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Abstract. Community detection in the presence of prior information
or preferences on solution properties is called semi-supervised or con-
strained community detection. The task of embedding such existing kinds
of knowledge effectively within a community discovery algorithm is chal-
lenging. Indeed existing approaches are not flexible enough to incorporate
a variety of background information types. This paper provides a frame-
work for semi-supervised community detection based on constraint pro-
gramming modelling technology for simultaneously modelling different
objective functions such as modularity and a comprehensive range of con-
straint types including community level, instance level, definition based
and complex logic constraints. An advantage of the proposed framework
is that, using appropriate solvers, optimality can be established for the
solutions found. Experiments on real and benchmark data sets show
strong performance and flexibility for our proposed framework.

1 Introduction

Community detection is the task of identifying densely connected sub-graphs
in networks. Although most research on community detection has focused on
unsupervised learning, which only relies on network topology, there is emerging
interest in semi-supervised or constrained community detection which benefits
from existing side information as well. This can result in more efficient and
actionable solutions.

More generally, the increasing flexibility of data mining techniques to deal
with complex constraints has attracted increasing attention. The topic of constrained-
based mining aims to develop data mining techniques that can handle complex
and domain-specified constraints. This has been shown to be possible for some
data mining tasks such as pattern and sequence mining, item set mining and
constrained clustering using constraint solving technology (e.g. [18, 27, 14]).

There are two main motivations for constrained (semi-supervised) community
detection:

Quality solutions: The community detection process can benefit from prior
information to improve the quality of solutions. For example, the supervision
effect has been studied in the presence of noisy links in the network and it has
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been shown that semi-supervised community detection approaches are usually
more robust to noise than topology-based approaches [15].

Figure 1 illustrates the effect of supervision on the quality of solutions of
two different community detection problems. Figure 1-a is a network of a clique
of size 50 connected to two small cliques of size 5. The left figure shows how
pure modularity maximization merges the two small cliques to one community
while adding a supervision constraint to force the number of communities to be
3 leads to more meaningful communities (right figure). Figure 1-b shows a circle
structure of 30 cliques of size 5. The communities found using the modularity
criterion (left figure) are unconvincing, since adjacent cliques are grouped into
one community. Imposing a size constraint of between 5 to 9 on this community
detection problem reveals the intuitively correct communities (right figure).

Fig. 1. The effect of adding a) a bound on the number of communities and b) bound
on size of communities. Each figure shows partitions before (left) and after (right)
applying the constraints.

Complex problem solving: Constrained community detection is the only
way to tackle some challenging problems, in which different types of constraints
must be satisfied at the same time. Constraints arise by the imposition of user
preferences on community properties, or natural complexity of some problems
with a variety of requirements to be satisfied simultaneously. As an example,
consider finding groupings for a class of students engaged on a project. One may
desire to balance the number of female and male students in each group. To
make teamwork smoother, we may also require that everyone has several of his
Facebook friends or classmates in the group. These are examples of user and ad
hoc constraints to help detect communities with desired properties.

Some attempts have been made to adapt existing community detection algo-
rithms to incorporate background knowledge [15, 2]. However, they are limited
in the types of prior information that can be used. This lack of flexibility narrows
the scope of problems they can tackle. For example, some algorithms can only
incorporate pairwise instance level supervision [15, 2] while others are only ca-
pable of finding size-constrained communities [11]. When more than one type of
supervision exists for a community detection task, it is not clear how to integrate
the results of such different algorithms. In other words, none of the existing ap-
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proaches and algorithms has the flexibility to be able to solve complex problems
by incorporating both classic and ad-hoc types of supervision and user-defined
constraints at the same time. In this paper, we propose a generic constraint
programming framework for the constrained community detection task with the
flexibility to be able to capture a wide variety of possible supervision types.

Constraint programming (CP) [35] is a paradigm for modelling solving com-
binatorial optimization problems where relations between variables are repre-
sented by constraints. One of the strengths of the CP approach is that the
constraints can be arbitrary. CP provides state of the art solutions to many
industrial scheduling and routing problems, and has been successfully used for
constrained data mining problems [18]. Constraint programming modelling tech-
nology has the power to express different sorts of logical and mathematical con-
straints, which provides flexibility in modelling a variety of classic and ad-hoc
user defined constraints for constrained community detection. We can use con-
straint programming modelling technology without committing to a particular
solving methodology. If we use complete solving methods, it has the advantage
of being able to prove optimality of a solution. But we can also use incomplete
solving methods.

Many community detection problems are of large size and cannot currently
be solved to optimality using complete methods in reasonable time. However,
finding optimal solutions to small constrained community detection problems
can give us better insight about the task itself and the characteristics of optimal
communities. In addition, there are some small data problems which are natu-
rally very complex and sufficiently important to justify the resources required
to find an optimal solution. When dealing with bigger problems, existing CP
systems can find feasible solutions to complex community detection problems
even without hope of proving optimality. Complete solver technology can often
find good feasible solutions in a reasonable time, and continue to improve them
given more time. Using incomplete solver technology can often generate better
solutions in less time, although we give up the possibility of proving optimality.
But in any case there is no competing approach we are aware of for tackling
complex constrained community detection problems.

A summary of our contributions in this paper are:

– We examine new types of community level constraints based on community
definitions and complex logic constraints to dynamically capture properties
of interest during the community detection process.

– We show how to model constrained community detection problems with
modularity maximization or other objective functions using constraint pro-
gramming models. This allows the expression of instance level, community
level, definition based and other ad hoc and complex logic constraints.

– We demonstrate via experiments that the framework, using modern complete
solving technology, can effectively solve smaller scale, complex problems to
optimality. And it is the only approach to solve very complex real world
constrained community detection problems.
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– We demonstrate we can use the same models, using incomplete solving tech-
nology to scale to larger problems, although we may give up the possibility
of satisfiying all constraints.

2 Background

Given a graph G = (V,E) of vertices V and edges E, many community detection
algorithms optimize a criterion such as modularity [30] to find the best commu-
nities. Two vertices v1 and v2 are in the same community if x(v1) = x(v2).

The modularity value of a partition is given by equation (1) where W is the
modularity matrix which quantifies the deviation of the network from random-
ness: Wij = (Aij − di×dj

2|E| ) where Aij is 1 if (i, j) ∈ E and 0 otherwise and di is

the degree of node i ∈ V . The modularity of a partition is the summation of the
modularities between pairs of the same community.

Q =
1

2|E|
∑
i,j

Wij(x(i) = x(j)) (1)

It has been shown that finding a partition with maximum modularity is an
NP-hard problem [7]. One of the main heuristics for modularity maximization
was proposed by Blondel et al [6]. It is a greedy hierarchical algorithm which
merges communities in each phase to improve the partition’s modularity value
and continues till no more improvement is possible. Aloise et al [3] introduced a
column generation based exact method for finding communities by modularity
maximization which can solve small size problems to optimality.

Rather than optimizing a criterion, in other schemes, any partition satisfying
some conditions is a solution to the community detection task. Two of such
conditional definitions were proposed by Raddichi [34], termed “communities in
the strong and weak sense.” Let nbh(v) = {v′ | (v, v′) ∈ E} be the neighbours
of v in G. Given a community mapping x, the in-degree of a vertex v, in(v) is
the number of neighbours in the same community, i.e. in(v) = |nbh(v) ∩ {v′ ∈
V |x(v) = x(v′)}|. Similarly the out-degree of a vertex v, out(v) is the number
of neighbours in a different community, i.e. out(v) = |nbh(v) ∩ {v′ ∈ V |x(v) 6=
x(v′)}|. A sub-graph S is a strong community if and only if each vertex in S has
more in-degree than out-degree:

∀v ∈ S in(v) > out(v) (2)

A sub-graph S is a community in the weak sense if and only if the sum of the
internal degrees of the community is larger than the sum of its external degrees:∑

v∈S
in(v) >

∑
v∈S

out(v) (3)

Later on, Hu et al [19] introduced a comparative definition of community or
semi-strong community. Sub-graph S is a community in the semi-strong sense
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if and only if all its vertices have more neighbours within the community than
the maximum number of neighbours in any other community, where m is the
number of communities.

∀v ∈ S in(v) > max
t=1,...,m
t6=x(v)

|nbh(v) ∩ {v′ ∈ V | x(v′) = t}| (4)

Similar to the above mentioned criteria, Cafieri et al [8] defined another relaxed
version of strong community called communities in the almost strong sense and
they designed a heuristic algorithm based on a set of rules to find such commu-
nities in networks. Sub-graph S is a community in the almost strong sense if and
only if each of its vertices of degree other than two shares more edges within the
sub-graph S than with the rest of the network.

∀v ∈ S||nbh(v)| 6= 2 in(v) > out(v) (5)

∀v ∈ S||nbh(v)| = 2 in(v) > 0

Among different supervision types for constrained community detection, size-
constrained community detection has been studied by Ciglan and Nørv̊ag [11].
They proposed a greedy algorithm based on label propagation to find sized
constrained communities based on the semi-strong community definition.

Background knowledge can also be represented as known labels and pairwise
constraints which model whether a pair of vertices must lie within the same
community (must-link or ML) or lie within different communities (cannot-link
or CL). Allahverdyan et al [2] studied the problem of community detection in
networks where community assignments for a fraction of vertices are known in ad-
vance. They designed a so called planted bisection graph model and investigated
the effect of such supervision scheme on detectability threshold of communities.

Eaton and Mansbach [15] proposed a spin-glass model for incorporating pair-
wise constraints in a modularity maximization scheme. Their model penalizes
partitions violating the guidance by adding/subtracting a fixed term to modu-
larity value of pairs involved in must-link/cannot-link constraints.

Cafieri et al [9] extended the column generation model in [3] for modularity
maximization to incorporate cohesion constraints as in general, it is recognized
that communities found by modularity maximization do not necessarily satisfy
variations of strong community conditions (cohesions). However, their column
generation algorithm doesn’t incorporate other constraint types.

Although there is a lack of flexibility in encoding different supervision types
in constrained community detection approaches, there are some studies in con-
strained clustering schemes to address the flexibility and exact solving tech-
nology. Babaki et al [4] incorporated pairwise constraints in an exact column
generation scheme for minimum-sum-of-square constrained clustering with pair-
wise constraints. Berg et al [5] proposed a MAXSAT approach for constrained
correlation clustering. Davidson et al [12] proposed a SAT based approach and
Duong et al [13] used constraint programming to encode several instance and
cluster level constraints in clustering problems.
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However, in spite of the high level similarity of clustering and community
detection tasks, their optimization criteria are often different ie. modularity vs
sum-of-squared-distances. In addition, clustering methods rely on measures of
distance between two points, rather than measures based on the network config-
uration. Hence community detection typically involves very different constraints
which are not applicable in clustering schemes, for example, community defi-
nition based constraints, such as strong/weak community constraints. Minimal
distance and max diameter constraints which are important for constrained clus-
tering do not usually make sense for community detection. Much of the other
focus of work on constrained clustering, e.g. within cluster sum of dissimilar-
ities, is often not applicable to communities since there is no standard notion
of dissimilarity. In addition, capturing complex community level constraints re-
quires a dual viewpoint to the partitioning problem which makes the modelling
of constrained community detection different to constrained clustering.

This paper addresses the existing gap in the literature for constrained com-
munity detection to propose a flexible and generic CP based framework to handle
a variety of constraint types at the same time.

3 Preliminaries

Constraint programming [35] is an effective and generic paradigm to address and
solve constraint satisfaction problems (CSP), or constraint optimisation prob-
lems (COP). A CSP P = (X,D,C) consists of a set of variables X, a finite
domain D for each variable x ∈ X that defines the possible values that it can
take, and a set of constraints C. A COP is a CSP together with an objective
function f which maps a solution θ on X to an objective value f(θ). The aim
is then to find a solution that maximizes (or w.l.o.g. minimizes) the objective
function.

The strength of constraint programming arises from the ability to combine
arbitrary different constraints in the same model. This naturally gives rise to
very expressive modelling. Traditional complete CP solvers are able to tackle
this heterogeneous constraint solving problem by using propagators to infer in-
formation from individual constraints, communicating through shared variable
domains.

Because of this approach the community has developed many global con-
straints which define important combinatorial substructures that reoccur in
many problems, and algorithms to propagate them. An example is the con-
straint alldifferent([x1, ..., xn]) which requires all the variables x1, ..., xn to
be pairwise distinct. Global constraints have a custom propagator able to ex-
ploit the semantics of constraints. This leads to more efficient solving than if one
would decompose that constraint as the conjunction of several simple logical or
mathematical constraints.

The existence of global constraints further enriches the modelling capabilities
for CP, as we try to understand discrete optimization problems as a combination
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of combinatorial substructures. It is this rich modelling approach that will allow
us to express constrained community detection problems succinctly.

We will make use of a few global constraints in capturing community detec-
tion problems.

The global_cardinality_low_up global constraints is a generalization of
alldifferent constraint. The global_cardinality_low_up ([x1, . . . , xn],
[d1, . . . , dm],[l1, . . . , lm],[u1, . . . , um]) requires each value dj is assigned to at least
lj and at most uj of the variables x1, . . . xn for each 1 ≤ j ≤ m.

The value_precede_chain([d1, . . . , dm], [x1, . . . , xn]) requires di precedes di+1

in [x1, . . . , xn] for each 1 ≤ i ≤ m − 1. This global constraint is very useful in
value symmetry breaking of CP models and avoiding multiple symmetric repre-
sentations of the same solution.

4 Constraint Based Community Detection

We now show how we can model constrained community detection problems
using constraint programming. We study four main categories of constraints in-
cluding instance level, community level, definition based and complex logic con-
straints which have not been simultaneously applied for constrained community
detection before.

The input to our CP model is the network’s number of vertices (n) and, if
needed, the modularity matrix (or some variations, e.g. the generalized modular-
ity matrix [16]) denoted by W which is used for building the objective function.
We also assume a maximum number of communities parameter m, which by de-
fault can be n, and a description of the adjacency relation either as an adjacency
matrix, A, or the neighbourhood function nbh where nbh(v) are the vertices ad-
jacent to v. Without loss of generality, we assume vertices are indexed from 1 to
n and we refer to them by their index.

4.1 Decision Variables:

The critical decisions of the problem are for each vertex which community it
belongs to. A one dimensional array x represents the communities to which each
(index) vertex belongs. The length of x is equal to the number of vertices n. The
domains of x are 1..m where m is the maximum number of communities possible
(in the worst case it can be n). While using |x| variables is the most natural way
to model the problem (it directly encodes the community mapping) and enables
us to use efficient global constraints, it has limitations in modelling some of the
community level constraints.

There is a dual viewpoint for the problem. For each community, describe
which vertices are contained in that community. We denote this by an array
of sets of vertices S indexed from 1 to m. Since we have multiple viewpoints
concerning the same decisions, we need to connect them via channeling con-
straints [10], as follows:

∀j ∈ 1..m, ∀i ∈ V i ∈ S[j]⇔ x[i] = j (6)
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Note that if the dual viewpoint is not needed to express any constraints, then
the S variables and the channelling constraints (6) can be omitted.

4.2 Constraints on representation:

In the solution represented by an array x, more than one representation ex-
ists for a unique solution. e.g. x = [1, 1, 2, 2, 2] and x = [2, 2, 1, 1, 1]. This is
called value symmetry [33] which can dramatically effect the ability of complete
solvers to find solutions, and in particular to prove optimality of solutions. For
any solution with k communities there are k! symmetric solutions by permuting
the community numbers. To avoid these situations we use the global constraint
value_precede_chain([i|i ∈ 1..m], x) which ensures that no community i can
have a vertex j unless all communities 1...i−1 have at least one lower numbered
vertex (less than j) as a member. This constraint enforces a unique commu-
nity numbering for any particular partition. It can be viewed as a lexicographic
ordering constraint on the assignment of vertices to communities. This value
symmetry removal is essential for efficiency of the complete solution methods.
Note that the addition of the symmetry breaking constraint is typically counter
productive for incomplete solving methods, since it creates an artificial constraint
that they must satisfy. It is omitted (rewritten away by preprocessing) when we
use incomplete solving methods.

4.3 Objective:

The modularity objective is defined as follows:

OBJ =
∑
i,j∈V

(x[i] = x[j]) ∗W [i, j]

One of the advantages of the CP system is the ability to encode logical
expressions. The expression (x[i] = x[j]) will evaluate to 1 if the expression is
true or 0 otherwise.

Although the primary objective function studied in this paper is modularity
maximization, the CP framework can encode a variety of other complex arbi-
trary objective functions. For example, minimizing the differences in sizes of the
communities is encoded as minimizing the variable OBJ :

OBJ = max
t∈1..m

|S[t]| − min
t∈1..m

|S[t]|

4.4 Modelling instance level supervision:

Instance level supervision is usually represented by pairwise must-link and cannot-
link constraints which is given to the model by a set of pairs of indices denoted
by ML (CL). Similar to [14], the pairwise constraints for constrained community
detection then can be encoded as follows:

∀(m1,m2) ∈ML x[m1] = x[m2]

∀(c1, c2) ∈ CL x[c1] 6= x[c2]
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4.5 Modelling community level supervision:

The CP framework enables incorporating a vast range of community level con-
straint types. For instance:

– Maximum number of communities: This is implicit in the representation
given by the integer m.

– Minimum number of communities: We can enforce that the first l communi-
ties are non-empty by simply

∀i ∈ 1..l |S[i]| > 1

We can do the same without using the dual viewpoint using the global car-
dinality constraint

global_cardinality_low_up(x, [i|i ∈ 1..l], [1|i ∈ 1..l], [n|i ∈ 1..l])

– Minimum and maximum community size:

∀i ∈1..m (|S[i]| ≥ minsize) ∧ (|S[i]| ≤ maxsize)

Again we can avoid the dual viewpoint using global cardinality constraints.
We can also set just a minimum or maximum by using a trivial bound for
the other end of the range (0, or n).

– Minimum community size and unknown number of communities: For this
combination of constraints we need to make use of the dual viewpoint.

∀i ∈ 1..m |S[i]| ≥ minsize ∨ |S[i]| = 0

– Minimum separation between communities: this is defined based on the max-
imum number of edges between communities which can be set to be less than
a predefined threshold T as follows.

∀l, l′ ∈ 1..m where l < l′
∑

i∈S[l],j∈S[l′]

A[i, j] < T

– Distribution of different tags in communities. This is an example of user
preferences in networks with known tags. For example, consider a scientific
collaboration network in which each vertex has a tag: student (St), faculty
(F ) or research staff (R). The university is interested in the collaboration
communities where the ratio of students to faculty is less than p in each
group.

∀l ∈ 1..m
∑
i∈S[l]

(i ∈ St) < p×
∑
i∈S[l]

(i ∈ F )
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4.6 Modelling definition based constraints

We can encode various community definitions as constraints to the CP model.
In this case, the CP model will find the partitions satisfying the local commu-
nity definitions with the maximum possible modularity (objective) value. This
flexibility enables us to benefit from both categories of definitions. Below we
model some community definition constraints for our CP framework (recall the
definitions from Section 2).

– Communities in the strong sense (equation 2):

∀i ∈ V
∑

j∈nbh[i]

(x[i] = x[j]) > |nbh[i]|/2

– Communities in the weak sense (equation 3):

∀t ∈ 1..m
∑

i,j∈S[t]

A[i, j] >
∑

i∈S[t],j∈nbh[i]

1− (j ∈ S[t])

– Communities in the semi-strong sense (equation 4):

∀i ∈ V, ∀t ∈ 1..m t 6= x[i] −→∑
j∈nbh[i]

(x[i] = x[j]) >
∑

j∈nbh[i]

(j ∈ S[t])

– Communities in the almost-strong sense (equation 5):

∀i ∈ V |nbh[i]| > 2 →
∑

j∈nbh[i]

(x[i] = x[j]) >
∑

j∈nbh[i]

(x[i] 6= x[j])

∀i ∈ V |nbh[i]| = 2 →
∑

j∈nbh[i]

(x[i] = x[j]) > 0

The CP framework can provide further flexibility. Using implication one can
require a proportion of the network to follow a community definition based on
other constraints.

4.7 Modelling complex logic constraints

Unlike any other existing approaches for semi-supervised community detection,
CP modelling technology can enable encoding complex logic supervision such as
conjunction, disjunctions, negation and implication of any instance level, com-
munity level and definition based constraints. For example, the constraint “when
instance i belongs to a community, the size of that community should be bounded
by α and β” can be modelled as follows.

∀t ∈ 1..m (i ∈ S[t])→ (|S[t]| < β) ∧ (|S[t]| > α)
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The above constraint is just an illustration that any logic constraint can be
captured by a CP modelling framework. In practice, complex logic constraints
may arise in different applications in real world problems. For example, in power
grid networks, complex requirements may have to be imposed to implement
strategies for network reliability and improving the network behaviour in cas-
cading events [32].

5 Experimental Results

In this section, we present experiments on real and benchmark data sets to eval-
uate the performance and flexibility of the proposed framework. The constrained
community detection problems are written in Minizinc 2.0.12 [28]. All the ex-
periments are performed using the Gecode [37] or OSCAR CBLS [31] CP solver
with a timeout of one hour on a Macbook with 8GB RAM and 2.7 GHz Intel
Core i5.

The main questions we address in this section are:
Q1: How the solutions found by the CP framework compare with other con-
strained community detection methods?
Q2: Can the quality of the solutions be improved by adding community level
supervision to instance level constraints?
Q3: Can the modelling framework enable us to simultaneously encode different
constraint types on a complex real problem?
Q4: How scalable can approaches based on constraint programming modelling
be?

5.1 Comparison to other methods

The proposed modelling framework can encode a variety of objectives as well as
classic and arbitrarily complex instance and community level constraints at the
same time while there is no other approach in the literature with such ability
for semi-supervised community detection. However, to address the question Q1
and compare the proposed modelling framework to an state-of-the-art algorithm
in constrained community detection, we limit the supervision type to only ML
and CL pairwise constraints and set the objective to modularity maximization.
There exist some approximate approaches for incorporating pairwise constraints
in modularity optimization scheme [24, 39, 15]. Here we compare the proposed
framework with the spin-glass model [15], discussed in section 2, because it is
based on modularity and it is shown to perform better than some other ap-
proaches [15]. To implement this approach, we set the parameters according to
[15] and used GenLouvain algorithm [20] for optimizing the spin-glass model.

Since we have the ground truth of the data sets, for evaluating quality of the
solutions, we use the Normalized Mutual Information (NMI) measure (equation
7) proposed by Danon et al [22].

Inorm(A,B) =
−2

∑CA
i=1

∑CB
j=1Nij log(NijN/Ni.N.j)∑CA

i=1Ni. log(Ni./N) +
∑CB

j=1N.j log(N.j/N)
(7)
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In equation (7), A represents the real communities and B represents the
detected communities while CA and CB are the number of communities in
A and B respectively. In this formula, N is the confusion matrix with rows
representing the original communities and columns representing the detected
communities. The value of Nij is the number of common vertices that are in the
original community i but found in community j. The sum over the ith row is
denoted by Ni. and the sum over the jth column is denoted by N.j .

For each data set listed in Table 1, in the second column section we give
the size, number of constraints, the ground truth number of communities k and
maximum number of communities use in the CP model m. For each data set, we
generated 5 different sets of random constraints (equally divided to ML and CL)
based on the ground truth. To have more rigorous comparison, we executed the
spin-glass model 50 times on each data set and reported the NMI correspond
to the best solution (the highest number of constraints satisfied and modularity
score) in the third column section of Table 1. In addition, we also report the run
time and number of constraint violations for the spin-glass method. The average
NMI and runtime of the complete solver Gecode on the model are reported in the
fourth column of Table 1. In the model, the maximum number of communities
m are set according to the solution of the corresponding unconstrained modular-
ity maximization problem. Note that the solutions found by the CP framework
satisfy all of the constraints, hence the number of constraint violations is zero.
The P-value corresponding to Friedman statistical test is reported in the last
line of Table 1. The null hypothesis of this test is two algorithms have no signif-
icant difference in their performance. This hypothesis is rejected based on the
very small p-values, indicating that Gecode applied to the model statistically
significantly outperforms the spin-glass method in solution quality.

Using Gecode on the CP model finds high quality solutions while it is often
very fast as well. In addition, Gecode can prove optimality in reasonable time
for solutions of smaller problems. For bigger problems sizes such as Political
blogs, Gecode could not prove optimality within one hour. Still Gecode could
find a better solution (NMI=0.88) than the spin-glass solution (NMI=0.59) in
17 seconds and it kept searching for better solutions within the timeout. This
shows the ability of the CP modelling framework to produce promising results
even in big problem instances in reasonable time where proving optimality is not
possible.

5.2 Effect of community level supervision

To address the second question, we add community level constraints to pairwise
ML and CL constraints for the data sets of Table 1 agreeing with their ground
truth. The results of adding community level constraints including communities
in weak and almost-strong sense (equations 3 and 5), number of communities and
size (cardinality) constraints are shown in the last column section of Table 1.
For the cardinality constraint, we generated 10 sets of random samples from
the ground truth and set the minimum and maximum size of the communities
according to the observed number of samples from each community.
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Table 1. Comparison to other methods and effect of community level constraints

Spin-glass(Pairwise) CP(Pairwise) CP(Pairwise+community-level)

Data n #const k m NMI time #viol NMI time NMI time supervision type

Sampson [36] 25 24 2 4 0.82 <1 0.6 0.88 <1 0.96 <1 weak
Strike [26] 24 24 3 5 0.72 <1 1.5 0.78 <1 0.81 <1 # of community
Zachary [38] 34 34 2 4 0.85 <1 0.19 0.87 <1 0.9 <1 weak
Mexican [17] 35 34 2 4 0.32 <1 0.44 0.45 60 0.53 35 weak
Dolphin [23] 62 124 2 5 0.81 <1 4.76 0.95 <1 0.98 <1 almost strong
Adjacent Words [29] 112 224 2 4 0.05 <1 51.92 0.52 73 0.8 1.7 cardinality
Political books[21] 105 210 3 5 0.67 <1 18.7 0.94 15 0.95 2.5 cardinality
Political blogs[1] 1490 2980 2 4 0.59 1.2 145.6 0.88 3600(17) 0.97 142(14) # of community

p-value 0.0047 baseline 0.0047

Comparing the last two column sections of Table 1 shows that adding com-
munity level supervision can lead the community detection process to more accu-
rate solutions, while often enhancing the runtime of the optimization algorithm.
For instance, in the Political Blogs dataset, adding the number of community
constraints leads to a significant improvement in runtime and solution quality
comparing to considering just pairwise constraints. The significancy of the results
are verified using Friedman statistical test and the very low p-value.

5.3 Case study

To address question Q3, we consider contacts and friendship relations between
students in a high school in Marseilles, France, in December 2013. Students
were asked to record their contacts with other students in a diary and also
list their friends at school. The Facebook network is available for a subset of
these students. Gender, student ID and the teaching class of each student is also
reported. We consider the network of 81 students whose Facebook and friendship
information is known [25].

We consider a hypothetical scenario in which the School Principal wants to
group the students based on their Facebook communications network, while at
the same time, desiring certain properties to hold based on students’ friendships
and contacts information. For example, students who had more than 1 hour
contact during the data collection period, must be assigned to the same com-
munity and students who declared friendship and had contact during the data
collection period also must be in the same community. These kinds of proper-
ties can be captured by a set of must-link constraints. 50 must-link constraint
were extracted based on the above mentioned requirements on individual stu-
dent assignments. For balancing group populations, suppose the School Principal
wants each community to have 15-25 students and having 4 groups of students
is desired. The School Principal also wants to balance the gender distribution
in groups by requiring the difference in number of male and female students to
be less than or equal to 5. To make students feel more comfortable, it is also
required that each student has at least two other students from their original
class for the new group they are assigned into.

There is no existing community detection algorithm capable of automati-
cally incorporating these complex instance and community level constraints at
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Table 2. Community profiling of the case study

methods size gender class distribution

spin glass
39 F=29, M=10 4,7,25,2,1
38 F=15, M=23 3,1,20,5,9
4 F=3, M=1 4

CP just ML
40 F=23, M=17 3,2,12,18,5
30 F=20, M=10 1,5,13,3,6,1,1
11 F=4, M=7 2,1,8

CP final

25 F=12, M=13 3,17,5
25 F=15, M=10 4,4,14,3
15 F=10, M=5 3,3,9
16 F=10, M=6 3,5,5,3

the same time. For example, the spin-glass model [15] can only incorporate must-
link and cannot-link constraints. The best solution found by the spin-glass model
from 1000 executions is shown in first row section of Table 2 satisfying all the
must-link constraints. The size column shows the cardinality of each community
and the next column shows the number of females and males in each commu-
nity respectively. The class distribution column shows the number of classmates
based on original class labels for each of the new communities. Based on this
information, it is clear that the solution found by the spin-glass model violates
all the other constraints.

Real world problems such as this example often include a large number of
varying requirements on communities which often cannot be satisfied by existing
approaches. However, our modelling framework can easily deal with various com-
plex constraints at the same time. Within the timeout of one hour, a solution of
the model just considering must-link constraints (to compare with the spin-glass
solution), using the complete solver Gecode, and a full solution also incorpo-
rating size, number of community, gender and class distribution constraints are
shown in the second and third rows of Table 2. As shown in Table 2, the solution
found using Gecode satisfies all the constraints required by the School Principal.

5.4 Scalability

One of the advantages of using a solver-independent modelling framework is that
we do not commit to a particular solving technology. While complete solving
methods are effective on constrained supervision problems which are not too
large, by their nature they do not scale as well as incomplete methods. We
can use an incomplete solver to tackle the same model. Indeed since we use
MiniZinc [28] we can send the same model to both solvers.3 Incomplete solvers
are typically more scalable, but may struggle to satisfy all the constraints of the
problems.

We consider solving the problem using the Oscar CBLS solver [31]. On the
smaller examples of Table 1 Gecode is uniformly better than Oscar, in both time

3 Note that we also tried running MIP solvers on the models, but they were non-
competitive, which is unsurprising since the linear relaxation of these problems is
very weak.
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Fig. 2. Modularity over time for Political
Blogs data set using Gecode, Oscar and
spin-glass methods
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Fig. 3. NMI over time for Political Blogs
data set using Gecode, Oscar and spin-
glass methods

to solve and NMI of resulting solution, but as the size of the graphs grow Oscar
becomes quicker to find solutions.

Figure 2 shows the best modularity value of the solution over time using
Gecode, Oscar and the spin-glass on the Political Blogs example. The spin-glass
method repeatedly run keeping either the lexicographic best solution (modu-
larity, number of constraints satisfied) or the lexicographic best solution in the
other order. Clearly the spin-glass concentrates on modularity maximization,
and never satisfies all constraints (never finds a feasible solution), and reaches
much higher modularity values.

Figure 3 shows the plot of the same solutions, but here ranked on NMI
value. Clearly the spin glass method never achieves a good NMI, but tracking
solutions that satisfy more constraints is preferable for NMI. Oscar quickly gets a
good solution to the problem with high NMI and gradually improves. Interesting
Gecode actually finds the best solution in terms of NMI as its first solution, then
gradually degrades as it optimizes the modularity objective. The first solution
found by Gecode requires 24 seconds, while the first solution found by Oscar
requires only 3.5 seconds.

6 Conclusion

The challenging problem of constrained community detection with a variety of
constraint types and objective functions has been explored in this paper. We
proposed a generic framework based on constraint programming modelling ap-
proach, which enables including a variety of instance and community level, defi-
nition based and complex logic supervision types as constraints. Our models are
able to prove optimality of the solutions, when using complete solving methods,
and in our experiments we have shown it can work with real networks and com-
plex problems. An obvious direction for future work is to consider specialized
propagators for community definitions, for example a stronger propagator for
globally strong communities seems clearly possible.
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