
ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver
Operating Characteristics to Classify Gene Expression Data

M. Maruf Hossain∗† Md. Rafiul Hassan† James Bailey†

Abstract
Gene expression information from microarray experiments
is a primary form of data for biological analysis and can
offer insights into disease processes and cellular behaviour.
Such datasets are particularly challenging to build classifiers
for, due to their very high dimensional nature and small
sample size. Decision trees are a seemingly attractive
technique for this domain, due to their easily interpretable
white box nature and noise resistance. However, existing
decision tree methods tend to perform rather poorly for
classifying gene expression data. To address this gap, we
introduce a new technique for building decision trees that
is better suited to this scenario. Our method is based
on consideration of the area under the Receiver Operating
Characteristics (ROC) curve, to help determine decision tree
characteristics, such as node selection and stopping criteria.
We experimentally compare our algorithm, called ROC-
tree, against other well known decision tree techniques, on
a number of gene expression datasets. The experimental
results clearly demonstrate that ROC-tree can deliver better
classification accuracy in a range of challenging situations.

Key words: Receiver Operating Characteristics (ROC),

Decision Tree, Gene Expression, DNA Microarray, Classi-

fication, High Dimensional Dataset

1 Introduction
Gene expression measurements from DNA microar-
ray [18] experiments provide information gleaned from
tissue and cell samples that may be crucial to disease di-
agnoses and distinguish specific tumour types. Clinical
decision support [39] is an emerging medical application
domain for microarray gene expression technology; and
is used to diagnose diseases, predict clinical outcomes
and responses to treatment. However, gene expression
data is particularly challenging to build classifiers for,
since it typically has thousands of features, but only
tens or at most hundreds of instances. There is a press-
ing need for simple and easily interpretable classification
tools that can operate on high dimensional gene expres-
sion datasets with good accuracy.

Decision trees are a well known and classic clas-
sification technique [6], [31]. Moreover, they are self-
explanatory, easily understood, interpreted and inferred
from [6], and have been successfully used for classifica-

∗Corresponding author {hossain@csse.unimelb.edu.au}
†Department of Computer Science and Software Engineering,
The University of Melbourne, Australia.

tion in diverse areas such as radar signal classification,
character recognition, remote sensing, medical diagno-
sis, expert systems, and speech recognition. Decision
trees require little data preparation in terms of param-
eter settings, and are well suited to exploratory knowl-
edge discovery. They can handle both numerical and
categorical data. Also, their representation allows the
illustration of any discrete value classifier [35]. Their
“white box” nature means that it is possible to validate
a model with statistical tests and for a human expert to
interpret it. Consequently, the reliability of the model
can be expressed and accounted for. Decision trees can
handle datasets that may have errors or missing val-
ues. The model is typically robust and can handle large
amounts of data in a relatively short time [16]. The most
important characteristics of decision tree classifiers are
their efficacy to divide a complex decision-making pro-
cess into a number of simpler decisions, and thus provide
a solution which is easily interpretable.

However, although decision tree classifiers have a
lot of benefits, they tend to suffer from lower predictive
power for gene expression microarray datasets. There-
fore, even though several works applying them exist in
the microarray literature (e.g., [3] – [41]), this technique
is currently not so popular in the gene expression mi-
croarray domain [24], because there is a noticeable gap
between their prediction performance, compared to that
of other techniques such as Support Vector Machines
(SVMs) [30] or even k-Nearest Neighbour (k-NN) [1].

Example 1.1. In the ALL-AML leukaemia gene ex-
pression dataset, C4.5 [33] has an average accuracy of
only 79.17± 4.87% using 10 × 10-fold cross validation,
whereas SVM and k-NN yield an average accuracy of
98.61 ± 1.26% and 83.33 ± 3.49%, respectively. This
lower accuracy of the decision tree classifier can discour-
age biologists to use it, even though the results are easy
to interpret and can provide a clearer understanding of
which genes are involved in the classification process and
which combinations of genes can separate the classes.

Such an example highlights the prediction accuracy
gap that exists when using a decision tree classifier
technique for gene expression microarray data. Our aim
in this paper is to improve the classification performance

of decision trees in this gene expression microarray
domain. Although we will use comparison to the
classification performance of support vector machines
as one benchmark, our expectation is not to outperform
this technique. Rather, our belief is that a decision tree
classifier which is only marginally less accurate than a
support vector is in fact preferable for biologists to use,
due to its superior interpretability.

In this paper, we introduce a novel binary decision
tree induction algorithm to classify patients from gene
expression datasets. This has substantially better ac-
curacy than existing decision tree induction techniques
for such data. The proposed tree is based on consider-
ation of the area under the Receiver Operating Char-
acteristics (ROC) curve [20]. This value is equivalent
of the Mann-Whitney U statistic [2] normalized by the
number of possible pairings of positive and negative val-
ues, also known as the two sample Wilcoxon rank-sum
statistic [21]. The area under the ROC curve (AUC) ac-
tually represents the probability that a randomly cho-
sen positive example is correctly rated (ranked) with
greater suspicion than a randomly chosen negative ex-
ample. Moreover, this probability of correct ranking
is the same quantity estimated by the non-parametric
Wilcoxon statistic [4].

Deng et al. [10] demonstrated that the assumption
that the gene expression data follows the Gaussian (nor-
mal) distribution often does not hold true in real world
data. Therefore, a non-parametric test like Wilcoxon
rank sum is statistically a better way to identify discrim-
inative genes than parametric tests like t-test. Apart
from establishing the suitability of non-parametric tests,
they also showed that using the significance level thresh-
old, instead of an arbitrary number of discriminative
genes as the parameter carries the quality specification
in statistics.

Traditionally, in data mining and machine learning,
the ROC curve is used to test the quality of binary
classifiers [12], [40]. Mamitsuka [26] used the AUC to
rank genes by treating each gene as a single feature
classifier. In this study, we generalise and adapt
Mamitsuka’s ranking technique for use in decision tree
node selection. In short, we develop an algorithm, ROC-
tree, to induce a binary decision tree to classify patients
from gene expression data.

The intuitive outline of the technique is as follows:

Remark 1.1. For a given gene expression dataset D of
n examples comprising m attributes: x1, x2, x3, . . . , xm,
each gene xi (where 1 � i � m) has some discrimina-
tive power, i.e., the influence of each gene on the clas-
sification accuracy can be measured. The ROC curve is
plotted for each of the pairs formed by the “classifier”
gene xi and the corresponding class label Yi. A node

of the decision tree is determined by selecting the at-
tribute with the highest AUC. It should be noted that the
ROC-tree can be relatively robust to the small number
of samples found in gene expression datasets, since in
statistical terms, it does not employ any distributional
assumptions.

Challenges: For most classification techniques exam-
ined in the literature, the accuracy greatly suffers if the
number of examples used for training is much lower than
the number of attributes. Furthermore, having a large
number of attributes, as is the case in most gene expres-
sion datasets, poses a great challenge for decision trees,
since the data can be highly noisy and traditional mea-
sures such as information gain [33] or gini impurity [6]
often lead to erroneous decisions.

Issues Related to Induction of Decision Trees:
Inducing a decision tree using a top-down approach re-
quires dealing with three other issues apart from select-
ing the best attribute to use at each node in the tree.
Firstly, one has to choose a splitting threshold to form
the two children for each node. This choice of splitting
criterion affects the quality of the decision tree and has
been the subject of considerable research. However, it
is extremely important to split the dataset in a way so
that uncertainty can be reduced maximally, i.e., most of
the similar classes fall under the same branch [28]. Sec-
ondly, one needs a criterion to determine when to stop
growing the tree. To avoid difficulties in choosing a stop-
ping rule, most decision tree induction algorithms grow
the tree to its maximum size where the terminal nodes
are pure or almost pure, and then selectively prune the
tree. Thirdly, the final issue is how to decide what class
label to assign for the terminal (leaf) nodes.

Related Work: There exist numerous algorithms to
construct decision trees. There have been several ap-
proaches to deal with large datasets. Catlett [9] ex-
plored two methods that efficiently induce decision trees
from high dimensional datasets by reducing the compu-
tational complexity required for induction. Fifield [14]
proposed a parallel implementation of the ID3 algo-
rithm.

Ferri et al. [13] used area under the ROC curve
(AUC) as a quality metric to choose nodes in a decision
tree. They proposed a method that selects a feature and
split point based on the AUC corresponding to a clas-
sifier for every potential class labelling for the induced
child nodes. This is rather different to the technique
we will present, which uses an AUC measure to select
a node based on its classification performance and then
uses the misclassification rate to choose a split point.
Also, their technique grows the tree to its maximum
size until the terminal nodes are pure or almost pure,

and then prunes the tree using “Pessimistic Error Prun-
ing” [32], whereas, we use a stopping criterion based on
AUC. We will later make a comparison between this
technique and ours in the experiments.

Ma and Huang [25] proposed using the binormal
AUC as the objective function for two-sample classifica-
tion, and the threshold gradient directed regularization
method for regularized estimation and biomarker selec-
tion. They also developed Monte Carlo based methods
for evaluating the stability and prediction performance
of the proposed estimator and individual biomarkers
(i.e., genes).

Statnikov et al. [37] aimed to develop a reliable and
powerful cancer diagnostic model creation system based
on microarray data. Their focus on multi-category di-
agnoses attempted to keep the approach realistic. Their
results suggested that the Multiclass Support Vector
Machines (MC-SVMs) were the most accurate classi-
fiers for cancer diagnoses from gene expression data,
since they outperformed all the other methods consid-
ered. They also noted that gene selection techniques
significantly improve the classification performance of
both MC-SVMs and other classifiers used in their study.
They concluded that the ensemble models did not al-
ways show improvements over non-ensemble models.

Our Contributions: Our main contributions in this
paper are as follows:

• Development of a decision tree induction technique,
ROC-tree, which in a novel way uses the area under
the ROC curve to select nodes of the tree. This
aims to address the current gap in classification
performance of standard decision tree classifiers
used for gene expression datasets.

• Determination of an AUC-based criterion to stop
growing the tree.

• An experimental investigation which demonstrates
that ROC-tree outperforms well known tech-
niques like C5.0 [34], its predecessor C4.5 [33],
ADTree [15], Random Forest [5], and Ferri
et al.’s [13] AUCsplit in terms of accuracy as well
as overall AUC value. Furthermore, the predictive
power of ROC-tree for gene expression is compa-
rable to the black box support vector machine ap-
proach, making it an attractive tool for biologists.

Organization: The remainder of the paper is orga-
nized as follows. In Section 2, we briefly discuss the
fundamental concepts behind the algorithm developed.
Our algorithm is formally described in Section 3. Sec-
tion 4 presents the design of the experimental investi-
gation. We present and discuss the results in Section 5.

Figure 1: A typical ROC curve

Finally in Section 6, we suggest future improvements
and conclude the paper.

2 Preliminaries
2.1 The Receiver Operating Characteristic
Curve A Receiver Operating Characteristic (ROC)
curve was first used in signal detection theory [20]. In
machine learning, the ROC curve is used to evaluate the
discriminative performance of binary classifiers. This is
obtained by plotting the curve of the true positive rate
(Sensitivity) versus the false positive rate (1 – Speci-
ficity) for a binary classifier by varying the discrimina-
tion threshold. Figure 1 shows a typical ROC curve.

Prior to plotting the ROC curve the sensitivity and
specificity need to be calculated as follows:

• True Positive (TP) = The number of predicted
positive cases that are actually positive.

• True Negative (TN) = The number of predicted
negative cases that are actually negative.

• False Positive (FP) = The number of predicted
positive cases that are actually negative.

• False Negative (FN) = The number of predicted
negative cases that are actually positive.

Sensitivity =
TP

TP + FN
(2.1)

Specificity =
TN

FP + TN
(2.2)

It is to be noticed that, all the calculations above
are attained when using a particular classifier threshold.
By varying the threshold, a set of values for these

Algorithm 1 AuROC (adapted from [12])
Input(s): X : The set of examples
Output: Δ: The area under the ROC curve
Require: φ(i): The probabilistic classifier’s estimate
that example i is positive, P and N : The number of
positive and negative examples, P > 0 and N > 0
1: Xsorted ← X sorted decreasing by φ scores
2: Set FP ← TP ← 0
3: Set FPprev ← TPprev ← 0
4: Set Δ← 0
5: Set φprev ← −∞
6: Set i← 1
7: while i � |Xsorted| do
8: if φ(i) �= φprev then
9: Δ← Δ+trap area(FP, FPprev , TP, TPprev)

10: Set φprev ← φ(i)
11: Set FPprev ← FP
12: Set TPprev ← TP
13: end if
14: if i is a positive example then
15: TP ← TP + 1
16: else /* i is a negative example */
17: FP ← FP + 1
18: end if
19: end while
20: Δ← Δ + trap area(1, FPprev, 1, TPprev)
21: Δ← Δ/(P ×N) /* scale from P ×N onto the

unit square */
22: return Δ
23: end
1: function trap area(X1, X2, Y1, Y2)
2: Base← |X1 −X2|
3: Heightavg ← (Y1 + Y2)/2
4: return Base×Heightavg

5: end function

measurements is obtained. This set of values is plotted
in a two-dimensional Cartesian graph to yield the ROC
curve. The ROC curve indicates the performance of the
binary classifier, as it takes into account all the possible
solutions by varying the discriminative threshold. The
best performance would be produced, if the ROC curve
matches with the upper left corner of the ROC space
(which yields 100% sensitivity and 100% specificity).
The closer the ROC curve is to the upper part of the
ROC space, the better the performance of the classifier.

An ROC curve is a two dimensional illustration of
classifier performance. Reducing ROC performance to
a single scalar value to represent expected performance
helps compare classifiers. An oft used method is to
calculate the area under the ROC curve (AUC) [21], [4].
There are several ways to calculate AUC. Of these, one

Algorithm 2 CalculateROC

Input(s): D: The matrix of training examples with
the last column being the class label
Output: A: Attribute with the highest AUC
1: Set R← ∅ /* R is an array of the AUC of all

attributes of D */
2: for i← 1 to (number of column of D − 1) do
3: R← R∪AuROC(Di)
4: end for
5: Sort R in descending order based on AUC
6: Set A ← R1 /* In the case of a tie take the first

attribute */
7: return A
8: end

way is to calculate using trapezoidal integration shown
in Eq. (2.3) [29].

AUC =
∫ b

a

f(α)dα

≈
n∑

i=1

h

2
(f(a + (i− 1)h) + f(a + ih))(2.3)

where α = (1− Specificity), a = 0, b = 1,
n = size to increase, and h = b−a

n .
Prior to calculating the AUC, the set of the values of

sensitivity and specificity is normalized to the range [0,
1]. The AUC, being a part of the area of the unit square,
has a value between 0 and 1. Since random guessing
could produce the diagonal line between (0, 0) and (1, 1)
with an area of 0.5, a classifier with an AUC less than
0.5 is undesirable [12]. A value of AUC equal to 1.0
represents that the performance of the binary classifier
is 100% perfect, i.e., the classifier can discriminate the
dataset accurately and with 100% sensitivity and 100%
specificity. An AUC value close to 1 indicates better
performance for a binary classifier [11].

3 ROC-tree
We now describe in more detail, the steps in our
algorithm for building the decision tree using the ROC
measure.

3.1 Selecting Nodes of the Tree Previous work
has established the use of an ROC curve for feature
selection, to identify the discriminative genes in the
dataset [26]. First, the ROC curve is plotted for each of
the pairs formed by each of the genes and the class label.
This means treating a single gene as a classifier and
calculating the classification in terms of the sensitivity
and specificity by varying the operating point. We adapt
this kind of idea as a selection method for nodes in

building the decision tree. For each feature (gene), the
AUC is calculated and the gene with the highest AUC is
selected as the node of the tree. Algorithm 1 shows how
to generate ROC points for a given set and calculate
the AUC from it; and Alg. 2 presents pseudocode for
calculating the AUC for each gene.

Based on selection of a suitable splitting threshold
for the selected attribute (to be discussed shortly), the
dataset is then divided into two subsets. Each of the
subsets is then used to further induce the tree in a
similar way.

Example 3.1. Let us consider a dataset D of n ex-
amples, where each example comprises m attributes:
x1, x2, x3, . . . , xm. Each of the m attributes has a differ-
ing discriminative power reflected by its respective AUC.
To calculate the discriminative power that is expressed
in terms of AUC, we plot the ROC curve for each at-
tribute paired with the class label, (i.e., {xi, Yi}, where
1 � i � m and Y is the vector of class labels) and calcu-
late the AUC of the ROC curve. Suppose the attribute
xα, where 1 � α � m has the highest AUC. So, for
the ROC-tree, xα is to be selected as the node. A suit-
able threshold is then obtained for this attribute and the
dataset D is divided into two subsets: Dleft and Dright.
Then, for each subset Dleft and Dright, we recursively
use the similar process by excluding the attributes used
at the parent nodes and thus, induce the decision tree.

3.2 Splitting Threshold Selecting the best value to
discriminate the classes based on the selected attribute
is important. The splitting threshold is chosen by taking
each value of the selected gene from the dataset, and
then attempting to classify based on a chosen value and
calculating the misclassification rate for that value. The
value with the minimum misclassification rate is finally
selected as the splitting threshold.

Example 3.2. Let us consider the dataset D of n
instances, where each instance has m attributes:
x1, x2, x3, . . . , xm. Suppose, xα, where 1 � α � m has
the highest AUC and is selected to be the node in the
tree. Then for each value xα1 , xα2 , xα3 , . . . , xαn of xα

of the dataset, we form the rule:

If xα � xαjthen Class = +ve
else Class = –ve,

where 1 � j � n. We then attempt to classify the
dataset with this rule, and note the misclassification
rate. Then the xαj with the minimum misclassification
rate is selected as the splitting threshold for attribute xα.

When choosing the splitting threshold the classifi-
cation error (misclassification rate) is used instead of

Algorithm 3 CalculateSplitThreshold

Input(s): D: The matrix of training examples with
the last column being the class label,
A: Selected attribute
Output: θ: Splitting threshold for the node
Require: Y : The target attribute (i.e., the last
column of D), Γ: The rule to test the split
1: Set θ ← −∞
2: Set error ← 0 /* error is the counter for

misclassification */
3: Set thresError ← ∅ /* thresError is an array of

error for each example */
4: // Select each value of the attribute to choose the

respective splitting threshold
5: for each example i ∈ D do
6: Formulate Γ⇐

IF A � AvalueiTHEN Class = Y +

ELSE Class = Y − /* Avaluei is the value of the
A in D for each example i; Y + and Y − are the
positive and negative class, respectively */

7: Set error ← 0
8: // Calculate misclassification
9: for each example i ∈ D do

10: if Γ does not satisfy the ith example then
11: error ← error + 1
12: end if
13: end for
14: thresError ← thresError ∪ {error}
15: end for
16: Find index of the minimum member of thresError
17: θ ← Aindex

18: return θ
19: end

the sensitivity and specificity measure. This is done be-
cause the sensitivity and specificity measure only gives
us some idea on true and false positives individually, but
does not give a complete picture of classification accu-
racy. On the other hand, the misclassification rate gives
an easily interpretable picture of the performance of the
classification. Moreover, splitting the dataset based on
misclassification rate can reduce the uncertainty max-
imally, i.e., most of the similar classes fall under the
same branch. Pseudocode for calculating the splitting
threshold is presented in Alg. 3.

3.3 Stopping Criterion To decide when to stop
growing the tree, the AUC of the selected attribute
is tested. A value of AUC equal to 1 represents that
the selected attribute can classify the training dataset
accurately with 100% sensitivity and 100% specificity.
Therefore, a value of AUC close to 1 indicates that

Figure 2: The effect of the overall tree performance for
different stopping threshold on six gene expression datasets

the current node is pure and the tree need not grow.
However, to avoid overfitting, growing the tree for a
node is stopped, when the AUC for an attribute is found
to be 0.95. This is because we do not want to grow
the tree for a smaller subset of the training set. We
have chosen to use the value of 0.95 for the stopping
threshold, based on consideration of varying behaviour
of this parameter for the gene expression datasets in
our experimental evaluation. Figure 2 shows how the
accuracy of the overall tree is affected by varying the
value of this parameter, for a number of datasets (to be
described later). A noticeable peak in the graph can be
seen around the value of 0.95 for the stopping threshold
(AUC).

Another situation that we take into account is that
if the AUC of a chosen attribute is equal to or less than
0.5, it indicates the predictive power is worse than that
of a random classifier [12]. So, when a selected attribute
is found to have an AUC equal to or less than 0.5, the
growing of the tree is stopped for that node.

3.4 Labelling the Leaf Nodes Once the stop con-
dition is satisfied, further growing of the tree will be
ceased. Nonetheless, a class labelling is needed for each
of the two children induced by the split point. In this
circumstance, we label by the positive class, the child
node having values greater than or equal to the thresh-
old value and label the other child node by the nega-
tive class. This is done to maintain consistency with
the method that we used for selection of the splitting
threshold.

Algorithm 4 presents the pseudocode for inducing
the ROC-tree using the functions presented in Alg. 2
and Alg. 3.

3.5 Complexity of the Algorithm Let us consider
a dataset D of N examples, where each example com-
prises M attributes: x1, x2, x3, . . . , xM . Then the al-

Algorithm 4 ROCtree
Input(s): D: The matrix of training examples with
the last column being the class label
Output: T : A decision tree
1: if D = ∅ then
2: return a single node with ∅
3: end if
4: if D consists of records all with the same value for

the class label then
5: return a single leaf node with that value
6: end if
7: A ← CalculateROC(D) /* A be the attribute

with the largest AUC among all attributes in D */
8: θ ← CalculateSplitThreshold(D,A) /* θ be

the split point for attribute A */
9: Set Dleft and Dright as the subsets of D consisting

of records respectively with the value greater than
or equal to and less than

10: Recursively apply ROCtree to subsets Dleft and
Dright until they are empty or the stopping criteria
are met

11: return a tree T with root or node labelled A and
arcs labelled a1 and a2, going respectively to the
trees ROCtree(Dleft) and ROCtree(Dright)

12: end

gorithm would need an O(N log N) sort followed by an
O(N) scan down the list, and the result would have a
total complexity of O(N log N) for calculating the AUC
of a single attribute or gene. Therefore, for all the genes,
it will have a complexity of O(MN log N). To calculate
the splitting threshold it will have another complexity
of O(N2). Thus, the algorithm has a total complexity
of O(MN log N +N2) for choosing a single node and its
splitting threshold.

4 Experiment Design and Datasets
For the experimental analysis, we compare against ten
other techniques. These are: a number of well known
simple decision tree induction techniques: C5.0 [34],
its predecessor C4.5 [33], Ferri et al.’s [13] AUCsplit
technique for decision trees, ADTree [15], Random For-
est [5], REPTree and Random Tree. We also com-
pared against several non decision tree classifiers: Näıve
Bayes, k-NN and SVMs using linear kernel (SVM). The
linear kernel is chosen because Deng et al. [10] showed
that on gene expression datasets, SVMs with linear ker-
nel perform better than SVMs with polynomial or RBM
kernel when no explicit feature selection is performed.

Each of the techniques is applied on 12 datasets,
of which 6 are GE datasets and 6 are non-GE datasets
with having rather different characteristics. To evaluate

Table 1: Properties of the datasets used in this study

Dataset No. of Attributes No. of Instances

GE1 24,481 97
GE2 3,226 22
GE3 12,533 181
GE4 12,600 21
GE5 12,600 136
GE6 7,129 72
Hepatitis 19 155
Ionosphere 34 351
WBC 9 699
WDBC 30 569
WPBC 33 198
Pima Indians 8 768

the performance of the ROC-tree classifier, a 10-fold
cross validation (CV) scheme is used 10 times for all
12 datasets.

4.1 Datasets Several gene expression datasets from
previous studies have been obtained to validate the
performance of the proposed algorithm. Apart from
these, 6 non-GE datasets discussed widely in the lit-
erature have also been considered, to evaluate the per-
formance of the proposed algorithm in different circum-
stances. They are: Hepatitis Domain Database (Hep-
atitis), Johns Hopkins University Ionosphere Database
(Ionosphere), Pima Indians Diabetes Database (Pima),
Wisconsin Breast Cancer Database (WBC), Wisconsin
Diagnostic Breast Cancer dataset (WDBC) and Wis-
consin Prognostic Breast Cancer dataset (WPBC); and
are collected from the UCI Machine Learning Reposi-
tory [27]. The properties of the datasets are illustrated
in Tab. 1. The considered gene expression datasets are
briefly described next.

Gene Expression Dataset 1 (GE1): This gene ex-
pression dataset is collected from the Integrated Tu-
mor Transcriptome Array and Clinical data Analy-
sis database [23] which was first used by van ’t Veer
et al. [39]. In this dataset, every sample is described by
the expression levels of 24,481 genes. The dataset com-
prises 97 lymph-node-negative breast cancer patients, of
which 46 positive and 51 negative cases were present.
Gene Expression Dataset 2 (GE2): Collected from
the Microarray Project of the National Human Genome
Research Institute, USA, this gene expression dataset
was first used by Hedenfalk et al. [22]. All samples
in this dataset are described by the expression levels
of 3,226 genes. The subset used in this experiment
comprised 14 patients with BRCA1 gene mutations and
8 patients with BRCA2 gene mutations.
Gene Expression Dataset 3 (GE3): This dataset

is obtained from the Division of Thoracic Surgery [38]
Brigham and Women’s Hospital, Boston, MA, USA.
It contained classification information between malig-
nant pleural mesothelioma (MPM) and adenocarcinoma
(ADCA) of the lung. There are 181 tissue samples (31
MPM and 150 ADCA) and each sample is described by
the expression of 12,533 genes. This dataset was first
used by Gordon et al. [19].
Gene Expression Dataset 4 (GE4): Collected from
the Cancer Program [8], Broad Institute of MIT and
Harvard, MA, USA, this gene expression dataset was
first used by Singh et al. [36]. In this dataset, 21
prostate cancer patients were evaluable with respect
to recurrence following surgery with 8 patients having
relapsed and 13 patients having remained relapse free
for at least 4 years. Each sample, in this dataset, is
described by the expression of 12,600 genes.
Gene Expression Dataset 5 (GE5): This dataset is
actually a variant of the gene expression dataset 4, and
comprises tissue sample of 77 prostate cancer patients
and 59 controlled volunteer.
Gene Expression Dataset 6 (GE6): This gene
expression dataset is collected from the Cancer Pro-
gram [7], Broad Institute of MIT and Harvard, MA,
USA; and was first used by Golub et al. [18]. This
dataset contains 47 ALL type and 25 AML type bone
marrow samples, over 7,129 probes from 6,817 human
genes.

5 Results and Discussion
The classification results for all 11 techniques on the
considered datasets are presented in Tab. 2 and Tab. 3.
The best performances among that of the reported
classifiers are marked in bold. We begin our discussion
by first focusing on classifiers other than the support
vector machine.

The classification performance of the ROC-tree on
the gene expression datasets clearly outperforms that
of all the other reported decision trees. We conjecture
that one of the reasons for this significantly better per-
formance is due to the better computation of discrimina-
tive power of attributes used when building the tree. It
is worth noting that for the datasets GE1 and GE6, the
performance improvement of the ROC-tree is at least
8% and 13% better than all the other decision tree
techniques. Similarly, for GE2, GE3, GE4 and GE5,
there are consistent increases in accuracy. Results of
statistical significance tests we conducted (Bonferroni-
corrected t-tests [17]) confirmed that the improvement
in accuracy is significant. For example, when compar-
ing the best results of the ROC-tree with that of the
C4.5, on 5 of the 6 gene expression datasets (GE2 to
GE6) the p-value is less than 0.05 (0.042463, 0.012897,
0.030047, 0.036691 and 0.04914, respectively). GE1

Table 2: Comparison of accuracy results from 10 × 10-fold cross validaion on six gene expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6

ROC-tree 72.16 ± 4.32 77.27 ± 2.45 98 .34 ± 0 .89 38.10 ± 5.95 88 .24 ± 2 .33 94 .44 ± 2 .96
AUCsplit 63.58 ± 4.59 74.39 ± 1.63 96.14 ± 1.36 34.01 ± 2.87 82.47 ± 3.96 81.61 ± 3.28
C5.0 64.95 ± 6.21 59.09 ± 4.52 92.82 ± 1.21 23.81 ± 4.65 81.62 ± 4.12 80.55 ± 3.74
C4.5 62.89 ± 3.11 72.73 ± 1.36 95.03 ± 1.05 33.33 ± 4.59 79.42 ± 5.45 79.17 ± 4.87
ADTree 61.86 ± 4.28 68.18 ± 5.68 92.82 ± 2.19 32.86 ± 3.44 86.76 ± 2.63 86.11 ± 3.77
REPTree 52.18 ± 5.45 59.09 ± 3.92 95.03 ± 1.28 32.86 ± 3.46 80.88 ± 3.33 81.94 ± 4.26
Random Tree 55.67 ± 3.54 63.64 ± 2.58 79.56 ± 2.69 32.86 ± 3.12 62.50 ± 5.23 75.00 ± 3.90
Random Forest 62.89 ± 6.43 50.00 ± 5.33 93.92 ± 1.22 38.10 ± 5.27 80.88 ± 2.56 79.17 ± 2.36
Näıve Bayes 54.64 ± 3.38 59.09 ± 4.58 98.34 ± 0.03 33.33 ± 0.78 55.88 ± 4.76 98.61 ± 1.03
k-NN 62.89 ± 5.63 63.64 ± 4.32 93.92 ± 2.01 57.14 ± 5.97 78.68 ± 4.78 83.33 ± 3.49
SVM 68.04 ± 2.14 59.09 ± 2.98 99.45 ± 0.11 47.62 ± 5.63 91.18 ± 3.12 98.61 ± 1.26

Table 3: Comparison of accuracy results from 10 × 10-fold cross validation on six non-gene expression datasets

Method Hepatitis Ionosphere WBC WDBC WPBC Pima

ROC-tree 78.71 ± 7.65 84.05 ± 9.87 92.56 ± 5.43 90.69 ± 6.78 69.67 ± 8.33 63.54 ± 8.65
AUCsplit 82.10 ± 3.43 86.00 ± 7.31 95.88 ± 1.94 93.75 ± 3.39 70.53 ± 9.67 73.82 ± 5.35
C5.0 76.13 ± 2.35 89.46 ± 1.23 93.64 ± 1.65 93.29 ± 2.23 70.70 ± 4.12 73.94 ± 2.76
C4.5 80.00 ± 4.45 91.45 ± 3.36 93.84 ± 2.63 93.15 ± 1.26 75.25 ± 3.32 73.83 ± 2.89
ADTree 76.13 ± 2.96 93.16 ± 1.65 95.14 ± 1.77 94.02 ± 1.06 77.78 ± 5.42 72.92 ± 3.23
REPTree 78.71 ± 4.23 89.46 ± 1.46 93.99 ± 2.14 92.44 ± 2.33 73.74 ± 4.85 75.39 ± 4.55
Random Tree 72.91 ± 9.21 87.75 ± 3.64 94.13 ± 2.85 89.46 ± 3.67 68.18 ± 5.45 67.97 ± 6.49
Random Forest 81.94 ± 1.26 92.59 ± 3.26 95.99 ± 1.45 95.25 ± 1.37 78.28 ± 3.47 73.70 ± 4.98
Näıve Bayes 83.87 ± 1.71 82.62 ± 3.48 95.99 ± 0.74 92.97 ± 2.58 67.68 ± 5.08 76.30 ± 3.49
k-NN 81.94 ± 3.66 84.90 ± 3.74 97.00 ± 1.08 97.01 ± 1.12 74.24 ± 4.18 73.18 ± 3.23
SVM 76.77 ± 4.23 88.60 ± 2.43 96.85 ± 1.07 97.72 ± 1.04 76.26 ± 4.78 77.34 ± 5.01

Table 4: Comparison of AUC value from 10 × 10-fold cross validaion on six gene expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6
ROC-tree 0.7386 ± 0.01 0.7933 ± 0.03 0.9393 ± 0.04 0.2857 ± 0.05 0.8900 ± 0.33 0.9504 ± 0.01
AUCsplit 0.6421 ± 0.10 0.7360 ± 0.07 0.9221 ± 0.02 0.3012 ± 0.06 0.8130 ± 0.04 0.8241 ± 0.08
C4.5 0.5887 ± 0.03 0.6607 ± 0.02 0.9028 ± 0.01 0.2212 ± 0.09 0.7819 ± 0.04 0.6885 ± 0.03
SVM 0.6415 ± 0.02 0.4911 ± 0.08 0.9235 ± 0.00 0.3077 ± 0.23 0.9216 ± 0.07 0.92 ± 0.04

showed milder improvement (p-value is 0.093591).
The results of the AUCsplit technique were as good

as C4.5 or better and slightly lower than our proposed
algorithm on these gene expression datasets. This is
interesting, since both techniques consider AUC values,
yet use it to build the tree in different ways.

The improved performance of the ROC-tree over
other decision trees may be due to the fact that the
AUC is a better measure to select nodes for the tree
in the context of gene expression data, compared to
other uncertainty measurements such as entropy and
information gain. A key factor to remember here is
that gene expression data contains few instances, many
attributes and tends to be noisy. It has also been

shown that it is not safe to assume that gene expression
data satisfies a normal distribution [10]. Hence the use
of non parametric statistical measures, to which AUC
calculation is closely connected via the Mann-Whitney
test (as mentioned in the introduction), are likely to be
appropriate for selecting good discriminating attributes.

We also computed the overall AUC value of selected
classifiers, shown in Tab. 4, resulting from the 10 × 10
cross validation over the gene expression datasets. The
AUC values of the four considered classifiers: ROC-tree,
AUCsplit, C4.5 and SVM, indicate that AUCsplit im-
proves over C4.5 more for AUC value than for accuracy
value. For five of the six datasets, we see the ROC-
tree has better AUC than either C4.5 or AUCSplit. In-

(a) (b) (c)

(d) (e) (f)

Figure 3: Comparison of the sizes of the trees: ROC-tree, C5, C4.5, ADTree, REPTree and Random Tree on 6 gene
expression datasets used in this study: (a) GE1, (b) GE2, (c) GE3, (d) GE4, (e) GE5, (f) GE6

(a) (b) (c)

(d) (e) (f)

Figure 4: Comparison of the sizes of the trees: ROC-tree, C5, C4.5, ADTree, REPTree and Random Tree on 6 non-GE
datasets used in this study: (a) Hepatitis, (b) Ionosphere, (c) Pima Indians, (d) WBC, (e) WDBC, and (f) WPBC.

terestingly, although the SVM technique showed excel-
lent accuracy across 4 gene expression datasets out of
6 datasets, in terms of AUC, its performance was the
best on only 2 datasets.

ROC-tree also performed impressively when com-
pared to SVM. In particular, when compared to the
SVM considering the accuracy metric, ROC-tree man-
aged two wins (for GE1 and GE2) and was not far be-
hind for GE3, GE5 and GE6. Interestingly, compared
to SVM for the AUC metric, ROC-tree managed four
wins (GE1, GE2, GE3, GE6) and was not far behind for
GE4 and GE5. We believe this is an important result,
since it establishes that the ROC-tree is highly competi-
tive compared to the SVM, yet has the significant extra
advantage of being interpretable to biologists.

Non-GE Datasets: It is interesting to notice that
compared to the success in classifying the high dimen-
sional gene expression datasets, the ROC-tree method
yielded accuracy results for the non-GE datasets (see
Tab. 3) which were rather less powerful compared to
the other classifiers. The underlying reason for this is
an open question, but intuitively, we believe it may be
because in the presence of fewer attributes, it is dif-
ficult to identify ones with substantial discriminative
power. This leads to sub-optimal choices being made
when building the tree.

Another interesting trend in the results is that hy-
bridized decision tree induction algorithms, like ADTree
or Random Forest that performed quite well on the non
gene datasets compared to simple decision tree induc-
tion techniques like C4.5, or its successor C5.0; did not
perform impressively on the gene expression datasets.

Tree Size: The size of each tree built using the
ROC-tree method is rather smaller compared to trees
generated by ADTree or Random Tree. For almost
all gene expression datasets, ROC-tree is about the
same size as a C5 or C4.5 pruned tree (see Fig. 3).
However, for the non-GE datasets, ROC-tree yielded
the smallest tree on four datasets (Fig. 4(b), 4(c), 4(d),
4(f)). Though REPTree generated small trees in most
cases, the accuracy is never impressive. Random Tree,
on the other hand, always yielded the largest trees.

Running Time: Execution time for the considered
algorithms is presented in Tab. 5. It can be seen that
the times are relatively fast for all the gene expression
datasets (at most tens of seconds). The table indicates
that the ROC-tree takes slightly more time to build the
tree than C5 does. The execution times of both these
algorithms are somewhat higher than that of the other
algorithms, including C4.5, which is the predecessor of
C5. However, the execution time is still lower than
the complex decision trees (i.e., ADTree and Random

Table 5: Comparison of execution time (in seconds)
taken to build the model using all data on Gene Expression
Datasets

Method GE1 GE2 GE3 GE4 GE5 GE6

ROC-tree 35.11 0.52 12.32 2.03 15.22 3.27
AUCsplit 36.34 1.58 42.76 41.32 43.09 4.38
C5 31.5 0.5 11.4 1.8 11.3 2.6
C4.5 9.92 0.11 4.89 0.41 4.3 1.05
ADTree 49.61 0.34 19.56 1.06 27.14 2.83
REPTree 3.81 0.08 1.67 0.34 2.05 0.5
Random 13.88 0.13 12.06 0.42 3.45 0.59
Tree
Random 42.69 0.47 23.14 1.78 17.61 3.7
Forest
Näıve 1.94 0.03 1.56 0.13 1.08 0.3
Bayes
k-NN 0.11 0.001 0.09 0.03 0.08 0.03
SVM 5.16 0.09 3.39 0.83 3.28 0.61

Forest) or the AUCsplit technique. Apart from tree size,
another factor influencing the execution time may be the
choice of implementation language used in a particular
algorithm. For example, ROC-tree is implemented in
MATLAB 2007a, C5 and AUCsplit are implemented in
C/C++; and the rest are implemented in Java.

6 Conclusion
This paper has focused on presenting an effective de-
cision tree algorithm for classifying gene expression
datasets. We have shown how the well known ROC
measure can be used to construct decision trees with
very high accuracy for such datasets. Indeed our clas-
sifier is able to substantially improve over the decision
tree state of the art for this problem. Decision trees
are particularly attractive for biologists due to their in-
tepretability, being able to highlight which genes are
actually influencing the classification.

For future work, we intend to consider extending
our approach to situations where there are three or more
classes in the data.

References

[1] D. Aha and D. Kibler. Instance-based learning algo-
rithms. Machine Learning, 6:37–66, 1991.

[2] D. Bamber. The area above the ordinal dominance
graph and the area below the receiver operating char-
acteristic graph. Journal of Mathematics and Psychol-
ogy, 12:387–415, 1975.

[3] M. Beibel. Selection of informative genes in gene
expression based diagnosis: a nonparametric approach.
Lecture Notes in Computer Sciences. Proc. ISMDA’00,
1933:300–307, 2000.

[4] A. P. Bradley. The use of the area under the ROC
curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30(7):1145–1159, 1997.

[5] L. Breiman. Random Forests. Machine Learning,
45(1):5–32, October 2001.

[6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classfication and Regression Trees. Wadsworth,
Belmont, 1984.

[7] http://www.broad.mit.edu/cgi-bin/cancer/
publications/pub paper.cgi?mode=view&paper id=43.

[8] http://www.broad.mit.edu/cgi-bin/cancer/
publications/pub paper.cgi?mode=view&paper id=75.

[9] J. Catlett. Megainduction: Machine learning on very
large databases. PhD thesis, University of Sydney,
Australia, 1991.

[10] L. Deng, J. Pei, J. Ma, and D. L. Lee. A Rank Sum
Test Method for Informative Gene Discovery. In Proc.
KDD’04, pages 410–419, Seattle, WA, USA, 2004.

[11] J. P. Egan. Signal Detection Theory and ROC Anal-
ysis. Academic Press Series in Cognition and Percep-
tion. Academic Press, London, UK, 1975.

[12] T. Fawcett. ROC Graphs: Notes and Practical Consid-
erations for Researchers. Technical Report MS 1143,
HP Laboratories, 2004.

[13] C. Ferri, P. Flach, and J. Hernández-Orallo. Learning
decision trees using the area under the ROC curve. In
Proc. ICML 2002, pages 139–146. Morgan Kaufmann,
2002.

[14] D. J. Fifield. Distributed tree construction from large
datasets. B.S. Honours thesis, Australian National
University, Canberra, Australia, 1992.

[15] Y. Freund and L. Mason. The alternating decision tree
learning algorithm. In Proc. ICML ’99, pages 124–133,
Bled, Slovenia, 1999.

[16] J. Gehrke, R. Ramakrishnan, and V. Ganti. RainFor-
est – A Framework for Fast Decision Tree Construction
of Large Datasets. In Proc. VLDB ’98, pages 416–427,
San Francisco, 1998. Morgan Kaufmann.

[17] S. A. Glantz. Primer of BioStatistics. McGraw-Hill,
NY, USA, 1992. 309–310.

[18] T. R. Golub, D. K. Slonim, P. Tamayo et al. Molecular
Classification of Cancer: Class Discovery and Class
Prediction by Gene Expression Monitoring. Science,
286:531–537, 1999.

[19] G. J. Gordon, R. V. Jensen, Li-Li Hsiao et al. Transla-
tion of Microarray Data into Clinically Relevant Can-
cer Diagnostic Tests Using Gene Expression Ratios in
Lung Cancer And Mesothelioma. Cancer Research,
62:4963–4967, 2002.

[20] D. M. Green and J. M. Swets. Signal detection theory
and psychophysics. John Wiley & Sons Inc., New York,
USA, 1966.

[21] J. A. Hanley and B. J. McNeil. The meaning and use
of the area under a receiver operating characteristic
(ROC) curve. Radiology, 143:29–36, 1982.

[22] I. Hedenfalk, D. Duggan, Y. Chen et al. Gene-
expression profiles in hereditary breast cancer. The
New England Journal of Medicine, 344(8):539–548,
2001.

[23] http://bioinfo-out.curie.fr/ittaca.
[24] I. Inza, P. Larrañaga, R. Blanco, and A. J. Cerrolaza.

Filter versus wrapper gene selection approaches in
DNA microarray domains. Artificial Intelligence in
Medicine, 31:91–103, 2004.

[25] S. Ma and J. Huang. Regularized ROC method
for disease classification and biomarker selection with
microarray data. Bioinformatics, 21:4356–4362, 2005.

[26] H. Mamitsuka. Selecting features in microarray clas-
sification using ROC curves. Pattern Recognition,
39(12):2393–2404, 2006.

[27] http://www.ics.uci.edu/∼mlearn/MLRepository.html.
[28] N. J. Nilsson. Introduction to Machine Learning. An

early draft of a proposed textbook, 1996.
[29] M. Nishikawa, Y. Takakura, F. Yamashita, and

M. Hashida. Basic pharmacokinetics of oligonu-
cleotides and genes. In R. I. Mahato and S. W. Kim,
editors, Pharmaceutical Perspectives of Nucleic Acid-
Based Therapeutics, chapter 19, pages 409–433. CRC
Press, London, UK, 2002.

[30] J. Platt. Fast Training of Support Vector Machines us-
ing Sequential Minimal Optimization. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

[31] J. R. Quinlan. Induction of Decision Trees. Machine
Learning, 1:81–106, 1986.

[32] J. R. Quinlan. Simplifying Decision Trees. Interna-
tional Journal of Man-Machine Studies, 27:221–234,
1987.

[33] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA, USA,
1993.

[34] http://www.rulequest.com/see5-info.html.
[35] L. Rokach and O. Maimon. Top-Down Induction of De-

cision Trees Classifiers–A Survey. IEEE Transactions
on Systems, Man, and Cybernetics Part C: Applica-
tions and Reviews, 35(4):476–487, 2005.

[36] D. Singh, P. G. Febbo, K. Ross et al. Gene Expres-
sion Correlates of Clinical Prostate Cancer Behavior.
Cancer Cell, 1:203–209, 2002.

[37] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin,
and S. Levy. A comprehensive evaluation of multicate-
gory classification methods for microarray gene expres-
sion cancer diagnosis. Bioinformatics, 25(5):631–643,
2005.

[38] http://www.chestsurg.org/publications/
2002-microarray.aspx.

[39] L. J. van ’t Veer, H. Dai, M. J. van de Vijver et al.
Gene expression profiling predicts clinical outcome of
breast cancer. Nature, 415:530–535, 2002.

[40] G. I. Webb and K. M. Ting. On the application
of ROC analysis to predict classification performance
under varying class distributions. Machine Learning,
58(1):25–32, 2005.

[41] H. Zhang, C.-Y. Yu, B. Singer, and M. Xiong. Re-
cursive partitioning for tumor classification with gene
expression microarray data. PNAS USA, 98(12):6730–
6735, 2001.

