Indexing LZ77:
The Next Step in Self-Indexing

STUDENT

PROFESSOR

ffm =

ICDB

Institute for Cell
Dynamics and
Biotechnology: °

aCentre for”

Systems Biology

Gonzalo Navarro
Department of Computer Science, University of Chile “yarioo!

gnavarro@dcc.uchile.cl £.00NICYT ¢

Part I: Why Jumping off the Cliff

The Past Century

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Part Il: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

Part Il: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Part Il: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Part I: Why Jumping off the Cliff

The Past Century

The Past Century

In the past century...

» Inverted indexes were the only serious solution for indexing
large text collections.

» They even achieved index and text compression, without
ruining good I/O performance.

» They were (and still are) the best developed solution for the
problem.

» BUT... they work only for natural language texts.

G. Navarro Indexing LZ77

The Past Century

In the past century...

» Applications such as

Computational biology

Music and multimedia processing

Software repositories

Text retrieval on Chinese and other oriental languages
... and even some kinds of text retrieval on natural
language!

were not included in this framework.

» The only way to deal with those sequences was to treat
them as strings.

v

v

vV vy

G. Navarro Indexing LZ77

The Past Century

In the past century...

» For example, the Human Genome, with 3G bases, easily
fitsina 1 GB memory.

» But its suffix array requires 12 GB... and its suffix tree
more than 30 GB!

» One can use secondary storage, but still this is much
slower.

» In practice, usage of these structures was confined to
handle not so large texts...

» ... where at least the simple search problem could be
reasonably handled by sequential scanning!

G. Navarro Indexing LZ77

Part I: Why Jumping off the Cliff

Self-Indexing: The Dawn of a New Era

Self-Indexing: The Dawn of a New Era

Self-Indexing: The Dawn of a New Era

>

In year 2000, several researchers simultaneously figured
out how to compress suffix arrays.

Initially, the idea was to provide a compressed data
structure that replaced the suffix array [Grossi & Vitter].
But soon it was realized that a more ambitious goal,
dubbed self-indexing, was achievable:

» Take space proportional to the compressed text.

» Be able to reproduce any text substring (hence replacing
the text).

» Provide fast searching on the text (hence incorporating an
index within the same space).

The most famous self-index families appeared in year
2000, the Compressed Suffix Array [Sadakane] and the
FM-index [Ferragina & Manzini].

G. Navarro Indexing LZ77

Self-Indexing: The Dawn of a New Era

Self-Indexing: The Dawn of a New Era

» A lot of research on these self-indexes has been carried
out in this decade. Today, the best representatives offer:
» Space close to the k-th order entropy of T, Hx(T) + o(| T|).
This is in practice as little as 30% of an English text.
> Counting time O(m(1 + ;2%7+)) in theory, and very
competitive with plain suffix arrays in practice, 1 Mchar/sec.
» Locating time O(/og'*<n) per occurrence in theory, and
decent in practice, 100 Kocc/sec (yet this is much slower
than suffix arrays — others get much closer but are not that
small).
» Extracting a text of length 7 in O(log' ™ n+ ¢(1 + 2%92_)) in

loglog n
theory, and decent in practice, 1 Mchar/sec.

G. Navarro Indexing LZ77

Self-Indexing: The Dawn of a New Era

Self-Indexing: The Dawn of a New Era

» Of course there are still many challenges ahead, some of
these partially solved and others not solved at all:

» How to manage them in secondary memory, when even
compressed they do not fit in RAM.

» How to build them within a space close to their final
compressed representation.

» How to handle updates to the text collection.

» How to provide more powerful searches.

» But the solutions of most of those challenges are under
way, and one can be in general extremely satisfied with,
and optimistic about, this technology.

G. Navarro Indexing LZ77

Part I: Why Jumping off the Cliff

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

» But there is one further challenge that may hit a
fundamental limit of this technology in its current form.

» |t is about a compressibility measure many were happy
with in the beginning:
nH(T) + nlogologlogn
log n
» Note it has a sublinear term that is not compressible.

» Note that the compressible part refers to k-th order
entropy, which is far from capturing all the relevant sources
of compressibility that arise in applications.

G. Navarro Indexing LZ77

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

» In particular, applications handling very repetitive
collections, such as
» Databases of genomes and proteins.
» Code repositories containing multiple versions.
» Temporal textual databases containing versions of
documents.
do not benefit from the H, model.
» Recall the empirical entropy definition (similar to the
classical one but using T itself as the model)

occ(T,tik...ti1)
nHy(lo =
k(Z occ(T, tik...t)

» It holds H(TT) ~ Hy(T), thus Hy is totally insensitive to
repetitions that are farther than k symbols in the past.

G. Navarro Indexing LZ77

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

Application Scenario: Computational Biology

v

Sequencing genomes is becoming cheap and fast.

We are not far from the day where we will have databases
of thousands or millions of genomes.

v

v

The applications of such a database are unimaginable,
BUT...

1 million uncompressed genomes — about 3 petabytes
a classical suffix tree = 30 petabytes

compressed with current self-indexes = 750 terabytes
just the sublinear part we mentioned = 200 terabytes

vV v v v Y

Overall, the best we can do requires close to 1 petabyte.

G. Navarro Indexing LZ77

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

Application Scenario: Computational Biology

» However, those genomes may be up to 99.9% identical.

» This means (very roughly) that 99.9% of the substrings of
one genome can be found in another genome.

» If we were able of exploiting these repetitions, our petabyte
would become an inoffensive terabyte.

» However, the H, measure is totally unable of spotting
these regularities.

G. Navarro Indexing LZ77

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

Application Scenario: Computational Biology

» With Sirén, Valimaki and Makinen we studied another
compressibility measure: the number of runs in V.

» We also aimed at largely reducing the uncompressible
part.

» This turned to be more sensitive to large repetitions, and
even better than LZ78.

» However, we found that the approach was inferior to LZ77,
both in theory and in practice.

» In theory, a single difference can produce \/n new runs in
WV, but only one new phrase in LZ77.

» In practice, p7zip compressed our genomes 10 times
better than our indexes.

G. Navarro Indexing LZ77

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

» We can call our improved index fully compressed, that is,
with no or very mild incompressible term in the space.

» This is a first necessary step towards handling very
repetitive collections.

» We expect that the full-compression concept will spread in
self-indexing in the next years.

» However, the index does not achieve space linear in the
number of differences between the texts, only LZ77
compression achieved this.

» This seems to be essential to achieve an order of magnitud
less space.

G. Navarro Indexing LZ77

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

» However, LZ77 is a compression method, not a self-index.
» We are thus faced to the challenge of building a text index
that:

> |s a self-index.

» Is fully compressed.

» If the collection can be split into s pieces, so that each
piece appears somewhere in previous text, the index takes

space proportional to s.
» Such a kind of index does not exist today.

G. Navarro Indexing LZ77

Part Il: Lempel-Ziv Self-Indexing

Part Il: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

Current Lempel-Ziv Indexes

Current Lempel-Ziv Indexes

>

LZ76, LZ77,L.Z78... compressors converge to nHj, but
slowly: k = o(log,, n) for the extra terms to be o(nlog o).

» On the other hand, they can be break the nH, bound by far.
» For typical texts, they are indeed not the best, but on

repetitive texts they could be much better.

Interestingly, Lempel-Ziv indexes predate other
compressed text indexes.

The sparse suffix tree [Karkkainen 1996] indexed only
LZ77(-like) phrase beginnings, achieving O(nHj) + | T|.

It has been the first index achieving space proportional of
the k-th order entropy, yet it was not a self-index.

It was able to locate each occurrence in O(log n) time after
an O(m? + mlog n) initial cost. No counting is supported.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes

Current Lempel-Ziv Indexes

» Several self-indexes followed, building on Karkkainen’s
basic LZ-index design.

>

[Ferragina and Manzini 2001] use LZ78 parsing combined
with an FM-index to get O(nHy log™ n) bits of space and
O(m(1 + ege) + occe) locating time.

[N. 2002] uses LZ78 parsing to get 4nH,(1 + o(1)) bits and
O(m®log o + (m + occ) log n) time.

[Russo and Oliveira 2006] use a modified LZ78 parsing
(maximal parsing) to achieve 5nHy(1 + o(1)) bits and
O((m + occ) log n) time.

[Arroyuelo and N. 2006] use LZ78 parsing to achieve

(2 + €)nHy(1 + o(1)) bits and O(m? + (m + occ) log n) time.
[Arroyuelo and N. 2007] use LZ78 parsing plus an
FM-index to achieve (3 + ¢)nHy(1 + o(1)) bits and

O((m + occ) log n) time.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
3¢ ,,_”

Current Lempel-Ziv Indexes

» Notice some important things:
» These are fully-compressed indexes, as they have no
incompressible extra space complexity terms.
» Although they built on the sparse suffix tree idea, no one
ever again tried to build on LZ77, but on LZ78.
» They cannot count efficiently (unless you add a
compressed suffix array of some kind).

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes

Current Lempel-Ziv Indexes

» Question: Why then trying to index LZ77, if LZ78 is easier
to handle?

» Answer: LZ78 is too weak to profit from highly repetitive
texts.

o
O —
™

Il
)
(]

o
=]
@

\
\
1\

MB

o a—#®
0 - A—
S| Ea e v —8
Pxr— E—vii & L] ¥
81 g le—s—i—
o8 /<> o CSA x AFFM
3 g /ij/ o Lzl © RLCSA
& A RLFM v RLWT
+ SSA B RLFM+
o 4
T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes

Current Lempel-Ziv Indexes

» Instead, LZ77 is extremely promising:

o _|
<
A o p7zip
\A o RLCSA
& \ o RLWT
N A RLFM+
@ 3) a_
= o | A
m N oo TA_A_
Vo A— A A
DD 0\0—0 o>
o | \D\D\ S—290
D\D o o
Doo—0_¢g_
o 4 0—o0—o0 o o o

I I I I I I
0.00 0.01 0.02 0.03 0.04 0.05

Mutation rate

G. Navarro Indexing LZ77

Part Il: Lempel-Ziv Self-Indexing

A LZ77 Self-Index

A LZ77 Self-Index

A LZ77 Self-Index

» We came back to the original LZ77-based index and
“modernized” it.

» We used compact data structures to achieve the minimum
space we could.

» We are trying to convert it into a self-index.
» | will show you now what we have and where are we stuck.

» This is joint work with Diego Arroyuelo, Veli M&kinen, Luis
Russo, ... and hopefully anyone else able of getting us off
this mess!

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» From now on let T[1, u] be the text, partitioned into n LZ77
phrases.

» We call primary occurrences those that span more than
one phrase.

» We call secondary occurrences those included in a phrase.

» We find first the primary and from those the secondary
occurrences.

111111111122
123456789012345678901

|a|||a b|a r|_|a_|l a_|al abar d|a$|

(0,0,2)(0,0,1) (1,1,b) (1,1,1) (0,0,.) (1,1,) (2,2,-)(1,6,d) (L,

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» A sparse suffix tree indexes phrase beginnings, n leaves.
» It is represented with at most
» 4n+ o(n) bits for parentheses (DFUDS representation)
» 2nlog o bits for letters
» nlog n bits for the phrase identifiers
» Skips are not stored (could require too much space), we
see later how to recover them.
» Allows navigation to child labeled x in constant time, apart
from several tree operations.

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

3456789012345678901
’dﬂadaﬂ|aJlaJalabardaﬂ

123 4 56 7 8 9

(OCOOOCOO)ION)COO))
_a$ bl _drl_b
529,6,3,1,8,4,7,2

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» A reverse trie indexes reversed phrases but the last, n — 1
leaves.

» |t is represented with at most

» 4n -+ o(n) bits for parentheses (DFUDS representation)
» 2nlog o bits for letters

» Skips, again, are not stored.

» Allows navigation to child labeled x in constant time, apart
from several tree operations.

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

111111111122
123456789012345678901

]dﬂadadJaJlaJalabardaﬂ

123 4 56 7

(COCOONOOOOO)
_al abdl r

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» A range structure connects both trees: the suffix starting at
phrase k with the reverse phrase k — 1.

» Requires nlog n+ O(nloglog n) bits of space.

» Allows range counting in O(log n) time and reporting each
point in O(log n) time as well.

» Implemented with a wavelet tree.

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

111111111122
456789012345678901

\a\ [ablar]a_l a_\al abard\a$\
123 4 56 7

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» Partition P[1, m] into P[1,/] and P[i + 1, m]| for each
1<i<m.

» Search the sparse suffix tree for P[/ + 1, m| and the
reverse trie for (P[1,/])"".

» The search gives two preorder intervals [rq, r2| and [/, k],
respectively.

» Extract the points in the range data structure to get all the
primary occurrences (phrase numbers, using the identifiers
we store).

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» Tries can be traversed in constant time per symbol using
DFUDS.

» But we miss skip information: go to leftmost and rightmost
leaves, extract symbols from there until they differ, and this
gives the skip.

» Assuming that can be done in constant time per symbol,
total search time is O(m? + mlog n + occ - log n).

» We obtain the phrase numbers and offsets where each
occurrence starts.

» We now introduce other data structures to convert these
into text positions and also solve secondary occurrences.

G. Navarro Indexing LZ77

A LZ77 Self-Index

ES

A LZ77 Self-Index

» With nlog + O(nloglog }) extra bits we convert phrase id
into text position and vice versa in O(log n) time.

» This is through rank and select operation on the bitmap.

» Thus time for reporting stays O(log n) per (primary)
occurrence.

111111111122
123 4567890123456 78901

alllablar_la_|la_|alabarda$

111010110100100000010

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» For secondary occurrences we need another bitmap and a
permutation 7.

» The second bitmap marks beginning of phrase sources
with 1s, and change to the next text position with a 0.

» It also provides rank and select in O(log n) time.

» Sources starting at the same position are ordered from
shortest to longest.

» The permutation maps 1s in the bitmap of targets to 1s in
the bitmap of sources.

» We add data to compute 7' in O(log n) time.

» Total space added is
nlog Y2 + O(nloglog “£7) + nlog n+ O(n) =
nlog u+ O(nloglog %)

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

111111111122
123456789012345678901

|dHadadJaJlaJalabardaﬂ

1110111110100000000000000000000

NS

111010110100100000010

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» For each primary occurrence found, we find the 0 of its
starting position in the bitmap of sources.

» We consider the 1s preceding it backwards, one by one
(disregarding 0s).

» We map each such 1 to the target, find out its length, and
see if the source covers the primary occurrence.

» If it does, report a secondary occurrence.

» If it does not, stop and consider the next primary
occurrence.

» Repeat the process with the secondary occurrences found,
until no more occurrences are reported.

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» The total time is O(log n) per occurrence reported.

» But it works only if no source strictly contains another
source (strictly from left and right extremes)

» This can be enforced in the parsing as in Karkkainen’s
proposal.

» Our example does not obey this rule! (it is a pure LZ77
parsing).

» There is another proposal by Karkkainen that permits LZ77
parsing and uses a more complicated structure for
mapping sources to targets.

» We have also considered compact variants of that one,
omitted here.

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» What is missing is the ability to extract a text substring,
both for displaying and for supporting the Patricia tree
search.

» We go to the target bitmap, and using rank, find out the
phrases to output.

» The last symbol of each phrase is obtained directly (by
storing them, nlog o more bits).

» For the other symbols of each involved phrase, use 7 to
find the source positions, obtain the last symbols of the
included phrases, and so on until all the symbols are
discovered.

» Each step takes O(log n) time...
» ... but we cannot bound the number of steps to carry out!

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» Total space is 2nlog u + nlog n+ O(n(log o + loglog u))
bits.

» Total locating time is O(m? + (m + occ) log u)...

» ... plus m? times the cost to extract a text symbol, which we
cannot bound!
» We could store the skips to partially avoid this:
» nlog u more bits for the sparse suffix tree.
» nlog 7 more bits for the reverse trie.
Make just one final check for any point in the range, for the
Patricia search.
But this requires extracting m symbols from T.

v

v

» A self index needs to extract arbitrary text positions, so this
problem is central anyway.

G. Navarro Indexing LZ77

A LZ77 Self-Index

A LZ77 Self-Index

» For example, what about using a denser sampling of
letters.

» Build a dependency forest with the u letters of T.

» Ensure every path of length, say, log u, contains a sampled
letter.

» Each letter could then be extracted in O(log u) time.

» But if the tree is a root with /u children, each with a chain
of length \/u, then we need u/ log u letters stored, too
much.

» Such can happen, e.g. with text 1 12 123 1234 12345. . ..

G. Navarro Indexing LZ77

Part Il: Lempel-Ziv Self-Indexing

Conclusions

Conclusions
k| ¥ 4 x”

Conclusions

» An LZ77-based fully compressed self-index is extremely
attractive for highly repetitive text collections.

» We have modernized an old compressed index proposal to
convert it into a fully compressed self-index.

» Asymptotically it could be about 1.5 times the size of the
file compressed with LZ77 (this is probably a bit optimistic).

» But we are stuck in how to give worst-case time
guarantees for text extraction.

» ldeas very welcome!

G. Navarro Indexing LZ77

	The Past Century
	Self-Indexing: The Dawn of a New Era
	A New Challenge: Fully Compressed Self-Indexes
	Current Lempel-Ziv Indexes
	A LZ77 Self-Index
	Conclusions

