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Abstract

This paper presents a wavelet-based texture analysis
method for classification of melanoma. The method applies
tree-structured wavelet transform on different color chan-
nels of red, green, blue and luminance of dermoscopy im-
ages, and employs various statistical measures and ratios
on wavelet coefficients. Feature extraction and a two-stage
feature selection method, based on entropy and correlation,
were applied to a train set of 103 images. The resultant
feature subsets were then fed into four different classifiers:
support vector machine, random forest, logistic model tree
and hidden naive bayes to classify melanoma in a test set of
102 images, which resulted in an accuracy of 88.24% and
ROC area of 0.918. Comparative study carried out in this
paper shows that the proposed feature extraction method
outperforms three other wavelet-based approaches.

1. Introduction

Malignant melanoma, the most dangerous type of skin
cancer and among the four most common cancers in Aus-
tralia, is the most common cancer in people aged 15–44
years [1]. Melanoma, if detected at early stages, is cur-
able. However, differentiation of melanoma from other
pigmented skin lesions is not trivial even for experienced
dermatologists. Failure to diagnose a newly developed
melanoma lesion leads to lethal advanced melanoma.

Epiluminence microscopy or dermoscopy is a non-
invasive in vivo imaging technique which allows for a mag-
nified and clear visualization of the morphological struc-
tures of the skin that are not visible to the naked eye.
With the use of dermoscopy and dermoscopic clinical al-
gorithms [2], such as pattern analysis, ABCD rule of
dermoscopy, Menzies method, 7-point checklist, and the
CASH algorithm, the diagnosis of melanoma has been im-
proved compared with the simple naked-eye examination
between 5% and 30% depending on the type of skin le-

sion and the experience of the dermatologist [5]. However,
clinical diagnosis of melanoma is inherently subjective and
its accuracy has been an issue of concern, especially with
equivocal pigmented lesions [5]. Despite the use of der-
moscopy, the accuracy of expert dermatologists in diagnos-
ing melanoma is still estimated to be about 75-84% [2].

Due to the enhancements in skin imaging technology and
image processing techniques in the recent years, there has
been a significant increase in interest in the computer aided
diagnosis of melanoma, which aims to remove subjectivity
and uncertainty from the diagnostic process and provide a
reliable second-hand opinion to dermatologists. However,
it is widely acknowledged that much higher accuracy is re-
quired for computer-based algorithms to be adopted rou-
tinely in the diagnostic process [4, 17].

A computer aided diagnosis of melanoma generally
comprises four components; image acquisition, border de-
tection, feature extraction, and classification; the latter two
are the main focus of this paper.

Feature extraction is used to extract the most important
features that accurately characterize a lesion. These fea-
tures are mainly similar to those visually detected by der-
matologists. In computerized melanoma detection systems,
feature extraction has been generally based on the con-
ventional clinical algorithm of ABCD-rule of dermoscopy,
where asymmetry, border irregularity, color and diame-
ter (or differential structures) of the lesion are examined.
Numerous feature extraction methods have been proposed
and different image processing techniques have been em-
ployed [7, 14] to obtain color, border and texture informa-
tion of the lesion. It has been shown that using wavelet
coefficient along with ABCD features augment the classi-
fication accuracy [10]. Texture-based features have been
explored in the literature, however, in this paper we pro-
pose a complementary feature extraction method which ex-
tracts the textural information of the lesion using a 4-level
wavelet decomposition on red, green, blue and luminance
color channels, and applies a variety of measures and ratios.

Classification is the final step of the diagnosis pro-



cess, where the extracted features are utilized to ascertain
whether the lesion is malignant, benign or suspicious. The
most popular classification methods that have been applied
to computer-based melanoma recognition include discrim-
inate analysis, artificial neural network, K-nearest neigh-
bourhood, support vector machine and decision trees [14].
In this study we have used and compared various classi-
fiers; namely, support vector machine, random forest, logis-
tic model tree, and hidden naive bayes.

The rest of the paper is organized as follows. An
overview of the existing wavelet-based texture analysis
methods in dermoscopy images is provided in Section 2.
The proposed feature extraction method is detailed in Sec-
tion 3. Section 4 explains the proposed feature selection
method. The proposed classification method is provided is
Section 5. Experimental results and discussions are pre-
sented in Section 6. Section 7 provides the conclusion.

2. Wavelet-based texture analysis in der-
moscopy images

In clinical diagnostic approaches (e.g. ABCD rule of
dermoscopy and pattern analysis) dermatologists look into
the visual differences within the lesion and also changes
in the appearance of the lesion over the time. These vi-
sual characteristics can be captured through texture analy-
sis. Wavelet-based texture analysis provides a multireso-
lution analytical platform which enable us to characterize
a signal (an image) in multiple spatial/frequency spaces.
The multi-scale characteristics of wavelet can be very useful
since dermoscopy images are taken under different circum-
stances such as various image acquisition set up (lighting,
optical zooming, etc) and versatile skin colors.

The 2D wavelet transform has been widely applied in
image processing applications. There exists two wavelet
structure; (1) Pyramid-structured wavelet transform which
decomposes a signal into a set of frequency channels with
narrower bandwidths in lower frequency channels, useful
for signals which their important information lies in low fre-
quency components [8], (2) Tree-structured wavelet anal-
ysis which provides low, middle and high frequency de-
composition which is done by decomposing both approx-
imate and detail coefficients as shown in Figure 1. In der-
moscopy image analysis, the lower frequency components
reveal information about the general properties (shape) of
the lesion, which is clinically important, and the higher fre-
quency decomposition provides information about the tex-
tural detail and internal patterns of the lesion which is also
significant in the diagnosis. Thus the decomposition of all
frequency channels are useful in this application. Therefore,
the tree-structured wavelet analysis can be more informative
for classification of skin lesions.

Some applications of wavelet transform to classify

melanoma has been reported in the literature; Nimunkar
et al. [15] applied pyramid-structured wavelet transform to
differentiate melanoma from dysplastic nevi on a set of 28
images. The luminance color channel was decomposed to
three levels and different statistical ratios such as energy,
entropy, etc. was used to initially build up a vector of 34
features. Using statistical analysis, this was ultimatelynar-
rowed down to five features.

Inspired by Chang and Ku [8]’s method on tree-
structured wavelet transform, Patwardhan et al. [16] pro-
posed an adaptive wavelet-based tree-structured method to
classify melanoma on a set of 60 images. The average en-
ergy, maximum energy and fractional energy ratios were
used, where the luminance image was decomposed into
three levels, resulted in a vector comprising 231 features.
Then, a statistical analysis based on population mode was
conducted to select those features with bimodal distribution.
As a result, the process yielded five optimal features.

The two feature sets proposed in [15] and [16], were
later combined [20] and optimized using principal compo-
nent analysis (over 33 images) to obtain an optimal set of
four features. The classification was performed on a set of
27 images using back propagation neural network, leading
to true positive of 100% and false positive of 23.53% which
was shown to be higher than each individual feature set pro-
posed by [15] and [16].

In this paper we introduce a feature extraction approach
that yields higher classification accuracy than those reported
in [15], [16] and [20], as outlined in the next section.

3. Proposed feature extraction method

In this study, we expand the feature extraction methods
reported in [15], [16] and [20] by incorporating red, blue
and green color channel, in addition to the luminance color
channel used by the previous studies, because each color
channel maintain certain information of the lesion which
can be useful in characterizing and classification of the le-
sion. Furthermore, we decompose the wavelet-tree to the
forth level for the fact that certain textural details, which are
significant in the diagnosis process, might appear in deeper
levels. Moreover, different statistical measures and ratios
are proposed to extract useful information from the images
and utilized for the classification.

In this paper we use eight measures of energy (E), mean
(M), standard deviation (Std), entropy (H), average-energy
(AvgE), skewness (S), kurtosis (K), and norm (N), ex-
pressed in Equations 1–8. Figure 2 displays a schematic il-
lustration of wavelet tree with nodes marked by circles. The
measures are applied on the original image (called level 0)
and also on wavelet coefficients of each node (sub-image)
of the wavelet tree which has 340 nodes in total (4 nodes
in first level, 16 nodes in second level, 64 nodes on third
level and 256 nodes on forth level). The eight measure will



Figure 1. Tree-structured wavelet decomposition.

therefore yield a total of8× 341 features.
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whereni refers to nodei, X is the matrix of the node (or
sub-image) with dimension ofJ ×K, xjk is the(j, k)− th

element of the matrix, andX ′ is its transpose. eig(X) is the
eigenvalue of the matrixX.

The ratios used in this study are maximum ratio (Rm),
fractional ratio (Rf ) and sub-level ratio (Rs). As each de-
composition sub-tree has four nodes (as illustrated in Fig-
ure 2), the maximum ratio divides each node by the max-
imum node among four. The fractional ratio divides each
node by the summation of other three nodes. The sub-level
ratio divides each node of the tree by its parent node. Equa-
tions 9–11 show the formula of these ratios for the sample
noden2.3. These ratios are calculated for each of the above
mentioned 8 measure, which will produce a total of8×765

Figure 2. Schematic 4-level wavelet tree with nodes in circle.

(255 maximum ratio, 255 fractional ratio, 85 sub-level ra-
tio) features.

Rm(n2.3) =
m(n2.3)

max(m(n2.1),m(n2.2),m(n2.3),m(n2.4))
(9)

Rf (n2.3) =
m(n2.3)

m(n2.1) +m(n2.2) +m(n2.3) +m(n2.4)
(10)

Rs(n2.3) =
m(n2.3)

m(n2)
(11)

wheren2.3 refers to node 2.3 andm(n2.1) refers to the mea-
sure (enegry, entropy, etc.) applied on the node.

We have also calculated the featureln(std+1) suggested
by [15] and [20]. All of these features were calculated
for four color channels of red, green, blue and luminance
(Equation 12) and by including the area of the lesion, a set
of 35397 features is obtained.

luminance = (0.29×R)+(0.59×G)+(0.11×B) (12)

where R, G and B represent red, green and blue color chan-
nels, respectively.



4. Proposed feature selection method

Feature selection is the process of finding an optimal
subset of features which provides the highest discriminat-
ing power when employed by the classifier. Exclusion of
less significant features in the problem space can help the
classifier by removing the noisy evidences in the training
stage. Feature selection can also reduce the number of fea-
tures to be considered in the problem space, thus reduces
computational cost.

Numerous feature selection techniques have been pro-
posed in the literature [9]. In this study, we first apply
an entropy-based feature valuator called gain ratio (Equa-
tion 13) which evaluates the worth of an attribute (feature)
by measuring its gain ratio with respect to the class. A
ranker search method has been used along with gain ratio
to rank features according to their evaluated gain ratio.

GainR(C,A) =
H(C)−H(C|A)

H(A)
(13)

where A is the attribute or feature, C is the class label, and
H specifies the entropy.

In order to optimally reduce the number of calculated
features (35397 in total), we have also used correlation-
based feature evaluator [11] which evaluates the worth of
a subset of features by considering the individual predic-
tive ability of each feature along with the degree of redun-
dancy between them. This feature evaluator selects the sub-
set of features that are highly correlated with the class while
having low inter-correlation. The Best-first method [19]
has been applied to search for the features. The Best-
first method searches the space of feature subsets using
greedy hill-climbing algorithm, which can either start with
the empty set of features (forward direction), or with the
full set of features (backward direction), or at any point and
search in both directions.

5. Proposed classification method

In this study we have used the following classifiers: sup-
port vector machine (SVM), random forest (RF), logistic
model tree (LMT) and hidden naive bayes (HNB), briefly
introduced in the following.

5.1. Support Vector Machine

Support Vector Machine performs classification by con-
structing an N-dimensional hyper-plane that optimally sep-
arates the given data into classes. In this study we apply
sequential minimal optimization (SMO) algorithm for train-
ing a support vector classifier [18]. The kernel used in this
study is a Gaussian radial basis function (RBF).

5.2. Random Forest

Random forest (forest of random trees) is an ensemble
classifier which consists of many decision trees. The output
of RF is the class label that is the mode of the class’s output
by individual trees. Each individual tree classifies the given
feature vector - each tree votes for a class - and the forest
outputs the classes with the highest vote [6].

5.3. Logistic Model Tree

Logistic model trees combine logistic regression and tree
induction to perform the supervised learning. In another
word, LMTs are classification trees with logistic regression
functions at the leaves. Landwehr et al. [13] proposed this
approach for building logistic models which uses the CART
algorithm for pruning. It has been shown that [13] it is more
accurate than C4.5 decision trees and standalone logistic re-
gression on real-world datasets, and even competitive with
boosted C4.5 trees.

5.4. Hidden Naive Bayes

Hidden Naive Bayes is a promising attempt to improve
the performance of Naive Bayes method. In an HNB, at-
tribute dependencies are represented by creating a hidden
parent for each feature (attribute), which combines the in-
fluences of all other features [21].

6. Experimental results

An image set of 205 digital dermoscopy images obtained
from the Interactive Atlas of Dermoscopy [3], is applied
in this study. These were JPEG images with a resolution
of 768 × 512 pixels. The diagnosis distribution include 96
melanoma and 109 benign (65 Clark nevi, 14 blue nevi, 30
Reed/Spitz nevi), where the histopathological results have
been determined by biopsy or excision.

6.1. Preprocessing

In this study, the lesion borders were obtained manu-
ally, according to practice used by dermatologists. The
motivation for using manual borders rather than automatic
computer-detected borders was to avoid propagating the
border detection error into the feature extraction and clas-
sification phase and reducing any possible bias.

Moreover, a rectangle frame enclosing the lesion with
horizontal and vertical sides is set around the lesion and the
rest is cropped. Also, within this frame, the pixels that do
not belong to the lesion are set to black. This process is done
to minimize the impact of background skin in the analysis
and maximize the focus on lesion pixels.



Conf. Threshold Feat no SVM (RBF kernel) RF LMT HNB

1 0.30 451 (0.01)86.27, 0.862 (100)86.27, 0.917 (0.4)88.24, 0.918 86.27, 0.896
2 0.31 299 (0.01)86.27, 0.862 (120)86.27, 0.922 (0.1) 82.35, 0.886 86.27, 0.892
3 0.32 217 (0.01)86.27, 0.862 (130) 85.29, 0.923 (0.2)86.27, 0.908 84.31 , 0.91
4 0.33 151 (0.01)86.27, 0.862 (160) 85.29, 0.917 (0.2) 83.33, 0.902 85.91,0.907
5 0.34 93 (0.01) 85.29, 0.853 (150)86.27, 0.921 (0.2)87.25, 0.917 86.27, 0. 921
6 0.35 48 (0.01) 85.29, 0.852 (180) 85.29, 0.901 (0.3)86.27, 0.871 85.29, 0.885
7 0.36 25 (0.01) 84.31, 0.843 (100) 85.29, 0.897 (0.3) 83.33, 0.865 86.27, 0.878
8 0.37 13 (0.01)86.27, 0.862 (120)87.25, 0.893 (0.4) 84.31, 0.891 82.35 , 0.87

Table 1. 10-fold cross validation of performance (accuracy and ROCarea) of different classifiers on the test set, using the 8 feature
configurations resulting from the first stage of feature selection on the train set.

Conf. Threshold Dir Feat no SVM (RBF kernel) RF LMT HNB

9 0.30 F 28 (0.02) 85.29 , 0.852 (220) 81.37 , 0.894 (0.2) 81.37 , 0.88 85.29, 0.899
10 0.30 B 27 (0.01) 85.29 , 0.852 (15) 82.35 , 0.897 (0.1) 81.37 , 0.877 83.33 , 0.888
11 0.31 F 33 (0.01) 85.29 , 0.852 (150) 82.35 , 0.893 (0.25) 80.39 , 0.843 85.29 , 0.893
12 0.31 B 25 (0.01) 84.31 , 0.843 (250) 80.39 , 0.875 (0.15) 82.35 , 0.89 84.31 , 0.883
13 0.32 F 29 (0.04) 84.31 , 0.844 (170) 82.35 , 0.896 (0.05) 82.35 , 0.877 86.27, 0.896
14 0.32 B 29 (0.03) 85.29 , 0.854 (250) 83.33 , 0.902 (0.05) 80.39 , 0.878 84.31 , 0.898
15 0.33 F 29 (0.01) 84.31 , 0.843 (300) 85.29 , 0.906 (0.05) 84.31 , 0.892 84.31 , 0.9
16 0.33 B 29 (0.01) 85.29 , 0.853 (150) 85.29 , 0.898 (0.1) 81.37 , 0.88 84.31 , 0.901
17 0.34 F 17 (0.03) 82.35 , 0.822 (150) 84.31 , 0.9 (0.2) 82.35 , 0.866 83.33 , 0.907
18 0.34 B 23 (0.03) 85.29 , 0.853 (190) 85.29 , 0.914 (0.25) 82.35 , 0.868 83.33 , 0.907
19 0.35 F 21 (0.01) 84.31 , 0.844 (110)86.27, 0.895 (0.1) 85.29 , 0.907 82.35 , 0.881
20 0.35 B 20 (0.01) 85.29 , 0.854 (100) 85.29 , 0.891 (0.2)86.27, 0.906 81.37 , 0.876
21 0.36 F 8 (0.03)86.27, 0.863 (50)86.27, 0.903 (0.05) 83.33 , 0.885 82.35 , 0.874
22 0.36 B 8 (0.03)86.27, 0.863 (150)86.27, 0.894 (0.15) 81.37, 0.87 82.35 0.875
23 0.37 F 6 (0.01) 80.39 , 0.803 (220) 83.33 , 0.893 (0.1) 85.29 , 0.887 82.35 , 0.87
24 0.37 B 6 (0.01) 80.39 , 0.803 (150) 83.33 , 0.902 (0.1) 85.29 , 0.881 82.35 , 0.87

Table 2. 10-fold cross validation of performance (accuracy and ROCarea) of different classifiers on the test set, using the 16 feature
configurations resulting from the second stage of feature selection on train set.

6.2. Feature extraction and feature selection

We have designated half of the images (48 melanoma
and 55 benign) as train set to apply the feature selection, in
order to determine the most significant features contributing
in the classification of melanoma. The feature extraction
method explained in Section 4 is applied on the train set.
MATLAB Daubechies-3 wavelet function is used for this
application.

For selecting the optimal features we have used a two-
stage approach; at the first stage, gain ratio feature selection
method is applied on the feature vector. This resulted in
8 different feature subsets, depending on the threshold set
for the ranker search method (shown in Table 1). At the
second stage, the correlation-based feature evaluation along
with best-first search method (in forward and backward di-
rections) has been applied on the subsets resulted from the
fist stage of feature selection, resulting in 16 feature config-
urations, as shown in Table 2.

6.3. Classification

To test the effectiveness of feature subsets selected in the
previous step (Section 6.2), we have applied the classifica-
tion schemes described in Section 5 on a test set consisting
of 48 melanoma and 54 benign dermoscopy images, using
Weka data mining toolkit [12].

Table 1 shows 10-fold cross validation of performance
(accuracy and ROC area) of different classifiers on the test
set, using the 8 feature configurations resulting from the first
stage of feature selection on the train set. The “Threshold”
column shows the ranking threshold for including the fea-
tures in the subset. The third column shows the number of
features in the determined subset. The figures in the bracket
in “SVM”, “RF” and “LMT” columns are the corresponding
optimal parameters of each classifier. Table 2 shows 10-fold
cross validation of performance (accuracy and ROC area) of
the for classifiers on the test set, using the 16 feature config-
urations resulting from the second stage of feature selection



Measure Color Channel Tree Node

Kurtosis Red 4.3.4.4
Kurtosis Red 2.4.1
Kurtosis Luminance 4.3.4.4
Kurtosis Green 4.3.4.4
Kurtosis Blue 4.1.4
Average-energy Luminance 3.2.1.3
Kurtosis Green 2.2.4
Average-energy Luminance 4.1.4
Average-energy Luminance 4.1.4.4
Average-energy Red 4.1.4
Average-energy Blue 4.1.4.4
Standard deviation Luminance 4.2.4.1
Engergy Luminance 4.2.4.1

Table 3. The 13 optimal features selected by the 8-th feature con-
figuration, resulted in the accuracy of 87.25%.

on train set. The “Dir” column refers to the direction of the
best-first method, and F and B show the forward and back-
ward directions, respectively.

According to Tables 1 and 2, the highest accuracy
(88.24%) and ROC area (0.918) are obtained by first feature
configuration, i.e. applying the gain ratio at the thresholdof
0.3 which results in 451 features, when classified by LMT.
This is followed by 5-th and 8-th configurations, where gain
ratio was used with thresholds of 0.34 (with LMT classifier)
and 0.37 (with RF classifier) resulting in 93 and 13 optimal
features. Both feature sets obtain an accuracy of 87.25%.
However, the ROC area for 93-element subset is 0.917, and
0.893 for 13-element feature set. Multiple feature configu-
rations; e.g. 2, 3, 4, 6, 7, 19, 20, 21 and 22 exhibit an accu-
racy of 86.27%, among which 21 and 22 have the smallest
number of features, i.e. eight optimal features. The decision
of which configuration is best to use is a trade-off between
having a more accurate classification decision and the ex-
pense of increased complexity and computational cost.

Table 3 shows the 13 optimal features selected by the
8-th feature configuration, which resulted in the accuracy
of 87.25%. As indicated in Table 3, certain measures and
nodes appear more frequently in the optimal feature sub-
set suggested by this configuration, such as the kurtosis and
average-energy measures, and 4.3.4.4 and 4.1.4 nodes of
the wavelet tree. Moreover, 60% of the optimal features are
happen to be in the forth level of the wavelet decomposition.
In this feature configuration, the luminance color channel is
the dominant one, following by red. Blue and green both
have two occurrences.

6.4. Comparison with others methods

The proposed feature extraction method has been com-
pared with three other wavelet-based melanoma classifica-

Figure 3. Accuracy of various feature configuarions proposed by
our method as opposed to three other feature extrcation methods
by [15], [16] and [20].

tion methods proposed by Nimukar et al. [15], Patwardhan
et al. [16] and Walvick et al. [20]. In order to make this com-
parison we have applied the suggested feature sets by [15],
[16] and [20] on our test set of 102 images (48 melanoma
and 54 benign dermoscopy images). Table 4 shows the clas-
sification accuracy and obtained ROC area of our best three
feature configurations along with the result obtained by the
above-mentioned methods. The parameters of the classi-
fiers have been tuned in a way that the highest performance
for the given feature set is gained.

According to Table 4, our proposed method with differ-
ent configuration outperforms the other three. However, the
best performance among the three methods is obtained by
Walvick et al. [20] with the accuracy of 86.27% and ROC
area of 0.901 when RF classifier is used. It is followed by
Nimukar et al. [15] with the highest accuracy of 85.29% and
Patwardhan [16] ’s methods come last. Figure 3 shows the
obtained accuracies of various feature configuarions pro-
posed by our method as opposed to three other feature extr-
cation methods by [15], [16] and [20]. These accuracies are
the highest of all four classifiers for each feature selection
method.

7. Conclusion

This paper presents a wavelet-based texture analysis
method for differentiating malignant melanoma from be-
nign nevi. We have applied tree-structured wavelet trans-
form on different color channels of red, green, blue and
luminance of skin image. Various statistical measures and
ratios have been employed on wavelet coefficients. The pro-
posed feature extraction method along with a two-stage fea-
ture selection method, based on entropy and correlation, has
been applied on a train set of 103 images. Then, using the



Method Feat no SVM (RBF kernel) RF LMT HNB

configuration 1 451 (0.01)86.27, 0.862 (100)86.27, 0.917 (0.4)88.24, 0.918 86.27, 0.896
configuration 5 93 (0.01) 85.29, 0.853 (150)86.27, 0.921 (0.2)87.25, 0.917 86.27, 0. 921
configuration 8 13 (0.01)86.27, 0.862 (120)87.25, 0.893 (0.4) 84.31, 0.891 82.35 , 0.87
Nimukar [15] 5 (0.01) 83.33, 0.834 (100) 85.29 , 0.91 (0.3) 85.29 , 0.879 82.35 , 0.81
Patwardhan [16] 5 (0.01) 52.94, 0.5 (90) 62.74, 0.623 (0.1) 62.74, 0.692 52.94, 0.507
Walvick [20] 4 (0.01) 82.35, 0.822 (70)86.27, 0.901 (0.15) 82.35, 0.904 79.41, 0.759

Table 4. Comparative study: 10-fold cross validation of performance(accuracy and ROC area) of different classifers on test set, using
features suggested by [15], [16] and [20], and our best three feature configurations.

resultant optimal feature subsets, four different classifiers of
support vector machine, random forest, logistic model tree
and hidden naive bayes, have been applied on a test set of
102 dermoscopy images. The best performance obtained
by applying gain ratio at the threshold of 0.3 and LMT
classifier, leading to accuracy of 88.24% and ROC area of
0.918. A comparative study has been also performed, which
shows that the proposed feature extraction method outper-
forms three other wavelet-based approaches.
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