ B2 (the output of one template is subsumed by the output of the
other), 3)B1 I B2=φ (the templates are independent), 4) B1I B2 != φ (the
output of the templates may overlap).

Precisely determining the relationships between template bodies is undecidable.
We can develop tests based on syntactic criteria (e.g. do a pairwise comparison
between the statements in each template body). This may be effective when the
components of template body are simple. More complex tests may be based on se-
mantic criteria，which concerns the data retrieved from XML source tree and ig-
nores the constant data (strings) and data format (the data order and display styles)
of template output. The work in [25] describes a technique where tests for template
equivalence are performed by translating the template logic into an XML query
algebra [25] and then judging if two templates yield the same result by applying the
evaluation rules. Different analysis techniques could also be used.

Based on the different relationships between the functionality (bodies) of the po-
tentially conflicting template pair, our integration approach builds the functionality
of the global template according to the rules described in table 3. Human interaction
is required in when the static analysis is too difficult or yields imprecise results.

Table 3. Building the new functionality of the global template

B1= B2 B1 is chosen as the global functionality
B1 B2 B1 is recommended as the global funct ionality.
B1 B2 B2 is recommended as the global funct ionality.
 B1 B2= Ф or B1 B2!= Ф The designer is asked to decide.

⊂
I I

⊃

Finally, the unreachable templates, missing templates and invalid template call-

ing relationships are marked (based on checking TAG3) as referential information
for possible further action and modification by the designer.

5 Related Work

To the authors’ knowledge, no other work has been done on XSLT integration.
A number of integration systems have been developed for semi-structured data

and XML. One major kind of XML integration method is view/schema based XML
integration (virtual integration) [21, 25]. Another major method is called instance
based XML integration [5, 7, 12, 27].

An XSLT template call-graph was described in [14] as part of a translation
scheme from XSLT to SQL.

Testing equivalence of XSLT templates is examined in [25]. This work presents a
powerful XML query algebra TAX and provides a collection of template equiva-
lence rules. Based on the approach, XSLT templates are automatically translated
into TAX and they are judged to be equivalent if they satisfy certain evaluation rules.

XPath analysis and XPath based XML query optimization have been considered
in a large number of papers [1, 9, 21]. Any such analysis techniques can in principle
be used within our framework.

6 Conclusions and Future Work

In this paper, we have proposed a novel framework for XSLT integration. Our ap-
proach is applicable for instance based XML integration methods, where server-side
XSLT applications are being used. It consists of four major parts: 1) Pattern Spe-
cialization, 2) Template Translation, 3) Lost Template Processing and 4) Program
Integration. We believe this new framework can be a significant aid to the designer
in integration scenarios. Importantly, our framework is extensible. A variety of
analysis techniques can be plugged in to provide enhanced precision.

As part of future work, we would like to investigate methods for handling further
XSLT syntax, such as the use of functions and other XPath axes automatically. We
also plan to investigate and extend our algorithm to provide more flexible mecha-
nisms for the designer, as part of the global template generation process.

Acknowledgement
This work is partially supported by National ICT Australia. National ICT Australia
is funded by the Australian Government’s Backing Australia’s Ability initiative, in
part through the Australian Research Council.

References

[1] S. Abiteboul and V. Vianu.: Regular path queries with constraints. In Proc.of 16th ACM
SIGACT-SIGMOD-SIGSTART Symposium on Principles of Database Systems,Tucson, AZ,
US (1997) 122-133

[2] J. Bailey, A. Poulovassilis, P. T. Wood.: An Event-Condition-Action Language for XML
Proc.Conf.WWW2002, Honolulu, Hawaii, USA (2002) 486-495

[3] E. Bertino and E, Ferrari.: XML and Data Integration. Internet Computing, IEEE (2001)
[4] S. Boag et al.: XQuery 1.0: An XML Query Language W3C Candidate Recommendation

3 November 2005. http://www.w3.org/TR/xquery/

[5] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and P. Shenoy.: Optimizing view queries
in ROLEX to support navigable result tree. In VLDB, HongKong, China (2002) 119-130

[6] T. Bray, et al.: W3C Recommendation. Extensible Markup Language (XML) 1.0 (2000)
[7] M. J. Carey, D. Florescu, Z. G. Ives, Y. Liu, J. Shanshanmugsundaram, E. J. Shekita, and

S. N. Subramanian.: XPERANTO: Publishing object-relational data as XML. In Proc.of
WebDB (2000) 105-110

[8] J. Clark.: W3C Recommendation. XSL Transformations (XSLT) version 1.0 (1999)
[9] A. Deutsch and V. Tannen. Containment and integrity constraints for XPath. Proc. KRDB

2001, CEUR Workshop Proceedings 45 (2001)
[10] C. Dong and J. Bailey.: The static analysis of XSLT programs. In Proc.of The 15th Aus-

tralasian Database Conference, Vol.27, Pages 151-160, Dunedin, New Zealand (2004)
[11] W. Fan, Minos Garofalakis, Ming Xiong, Xibei Jia.: Composable XML integration

grammars. In Proc.of ACM CIKM, Washington, D.C., USA (2004) 2-11
[12] F. M. Fernandez, A. Morishima, and D. Suciu.: Efficient evaluation of XML middle

ware queries. In SIGMOD 2001.
[13] R. Goldman and J. Widom.: DataGuides: Enabling query formulation and optimization

in semi-structured database. Proc. Int’l Conf on VLDB, Athens, Greece (1997) 436-446
[14] S. Jain, R. Mahajan and D. Suciu.: Translating XSLT Programs to Efficient SQL Que-

ries. In Proc.of WWW 2002, 616-626
[15] Euna Jeong and Chun-Nan Hsu.: Induction of integrated view for XML data with het-

erogeneous DTDs. In Proc.of CIKM, Atlanta, Georgia, USA (2001) Pages: 151 – 158
[16] M. Kay.: Anatomy of an XSLT Processor. (2001)
[17] M. Kay.: Saxon XSLT Processor. http://saxon.sourceforge.net/
[18] C. Laird.: XSLT powers a new wave of web, 2002.

http://www.linuxjournal.com/article/5622
[19]D. Lee, W. Chu.: Comparative analysis of six XML schema languages. ACM SIGMOD

Record archive Volume 29, Issue 3. ACM Press, New York, NY, USA (2000) 76–87
[20] M. L. Lee, L. H. Yang, W. Hsu, X. Yang.: XClust: clustering XML schemas for effec-

tive integration. In Proc.of CIKM (2002) 292-299
[21] Q. Li, B. Moon.: Indexing and querying XML data for regular path expressions. Proc.

Int’l Conf on VLDB, Roma, Italy (2001) 361-370
[22]H. Ma, K. Schewe, B. Thalheim, J. Zhao.: View Integration and Cooperation in Data-

bases, Data Warehouses and Web Information Systems. Data Semantics IV (2005)
[23] S. Maneth and F. Neven.: Structured document transformations based on XSL. In

Proc.of DBPL'99, Kinloch Rannoch, Scottland (1999)
[24] K. Passi, L. Lane, S. Madria, B. Sakamuri, M. Mohania, S. Bhowmick.: A model for

XML schema integration. In Proc.of The third International Conference on E-Commerce
and Web Technologies, Aix-en-Provence, France (2002) 193 - 202

[25] A. Trombetta and D. Montesi.: Equivalences and optimizations in an expressive XSLT
fragment. In Proc.of IDEAS 2004, Coimbra, Portugal (2004) 171-180

[26] W3C. XSL transformations (XSLT) version 2.0. http://www.w3.org/TR/xslt20/.
[27] Wanxia Wei, Mengchi Liu, and Shijun Li.: Merging of XML documents. In 23rd Intena-

tional Conference on Conceptual Modelling, ShangHai, China, November 2004
[28] W3C.: XML Path Language(XPath) Recommendation. http://www.w3.org/TR/xpath.
[29] C. Yu, L. Popa.: Constraint-based XML query rewriting for data integration, In Proc.of

The 2004 ACM SIGMOD international conferenc onference on management of data
(2004).

