
Transformation and Reaction Rules for Data on the Web

James Bailey

NICTA Victoria Laboratories
Department of Computer Science and Software Engineering

University of Melbourne
Victoria, 3010

Email: jbailey@csse.unimelb.edu.au

Abstract

The transformation and manipulation of XML is
an increasingly important research topic. This
paper examines a number of issues with regard to
languages for transforming and reacting to changes
on XML data. On the transformation side, we focus
on XSLT, a powerful language for converting XML
data into other formats. We look at analysis and
optimisation issues for XSLT, as well as support
for debugging and automatic generation. On the
reactivity side, we focus on an event-condition-action
rule approach, which is a natural candidate for the
support of reactive functionality on XML repositories.

Keywords: XML, XSLT, active rules

1 Introduction

The Extensible Markup Language, XML, has recently
emerged as a new standard for information storage,
representation and exchange on the World Wide Web.
To support the use of XML, many kinds of languages
and standards are needed. In this paper, we focus
on two important and closely related aspects of the
manipulation XML data, namely XML transforma-
tions and XML reactivity. The former is concerned
with methods for conversion of XML documents from
one form to another and we focus on the Extensible
Stylesheet Transformations language known as XSLT
(World Wide Web Consortium 1999). We see there
are a number of important research issues for XSLT,
with regard to its analysis, optimisation, automatic
generation and debugging. The latter aspect, XML
reactivity, concerns integrating rules with XML doc-
uments, in order to provide the capability for auto-
matic reaction to important events. We examine the
active rule approach to XML, which aims to leverage
past work in the area of active databases and make
it suitable for the XML context. We see that while
many techniques can be reused, a number of new chal-
lenges also arise.

1.1 Outline

This paper is divided into two main parts. In the first
part, we review XSLT in section 2 and then examine
research themes for its analysis (Section 3), optimisa-
tion (Section 4), automatic generation (Section 5) and
debugging (Section 6). The second part, in section 7,

Copyright (c) 2005, Australian Computer Society, Inc. This
paper appeared at the 16th Australasian Database Conference,
University of Newcastle, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 39.
H.E. Williams and G. Dobbie, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

looks at reaction rules for XML. Section 8 provides a
summary and conclusion.

2 XML Transformations

XSLT (World Wide Web Consortium 1999) is a lan-
guage with two main applications. The first of these
deals with the presentation of XML data, which in-
volves displaying XML documents in a sensible lay-
out. The XSLT program or stylesheet, stores a set of
rules that can be used for determining how the con-
tent of elements in an XML document should be dis-
played in a browser. This is increasingly important as
the Web begins to include more semantic information
and user pages migrate from HTML to XML.

The second main application of XSLT is for data
exchange and conversion of one XML document into
another XML document having a different structure.
For example, in the publishing industry, it is com-
mon to need multiple versions of the same document.
Traditionally, a document would be manually dupli-
cated into all the required media, such as a newspaper
article, Web page and magazine. However, by apply-
ing transformation rules in XSLT stylesheets, a single
XML document containing the contents of the mate-
rial can be straightforwardly converted into other for-
mats. A similar application exists in the area of data
integration, where XSLT can be used when merging
two or more different documents into another, single
document.

A typical XSLT stylesheet consists of a collection
of template rules. Each rule can be applied by pat-
tern matching the condition of the rule against the
input XML document and then possibly generating
some output. These template rules may be applied
in any order. XSLT templates allow the designer to
specify how the transformation should be carried out.
Execution of an XSLT stylesheet essentially corre-
sponds to ’walking’ through the tree, applying the ap-
propriate templates. Furthermore, XSLT stylesheets
disallow variable assignment, thus eliminating side-
effects. Characteristics such as lazy evaluation and
purity make XSLT similar to functional languages.

Although in this paper we will focus on XSLT,
we also note that other languages exist which can
be used to transform XML, an important one being
XQuery (World Wide Web Consortium 2004b). At
the time of writing though, this is still in process of
being standardised and software implementations are
only just beginning to emerge. Another interesting
language is Xcerpt (Schaffert & Bry 2004), based on
on logic programming. It places an emphasis on the
separation between query patterns and output answer
patterns (construction patterns). The query part is
limited to retrieving data and constraining results,
while the construction part is limited to reassembling
the data and creating new data.



3 Analysis of XSLT Transformations

We now discuss some of the issues regarding anal-
ysis of XSLT stylesheets. Analysis techniques al-
low the programmer to gain better knowledge about
the behaviour of the transformations they have writ-
ten. The presentation is based on work in (Dong &
Bailey 2004b).

An XSLT stylesheet consists of a set of templates
and execution of the stylesheet is by recursive ap-
plication of individual templates to the source XML
document. This recursive application of templates
is an essential aspect of XSLT. However, important
problems can arise when designing templates. Firstly,
some templates within an XSLT stylesheet may never
be applied during execution, regardless of the XML
source being input. We call such templates un-
reachable templates. Secondly, there may be tem-
plates which issue calls to templates which don”t exist
(rather like a function call to a non-existent function).
We term this situation as a missing template and it
is a likely indication of an error in the stylesheet.
Thirdly, there may exist pairs of templates, which ap-
pear to call each other, based on the syntactic struc-
ture of the stylesheet, but in fact cannot, due to un-
derlying constraints which exist within an accompa-
nying DTD. We call these invalid template calling re-
lationships. Fourthly, the XSLT stylesheet itself may
loop forever on some XML inputs. An infinite tem-
plate calling loop can have catastrophic consequences
and result in failure of execution of the transforma-
tion. Current XSLT processors offer no support for
detecting or handling such infinite behaviour. In-
stead, outputs are often cryptic stack overflow errors,
or a blank output window in the browser. This is
the problem of XSLT termination. Work in (Dong
& Bailey 2004b) examines these four questions and
proposes an analysis method based on the construc-
tion of a template association graph, which conser-
vatively models the control flow of the stylesheet.
A large body of work on termination in other con-
texts such as those for active databases also exists,
e.g.(Bailey & Poulovassilis 1999, Aiken, Widom &
Hellerstein 1995). Connections between active rules
and XSLT have been observed in (Bonifati, Ceri &
Paraboschi 2001a, Bonifati, Ceri & Paraboschi 2001b)
and followed up by work in (Bailey, Pouolvassilis &
Wood 2002a, Bailey, Pouolvassilis & Wood 2002b).

There is also an important line of theoretical
research with regard to analysis of the behaviour
of XSLT. Work in (Milo, Suciu & Vianu 2000)
presents a theoretical model of XSLT and examines
a number of decision questions for fragments of
this model. Work in (Martens & Neven 2004)
examines the question of whether the output of
an XML transformation conforms to a particular
document type. This is more generally related to
the problem of detecting constraint violations due to
transformations. Given a source XML and an XSLT
stylesheet, determine statically whether applying the
stylesheet can violate any constraints that have been
specified on the output document. e.g. Ensure that a
table in the output document contains every element
in the input document.

Some important research issues in analysis are:

• Methods to analyse larger fragments of the XSLT
language syntax are needed. Given the compu-
tational completeness of XSLT, obviously such
methods are likely to be conservative. Con-
structs such as complex XPath expressions, func-
tions and data joins all present difficulties for
existing techniques. Similar to syntax, methods
that take into account semantic complexities of

the language are needed. e.g. Handling of tem-
plate priorities.

• The use of analysis results is another important
theme. Similar to the use of techniques such
as the chase in the optimisation of conjunctive
queries, investigation into the use of results of
analysis in the optimisation of XSLT transfor-
mations is needed. Relationships of analysis in-
formation to debugging is likely to be another
fruitful area (partially discussed in Section 6).

4 Optimisation of XSLT

XSLT can be viewed as a high-level, declara-
tive programming language. This has the benefit
that stylesheets written in this language are often
amenable to a wide range of optimisation techniques.

Server-side XSLT processing is an example of
where optimisation is important. Here, a Web server
receives form based user queries (from a client PC or
hand-held browsing device), applies them to a rela-
tional database, exports the result as XML and then
applies an XSLT stylesheet to deliver the result as
HTML back to the user. If the system is to be scal-
able with respect to the number of users, then it is
crucial that application of the XSLT stylesheet be ef-
ficient. Optimisation techniques are particularly im-
portant for applications which need to perform a high
volume of transformations.

Work in (Dong & Bailey 2004a) looks at the use of
template specialisation as a technique for improving
the performance of XSLT stylesheets. This is a kind
of partial evaluation, for which there already exists a
rich body of work, especially for functional languages
(Jones 1996) (the difference between XSLT and say
Haskell, is that XSLT is data intensive and there is
also often an accompanying DTD for the input, pro-
viding more explicit knowledge about the underlying
input constraints). The main idea is that server-side
XSLT stylesheets are often written to be generic and
may contain a lot of logic that is not needed for ex-
ecution of the transformation with reference to given
user query inputs. Such inputs are passed as parame-
ters to the XSLT stylesheets at run-time, often using
a mechanism such as forms in a Web browser. For
example, a user reading a book represented in XML
might pass a parameter to an XSLT stylesheet refer-
ring to the number of the chapter they wish to see
presented. (i.e. transformed from XML to HTML
by the XSLT stylesheet). The XSLT stylesheet may
obviously contain logic which is designed for present-
ing the contents of other chapters, but it will not
be needed for this user query. Given knowledge of
the user input space, it is possible to instead auto-
matically (statically) create different specialised ver-
sions of the original XSLT stylesheet, that can be in-
voked in preference to the more generic, and possibly
larger version at run-time. In our book example, spe-
cialised XSLT stylesheets could be created for each
chapter. Since the specialised versions can be much
smaller than the original stylesheet, important sav-
ings in execution time and consequently response time
are possible. This work presupposes the use of a cost
model for estimating the run-time efficiency of a given
stylesheet, which in itself is a challenging task.

Looking at other work in the area of XSLT
stylesheet optimisation, work in (Villard &
Layaida 2002) discusses incremental methods
for evaluating multiple transformations, while work
in (Jain, Mahajan & Suciu 2002) takes the approach
of mapping XSLT stylesheets into SQL for higher
performance. This latter work suffers from the
drawback that not all XSLT stylesheets can be



mapped into SQL, however. Optimisation of XSLT
is also discussed in (Kay 2004), which outlines the
internals of the popular XSLT processor Saxon.
XSLT optimisation has been considered by Z. Guo,
M.Li et al in (Guo, Li, Wang & Zhou 2002). They
use a streaming model (SPM) to evaluate a subset of
XSLT. Using SPM, an XSLT processor can transform
an XML document to other formats without using
extra buffer space. XPath (Clark & DeRose 1999)
query optimisation has also been considered in
a large number of papers, e.g. (Gottlob, Koch &
Pichler 2003a, Buneman, Fan & Weinstein 2000, Got-
tlob, Koch & Pichler 2003b, McHugh & Widom 1999).

Some research issues in the area of optimisation
are:

• Constructing accurate cost models for estimat-
ing the output size and/or runtime of an XSLT
stylesheet. Results in this direction have been
published for estimating the selectivity of (much
simpler) XPath expressions, e.g. (Aboulnaga,
Alameldeen & Naughton 2001).

• Developing a standard set of benchmarks for
XSLT. A recent step in this direction is the
XSLTMark suite (Datapower 2001).

• Similar to the direction mentioned for analysis in
Section 3, using static analysis information, such
as likely template calling patterns, to optimise
the stylesheet.

5 Automatic Generation of XSLT

XSLT is a language that is widely considered difficult
to learn (Leventhal 1999). Rendering from XML to
HTML using XSLT requires skills and knowledge of
both XSLT programming and also Web page styling.
This motivates the consideration of methods for au-
tomatically generating XSLT. Given a source XML
document and a desired output XML/HTML docu-
ment, an XSLT stylesheet is automatically generated
to transform the source into the output. The gen-
erated stylesheet contains rules needed to transform
the source document to the output document and can
also be applied to other source documents having the
same structure. The important feature here is that
users can generate an XSLT stylesheet based solely
on their knowledge of XML and HTML. They need
not know anything about the syntax or programming
of XSLT.

Such automatic generation is a useful facility for
students and Web developers learning the XSLT lan-
guage. With an automatic generation tool, they are
able to see and understand how the XSLT stylesheet
should look, in order to transform a particular XML
document into a desired output. In addition, this
tool can also be useful for aiding the XSLT develop-
ment process. Programmers may use the automat-
ically generated stylesheet as the starting point for
something more complex.

A naive solution to the problem of automatic gen-
eration is to create an XSLT stylesheet consisting of
only one template rule, whose pattern matches the
XML root element and whose template contains the
HTML document markup (in other words create a
stylesheet which is very specific to the desired out-
put). This naive approach has a major drawback
in terms of reusability. Such a stylesheet is specific
for transforming the given XML document only and
could not be used to transform other XML documents
having similar structure. Instead, we wish to gen-
erate stylesheets that can be applied to documents
that are instances of the same document class as the

given XML document. There are some interesting
connections to genericity here. Work in (Erwig 2003)
looks at information preserving transformations for
XSLT. Work in (Waworuntu & Bailey 2004) presents
the XSLTGen system, which shows how automatic
generation of XSLT is possible via the discovery and
use of semantic mappings between the input and out-
put.

There is also other related work on the auto-
matic generation of XSLT stylesheets. For visualis-
ing the transformation process, there is the XSLby-
Demo system (Ono, Koyanagi, Abe & Hori 2002).
Tree matching is another related area and a num-
ber of well established algorithms exist. Work done
in (Tai 1979, Selkow 1977), on the tree distance
problem or tree-to-tree correction problem and work
done in (Chawathe, Rajaraman, Garcia-Molina &
Widom 1996, Lim & Ng 2001) on change detection,
compare and discover the sequence of edit opera-
tions needed to transform the source tree into the
result tree. These algorithms principally examine
the tree structures (as opposed to text/data values).
Conversely, systems such as XSLTGen (Waworuntu
& Bailey 2004) use both text values and document
structure to compare documents.

In the field of semantic mapping, there is a
significant amount of work that has been done on
schema matching (Rahm & Bernstein 2001). The
main difference between schema matching and au-
tomatic transformation generation is that mappings
are believed to exist between elements in the source
and destination documents in automatic generation,
since the output document is derived by the user, as
opposed to schema matching where entirely different
vocabularies could be used. Moreover the mappings
generated by the matching process are used to
generate code. The CLIO system (Popa, Velegrakis,
Miller, Hernandez & Fagin 2002) examines the
mapping problem for mapping between combinations
of XML and relational schemas and methods for
generating queries to convert between the two.

Some research issues for automatic generation of
XSLT are:

• Gaining a deeper understanding of what it means
for an automatically generated XSLT stylesheet
to be generic.

• Developing more powerful methods to improve
the kinds of XSLT stylesheets generated, possibly
relying on complex information such as m − m
mappings.

• Developing standard test suites for evaluating
the quality of generated stylesheets, in a simi-
lar spirit to the well known test datasets that
are important in the area of machine learning.

6 Debugging of XSLT

Similar to analysis of rules, as discussed in section
3, a related important issue is that of rule debug-
ging. Being a young language, there are not yet
many techniques and tools for writing error free
XSLT stylesheets, compared to general purpose
programming languages such as C and Java. Also,
as discussed previously in section 5, it is a complex
language and both seasoned programmers and
beginners alike find it difficult to learn. Indeed
little academic work has been undertaken on XSLT
debugging, an exception being (Bae & Bailey De-
cember 2003). Instead, work in this area is mainly
represented by commercial product implementations.
There has been a proliferation of tools developed by



major companies, with the XSLT debugging feature
included within a much bigger tool in an Integrated
Development Environment (IDE). These tools often
have highly usable interfaces, but the main focus is
on the development environment for XSLT, rather
than innovative debugging techniques. This lag in
academic research is perhaps explained by the pres-
sure of market demands and the rapidly increasing
uptake of XSLT. In (Bae & Bailey December 2003) it
is shown that backwards debugging, template slicing
and visualisation are all important techniques and
these have been implemented in a prototype tooled
called CodeX. Visualisation is a result oriented
technique that moves programmer attention away
from internal computations and allows them to focus
directly on the output. It has achieved great success
in the area of debugging. A particular challenge is the
visualisation of recursive template applications, due
to inherently recursive nature of the language. The
functional nature of XSLT makes backwards debug-
ging a particularly natural idea, due to its similarity
to functional languages (Nilsson & Fritzson 1994).
Slicing is the act of breaking large program code into
many coherent pieces (Weiser 1982), called slices of
a program. In XSLT, we consider a slice to consist
of a single template rule. This allows the users to
interact with a subset of the templates available and
they have the option to debug only the necessary
templates and check whether their transformations
are performed correctly. This is particularly useful
in the context of software maintenance, where the
programmer does not want to step through the whole
stylesheet, being presented with template rules that
have been verified through earlier debugging sessions.
A number of tools also exist for debugging XPath
expressions, e.g. XPath Analyzer (ALTOVA 2005).

Some research issues in the area debugging are:

• Developing debugging strategies that deal with
the full XSLT language and that are able to pre-
cisely isolate and explain errors. Integration of
analysis information within debugging sessions is
also important and was mentioned previously in
Section 3.

• Integrating XPath debugging and XSLT debug-
ging. Both languages operate at different levels
of granularity and it is a challenge to combine
debugging feedback to the user from both levels.

• Since debugging sessions can add a lot of ex-
tra runtime overhead, techniques for debugging
efficiently are required. Incremental methods
for XSLT optimisation (Villard & Layaida 2002)
may prove useful here.

7 Reaction Rules for XML

With the increasing use of XML in applications
such as data warehousing, e-commerce and e-learning
(Abiteboul, Cluet, Ferran & Rousset 2002, Bonifati
et al. 2001a, Bonifati et al. 2001b, Cluet, Veltri &
Vodislav 2001, Ishikawa & Ohta 2001, Tatarinov, Ives,
Halevy & Weld 2001), there is a rapidly growing need
for reactive functionality on XML repositories. Event-
condition-action (ECA) rules are a natural candidate
for this. ECA rules automatically perform actions
in response to events provided the stated conditions
hold. They are used in conventional data warehouses
for incremental maintenance of materialised views,
validation and cleansing of data and maintaining au-
dit trails. By analogy, ECA rules can also be used
as an integrating technology for providing this kind
of functionality on XML repositories. Further uses

include checking key and other constraints on XML
documents and performing automatic repairs when
violations of constraints are detected. In a ’push’
type environment, they can be used for automatically
broadcasting information to subscribers as the con-
tents of relevant documents change. They can also be
employed as a flexible means of maintaining statistics
about document and Web site usage and behaviour.

There are two main advantages in using ECA rules
to support such functionality, as opposed to imple-
menting it directly in a programming language such
as Java. First, ECA rules allow an application’s reac-
tive functionality to be defined and managed within
a single rule base, rather than being encoded in di-
verse programs. This enhances the modularity and
maintainability of such applications. Second, ECA
rules have a high level, declarative syntax and are thus
amenable to powerful analysis and optimisation tech-
niques, which cannot be applied if the same function-
ality is expressed directly in programming language
code.

An alternative way to implement the functionality
described above might be to use XSLT to transform
source XML documents. However, XSLT would have
to process an entire document after any update to
it in order to produce a new document, whereas we
are concerned with the detection and subsequent
processing of updates of much finer granularity.
Also, using ECA rules allows direct update of a
document, whereas XSLT requires a new result tree
to be generated by applying transformations to the
source document. ECA rules have been used in many
settings, including active databases (Paton 1999),
workflow management, network management, per-
sonalisation and publish/subscribe technology (Adi,
Botzer, Etzion & Yatzkar-Haham 2000, Bonifati
et al. 2001a, Bonifati et al. 2001b, Ceri, Fraternali
& Paraboschi 1999, Pereira, Fabret, Llirbat &
Shasha 2000) and specifying and implementing
business process (Abiteboul, Vianu, Fordham &
Yesha 2000, Ceri & Fraternali 1997, Ishikawa &
Ohta 2001).

An ECA rule has the general syntax:

on event if condition do action

The event part describes a situation of interest and
dictates when the rule should be triggered. The con-
dition part determines if the (XML) database is in a
particular state. It is a query over the database and
its environment. The action part of a rule describes
the logic to be performed if the condition evaluates
to true. It is usually a sequence of modifications ap-
plied to the database, using the same syntax as that
used by updates within a transaction. More details
on the foundations of ECA rules in active databases
for relational and Object Oriented systems and de-
scriptions of a range of prototypes can be found in
(Paton 1999, Widom & Ceri 1995). The semistruc-
tured nature of XML data gives rise to new issues
affecting the use of ECA rules. These issues are prin-
cipally linked to choice of appropriate language syn-
tax and execution model:

• Event granularity: In the relational model,
the granularity of data manipulation events is
straightforward, since insert, delete or update
events occur when a relation is inserted into,
deleted from or updated, respectively. With
XML, this kind of strong typing of events no
longer exists. Specifying the granularity of where
data has been inserted or deleted within an XML
document and path expressions that identify lo-
cations within the document now become neces-



sary.

• Action granularity: Again in the relational
model, the effect of data manipulation actions is
straightforward, since an insert, delete or update
action can only affect tuples in a single relation.
With XML, actions now manipulate entire sub-
documents and the insertion or deletion of sub-
documents can trigger a different set of events.
Thus, analysis of which events are triggered by
an action can no longer be based on syntax alone.
Also, the choice of an appropriate action lan-
guage for XML is not obvious, since there is as
yet no standard for an XML update language.

Compared to rules for relational databases, ECA
rules for XML data are more difficult to analyse, due
to the richer types of events and actions. However,
rules for XML have arguably less analysis complex-
ity than rules for object oriented data. This stems
from the fact that object oriented databases may per-
mit arbitrary method calls to trigger events, and de-
termining triggering relationships between rules may
therefore be as difficult as analysing a program writ-
ten in a language such as C++ or Java. ECA rules
for XML, in contrast, can be based on declarative lan-
guages such as XQuery and XPath and so are more
amenable to analysis, particularly with a set of natu-
ral syntactic restrictions.

In recent work (Bailey et al. 2002a, Bailey et al.
2002b), we specified a language for defining ECA rules
on XML data, based on the XPath and XQuery stan-
dards. We also developed techniques for analysing the
triggering and activation relationships between such
rules. A number of other ECA rule languages have
also been proposed, although none of this work has
focused on rule analysis.

Bonifati et al (Bonifati et al. 2001a) discuss ex-
tending XML repositories with ECA rules in order to
support e-services. Active extensions to the XSLT
and Lorel (Abiteboul, Quass, McHugh, Widom &
Wiener 1997) languages are proposed that handle in-
sertion, deletion and update events on XML docu-
ments. Bonifati et al (Bonifati et al. 2001b) discuss
a more specific application of the approach to push
technology, where rule actions are methods that can-
not update the repository and hence cannot trigger
other rules.

ARML (Cho, Park, Hyum & Kim 2002) provides
an XML based rule description for rule sharing among
different heterogeneous ECA rule processing systems.
GRML (Wagner 2002) is a multipurpose rule markup
language for defining integrity, derivation and ECA
rules. It uses an abstract syntax based on RuleML,
leaving the mapping to a real language for each under-
lying system implementation. GRML aims to provide
semantics for defining access over distributed, hetero-
geneous data sources for rule evaluation and allows
the user to declare most of the semantics necessary for
processing a rule, and to evaluate events and condi-
tions coming from heterogeneous data sources. Other
related work is (Tatarinov et al. 2001), which proposes
extensions to the XQuery language (World Wide Web
Consortium 2004b) to incorporate update operations.
Triggers are discussed in (Tatarinov et al. 2001) as an
implementation mechanism for deletion operations on
the underlying relational store of the XML, but pro-
vision of ECA rules at the ’logical’ XML level is not
considered.

Closely related to reactive functionality for XML,
is the issue of dynamic XML documents, where some
data within the document is provided by embedded
calls to Web services. Work in (Abiteboul, Bonifati,
Cobena, Manolescu & Milo 2003) examines issues in
this area with regard to distribution and replication.

Recent work in (Bernauer, Kappel &
Kramler 2004) and (Bry & Patranjan 2005) looks
at the issue of complex events for rules in XML.
(Bernauer et al. 2004) investigates the intricacies
of cascading complex events when updates are per-
formed on a document, while (Bry & Patranjan 2005)
presents the language XChange, which is used for
defining rules for XML data that can be triggered by
complex events.

Some research issues for active rules on XML are:

• Successfully combining the eventual standard
XML update language within ECA rules. Most
proposals in the area have so far assumed a ac-
tion syntax based on XQuery.

• Similar to XML transformations, it is again im-
portant to be able to ensure that a document
remains valid with respect to its DTD or XML
schema after rule execution. Analysis methods
are thus needed to predict the effect of rules
on documents. Work in a relational context
which looks at relational transducers (Abiteboul
et al. 2000) may be useful here.

• There are a number of emerging applications
closely related to XML and the Web, such as
the Resource Description Framework ((World
Wide Web Consortium 2004a)) and sensor net-
works. Active rules are likely to be impor-
tant in both contexts (Papamarkos, Poulovas-
silis & Wood 2003, Zoumboulakis, Roussos &
Poulovassilis 2004).

8 Summary

In conclusion, we see that many new and interesting
challenges exist for XML transformations and reac-
tivity. In this paper we have focused on the XSLT
and active rule approaches to manipulation of, and
reaction for, XML data. It will be interesting to
see the impact on both these areas, once XQuery
becomes a W3C recommendation and further tools
begin to be developed.

Acknowledgements: I would like to thank the fol-
lowing people, for the discussions and collaborations
I’ve had in the areas of XML transformations and re-
active rules: Eric Bae, Francois Bry, Ce Dong, Paula
Patranjan, Alex Poulovassilis, Stella Waworuntu and
Peter Wood.

References

Abiteboul, S., Bonifati, A., Cobena, G., Manolescu,
I. & Milo, T. (2003), Dynamic XML documents
with distribution and replication, in ‘Proceed-
ings of the ACM Conference on the Managament
of Data (SIGMOD)’, pp. 527–538.

Abiteboul, S., Cluet, S., Ferran, G. & Rousset, M.
(2002), ‘The Xyleme project’, Computer Net-
works 39, 225–238.

Abiteboul, S., Quass, D., McHugh, J., Widom, J. &
Wiener, J. (1997), ‘The Lorel query language for
semistructured data’, VLDB Journal 1(1), 68–
88.

Abiteboul, S., Vianu, V., Fordham, B. & Yesha,
Y. (2000), ‘Relational transducers for electronic
commerce’, Journal of Computer and System
Sciences 61(2), 236–269.



Aboulnaga, A., Alameldeen, A. R. & Naughton, J. F.
(2001), Estimating the selectivity of XML path
expressions for internet scale applications, in
‘VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, Septem-
ber 11-14, 2001, Roma, Italy’, pp. 591–600.

Adi, A., Botzer, D., Etzion, O. & Yatzkar-Haham, T.
(2000), Push technology personalization through
event correlation, in ‘Proc 26th International
Conference on Very Large Databases (VLDB)’,
pp. 643–645.

Aiken, A., Widom, J. & Hellerstein, J. M. (1995),
‘Static analysis techniques for predicting the be-
havior of active database rules’, ACM Transac-
tions on Database Systems 20(1), 3–41.

ALTOVA (2005), ‘XPath Analyzer’,
http://www.altova.com/features xpath.html.

Bae, E. & Bailey, J. (December 2003), CodeX: An
approach for debugging XSLT transformations,
in ‘Proceedings of the 4th International Confer-
ence on Web Information Systems Engineering
(WISE)’, IEEE Computer Society, pp. 309–312.

Bailey, J. & Poulovassilis, A. (1999), An abstract
interpretation framework for termination anal-
ysis of active rules, in ‘Proc. 7th Interna-
tional Workshop on Database Programming
Languages, LNCS 1949’, Kinloch Rannoch, Scot-
land, pp. 249–266.

Bailey, J., Pouolvassilis, A. & Wood, P. T. (2002a),
An Event-Condition-Action Language for XML,
in ‘Proceedings of the World Wide Web Confer-
ence (WWW)’.

Bailey, J., Pouolvassilis, A. & Wood, P. T. (2002b),
‘Analysis and optimisation for event-condition-
action language on XML’, Computer Networks
39, 239–259.

Bernauer, M., Kappel, G. & Kramler, G. (2004),
Composite events for XML, in ‘Proceedings of
the 13th International Wide Web Conference’,
ACM Press, pp. 175–183.

Bonifati, A., Ceri, S. & Paraboschi, S. (2001a), ‘Ac-
tive rules for XML: A new paradigm for E-
services’, VLDB Journal 10(1), 39–47.

Bonifati, A., Ceri, S. & Paraboschi, S. (2001b), Push-
ing reactive services to XML repositories using
active rules, in ‘Proceedings of the 10th World-
Wide-Web Conference (WWW)’.

Bry, F. & Patranjan, P. (2005), Reactivity on the
Web: Paradigms and Applications of the Lan-
guage XChange, in ‘To appear in The 20th An-
nual ACM Symposium on Applied Computing’.

Buneman, P., Fan, W. & Weinstein, S. (2000), ‘Query
optimization for semistructured data using path
constraints in a deterministic data model’, Lec-
ture Notes in Computer Science 1949.

Ceri, S. & Fraternali, P. (1997), Designing Database
Applications with Objects and Rules:The IDEA
Methodology, Addison-Wesley.

Ceri, S., Fraternali, P. & Paraboschi, S. (1999),
Data-driven one-to-one web site generation for
data-intensive applications, in ‘Proc. 25th In-
ternational Conference on Very Large Databases
(VLDB)’, pp. 615–626.

Chawathe, S., Rajaraman, A., Garcia-Molina, H. &
Widom, J. (1996), Change Detection in Hierar-
chically Structured Information, in ‘Proceedings
of the 1996 International Conference on Manage-
ment of Data’, Montreal, Canada, pp. 493–504.

Cho, E., Park, I., Hyum, S. J. & Kim, M. (2002),
Arml: An active rule markup language for het-
erogeneous active information systems, in ‘Pro-
ceedings of RuleML 2002’.

Clark, J. & DeRose, S. (1999), XML Path Language
(XPath) Version 1.0, W3C Recommendation.
http : //www.w3.org/TR/xpath.

Cluet, S., Veltri, P. & Vodislav, D. (2001), Views in
a large scale XML repository, in ‘Proceedings of
the 27th International Conference on Very Large
Databases (VLDB)’, pp. 271–280.

Datapower (2001), ‘XSLTMark version 2.1.0’,
http://www.datapower.com/xmldev/
xsltmark.html.

Dong, C. & Bailey, J. (2004a), Optimization of XML
transformations using template specialization, in
‘To appear in Proceedings of the 5th Interna-
tional Conference on Web Information Systems
Engineering (WISE 2004)’.

Dong, C. & Bailey, J. (2004b), Static analysis of
XSLT programs, in ‘Proceedings of the 15th
Australasian Database Conference (ADC)’, Vol.
Australian Computer Science Communications
26(2), pp. 151–160.

Erwig, M. (2003), Toward the automatic derivation
of XML transformations, in ‘1st Int. Workshop
on XML Schema and Data Management, LNCS
2814’, pp. 342–354.

Gottlob, G., Koch, C. & Pichler, R. (2003a),
‘XPath processing in a nutshell’, SIGMOD Rec.
32(2), 21–27.

Gottlob, G., Koch, C. & Pichler, R. (2003b), XPath
query evaluation: Improving time and space
efficiency, in ‘Proceedings of the 19th IEEE
International Conference on Data Engineering
(ICDE’03)’.

Guo, Z., Li, M., Wang, X. & Zhou, A. (2002), Scalable
XSLT evaluation, in ‘Proceedings of the 2004
Asia Pacific Web Conference (APWEB)’.

Ishikawa, H. & Ohta, M. (2001), An active web-based
distributed database system for E-Commerce, in
‘Proceedings of the International Web Dynamics
Workshop, London’.

Jain, S., Mahajan, R. & Suciu, D. (2002), Translating
XSLT programs to efficient SQL queries, in ‘Pro-
ceedings of the eleventh international conference
on World Wide Web’, ACM Press, pp. 616–626.

Jones, N. (1996), ‘An introduction to partial evalua-
tion’, ACM Computing Surveys 28(3), 480–503.

Kay, M. (2004), XSLT and XPath Optimization, in
‘Proceedings of XML Europe 2004’.

Leventhal, M. (1999), ‘XSL considered harmful’,
http://www.xml.com/pub/a/1999/05/xsl/
xslconsidered 1.html.

Lim, S. & Ng, Y. (2001), An Automated Change-
Detection Algorithm for HTML Documents
Based on Semantic Hierarchies, in ‘Proceedings
of the 17th International Conference on Data En-
gineering’, Heidelberg, Germany, pp. 303–312.



Martens, W. & Neven, F. (2004), Frontiers of
tractability for typechecking simple XML trans-
formations, in ‘Proceedings of the ACM Sym-
posium on Principles of Database Systems
(PODS)’, pp. 23–34.

McHugh, J. & Widom, J. (1999), Query optimization
for XML, in ‘The VLDB Journal’, pp. 315–326.

Milo, T., Suciu, D. & Vianu, V. (2000), Type-
checking for XML transformers, in ‘Proceed-
ings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database
Systems, May 15-17, 2000, Dallas, Texas, USA’,
ACM, pp. 11–22.

Nilsson, H. & Fritzson, P. (1994), Algorithmic debug-
ging for lazy functional languages, in ‘Journal of
Functional Programming’, pp. 337–370.

Ono, K., Koyanagi, T., Abe, M. & Hori, M. (2002),
XSLT Stylesheet Generation by Example with
WYSIWYG Editing, in ‘Proceedings of the 2002
International Symposium on Applications and
the Internet’, Nara, Japan.

Papamarkos, G., Poulovassilis, A. & Wood, P. T.
(2003), Event-Condition-Action Rule Languages
for the Semantic Web, in ‘Proceedings of the
First International Workshop on the Semantic
Web and Databases’, pp. 309–327.

Paton, N., ed. (1999), Active Rules in Database Sys-
tems, Springer-Verlag.

Pereira, J., Fabret, F., Llirbat, F. & Shasha,
D. (2000), Efficient matching for web-based
publish/subscribe systems, in ‘Proc 7th Int.
Conf. on Cooperative Information Systems
(CoopIS’2000)’, pp. 162–173.

Popa, L., Velegrakis, Y., Miller, R. R., Hernandez,
M. A. & Fagin, R. (2002), Translating Web data,
in ‘Proceedings of the International Conference
on Very Large Databases (VLDB)’, pp. 598–609.

Rahm, E. & Bernstein, P. (2001), ‘A Survey of
Approaches to Automatic Schema Matching’,
VLDB Journal 10(4), 334–350.

Schaffert, S. & Bry, F. (2004), Querying the web re-
considered: A practical introduction to Xcerpt,
in ‘Proceedings of Extreme Markup Languages
2004’.

Selkow, S. (1977), ‘The Tree-to-Tree Editing Prob-
lem’, Information Processing Letters 6(6), 184–
186.

Tai, K. (1979), ‘The Tree-to-Tree Correction Prob-
lem’, Journal of the ACM 26(3), 422–433.

Tatarinov, I., Ives, Z., Halevy, A. & Weld, D. (2001),
Updating XML, in ‘Proc. ACM SIGMOD Int.
Conf. on Management of Data’, pp. 413–424.

Villard, L. & Layaida, N. (2002), An incremental
XSLT processor for XML document manipula-
tion, in ‘Proceedings of the International World
Wide Web Conference (WWW)’.

Wagner, G. (2002), How to design a general rule
markup language, in ‘Invited Talk at the Work-
shop XML Technoligien fur das Semantic Web
(XSW 2002)’.

Waworuntu, S. & Bailey, J. (2004), XSLTGen: A sys-
tem for automatically generating XML transfor-
mations via semantic mappings, in ‘To appear in
Proceedings of the 23rd International Conference
on Conceptual Modeling (ER2004)’.

Weiser, M. (1982), Programmers use slices when de-
bugging, in ‘Communications of ACM’, Vol. 25,
pp. 446–452.

Widom, J. & Ceri, S. (1995), Active Database Sys-
tems, Morgan-Kaufmann, San Mateo, Califor-
nia.

World Wide Web Consortium (1999), ‘XSL
Transformations (XSLT), Version 1.0’, See
http://www.w3.org/TR/xslt. W3C Recom-
mendation.

World Wide Web Consortium (2004a), ‘RDF Primer
’, See http://www.w3.org/TR/rdf-primer.
W3C Recommendation.

World Wide Web Consortium (2004b), ‘XQuery
1.0: An XML Query Language’, See
http://www.w3.org/TR/xquery. W3C Working
Draft.

Zoumboulakis, M., Roussos, G. & Poulovassilis, A.
(2004), Active rules for sensor databases, in ‘Pro-
ceedings of the International Workshop on Data
Management for Sensor Networks, VLDB 2004’.


