Using Reaction Time to Choose Stimuli Levels in Perimetry

Andrew Turpin1A, Allison M. McKendrick1B, William H. Swanson2.

AComputer Science \& Software Engineering, BOptometry and Vision Sciences,
1University of Melbourne, Melbourne, Australia
2School of Optometry, Indiana University, Bloomington, IN.

Purpose

To improve algorithms for determining thresholds by using reaction times (RT) to influence stimulus levels in static automated perimetry.

Methods

The perimetric stimulus simulated in this study was the sinuosoidal patches as used by Hot et al11 (also see poster #5500), with thresholds measured in log-contrast.

Reaction times to stimuli that are near threshold are generally longer than responses to bright stimuli a long distance from threshold11. Hence, expressing distance from threshold of a stimulus in log units, we collected the following RT data:

- **C**lose-to-threshold stimulus $0 \leq d < 0.2$
- **S**upra-threshold stimulus $1.2 \leq d < 1.4$

A truncated Gamma function was fitted to empirical RT data for ranges of distance from threshold \{0.0, 0.2, 0.4, ..., 1.4, 2.0\}. The two parameters of each Gamma function were then subject to log-linear regression, giving a truncated Gamma distribution for any particular distance from threshold of

$$\text{Prob(Reaction Time t | Distance from threshold d)} = \left(\frac{1}{\alpha \Gamma(\beta)}\right) d^{\beta-1} e^{-\frac{d}{\alpha}} I_0(\beta d)$$

We modified a ZEST15 procedure to include an extra likelihood component using the above formula. As shown in the right, this altered the probability density function (pdf) over thresholds in different ways after each stimulus presentation depending on reaction times.

The new procedure, dubbed BURITO (Bayesian Updating with Reaction Time Offsets), was tested using computer simulation. We simulated BURITO and ZEST on four populations of 1000 patients, all of whom had:
- 3% or 20% false positive and negative rates;
- reaction times sampled from the third author’s empirical data as a function of d;
- a Gaussian psychometric function with standard deviation 0.25 log units16; and
- true thresholds -3, -1.5, -1.5, ..., 0 log units.

References

Results

- **No reaction time**
- **RT = 150 ms**
- **RT = 250 ms**
- **RT = 350 ms**
- **RT = 450 ms**
- **RT = 550 ms**

The probability density functions (pdfs) used to determine the second presentation of BURITO (green line) when the subject responds “yes” to the first presentation of -1.15 (red line) with various reaction times. RT. A uniform prior pdf is assumed to determine the first presentation.

Conclusions

BURITO is as accurate as ZEST, except for very low thresholds, and about 10% faster.

Reaction times can be used to improve stimulus placement in clinical perimetry.

Future Work

Customize reaction time functions to an individual based on test history, rather than using population data.

Reduce BURITO’s inaccuracies for low threshold values.

Incorporate BURITO into the REMO1 strategy.

Acknowledgments

This research was supported by the Australian Research Council: Grant FT0991326 (AT), Grant FT100100010 (AMM), and the NHMRC1087316 (WHS).

Author Disclosure: AT None, AMM None, WHS C; Zeiss-Meditec.