
Indexing LZ77:
The Next Step in Self-Indexing

Gonzalo Navarro
Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

In the past century...

I Inverted indexes were the only serious solution for indexing
large text collections.

I They even achieved index and text compression, without
ruining good I/O performance.

I They were (and still are) the best developed solution for the
problem.

I BUT... they work only for natural language texts.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

In the past century...

I Applications such as
I Computational biology
I Music and multimedia processing
I Software repositories
I Text retrieval on Chinese and other oriental languages
I ... and even some kinds of text retrieval on natural

language!

were not included in this framework.
I The only way to deal with those sequences was to treat

them as strings.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

In the past century...

I For example, the Human Genome, with 3G bases, easily
fits in a 1 GB memory.

I But its suffix array requires 12 GB... and its suffix tree
more than 30 GB!

I One can use secondary storage, but still this is much
slower.

I In practice, usage of these structures was confined to
handle not so large texts...

I ... where at least the simple search problem could be
reasonably handled by sequential scanning!

G. Navarro Indexing LZ77

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Self-Indexing: The Dawn of a New Era

I In year 2000, several researchers simultaneously figured
out how to compress suffix arrays.

I Initially, the idea was to provide a compressed data
structure that replaced the suffix array [Grossi & Vitter].

I But soon it was realized that a more ambitious goal,
dubbed self-indexing, was achievable:

I Take space proportional to the compressed text.
I Be able to reproduce any text substring (hence replacing

the text).
I Provide fast searching on the text (hence incorporating an

index within the same space).
I The most famous self-index families appeared in year

2000, the Compressed Suffix Array [Sadakane] and the
FM-index [Ferragina & Manzini].

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Self-Indexing: The Dawn of a New Era

I A lot of research on these self-indexes has been carried
out in this decade. Today, the best representatives offer:

I Space close to the k -th order entropy of T , Hk (T) + o(|T |).
This is in practice as little as 30% of an English text.

I Counting time O(m(1 + log σ
log log n)) in theory, and very

competitive with plain suffix arrays in practice, 1 Mchar/sec.
I Locating time O(log1+εn) per occurrence in theory, and

decent in practice, 100 Kocc/sec (yet this is much slower
than suffix arrays — others get much closer but are not that
small).

I Extracting a text of length ` in O(log1+ε n + `(1 + log σ
log log n)) in

theory, and decent in practice, 1 Mchar/sec.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

Self-Indexing: The Dawn of a New Era

I Of course there are still many challenges ahead, some of
these partially solved and others not solved at all:

I How to manage them in secondary memory, when even
compressed they do not fit in RAM.

I How to build them within a space close to their final
compressed representation.

I How to handle updates to the text collection.
I How to provide more powerful searches.

I But the solutions of most of those challenges are under
way, and one can be in general extremely satisfied with,
and optimistic about, this technology.

G. Navarro Indexing LZ77

Part I: Why Jumping off the Cliff

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

I But there is one further challenge that may hit a
fundamental limit of this technology in its current form.

I It is about a compressibility measure many were happy
with in the beginning:

nHk (T) +
n log σ log log n

log n

I Note it has a sublinear term that is not compressible.
I Note that the compressible part refers to k -th order

entropy, which is far from capturing all the relevant sources
of compressibility that arise in applications.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression
I In particular, applications handling very repetitive

collections, such as
I Databases of genomes and proteins.
I Code repositories containing multiple versions.
I Temporal textual databases containing versions of

documents.
do not benefit from the Hk model.

I Recall the empirical entropy definition (similar to the
classical one but using T itself as the model)

nHk (T) =
n∑

i=k

log
occ(T , ti−k . . . ti−1)

occ(T , ti−k . . . ti)

I It holds Hk (TT) ≈ Hk (T), thus Hk is totally insensitive to
repetitions that are farther than k symbols in the past.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

Application Scenario: Computational Biology

I Sequencing genomes is becoming cheap and fast.
I We are not far from the day where we will have databases

of thousands or millions of genomes.
I The applications of such a database are unimaginable,

BUT...
I 1 million uncompressed genomes =⇒ about 3 petabytes
I a classical suffix tree =⇒ 30 petabytes
I compressed with current self-indexes =⇒ 750 terabytes
I just the sublinear part we mentioned =⇒ 200 terabytes
I Overall, the best we can do requires close to 1 petabyte.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

Application Scenario: Computational Biology

I However, those genomes may be up to 99.9% identical.
I This means (very roughly) that 99.9% of the substrings of

one genome can be found in another genome.
I If we were able of exploiting these repetitions, our petabyte

would become an inoffensive terabyte.
I However, the Hk measure is totally unable of spotting

these regularities.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

Application Scenario: Computational Biology

I With Sirén, Välimäki and Mäkinen we studied another
compressibility measure: the number of runs in Ψ.

I We also aimed at largely reducing the uncompressible
part.

I This turned to be more sensitive to large repetitions, and
even better than LZ78.

I However, we found that the approach was inferior to LZ77,
both in theory and in practice.

I In theory, a single difference can produce
√

n new runs in
Ψ, but only one new phrase in LZ77.

I In practice, p7zip compressed our genomes 10 times
better than our indexes.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

I We can call our improved index fully compressed, that is,
with no or very mild incompressible term in the space.

I This is a first necessary step towards handling very
repetitive collections.

I We expect that the full-compression concept will spread in
self-indexing in the next years.

I However, the index does not achieve space linear in the
number of differences between the texts, only LZ77
compression achieved this.

I This seems to be essential to achieve an order of magnitud
less space.

G. Navarro Indexing LZ77

The Past Century
Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

I However, LZ77 is a compression method, not a self-index.
I We are thus faced to the challenge of building a text index

that:
I Is a self-index.
I Is fully compressed.
I If the collection can be split into s pieces, so that each

piece appears somewhere in previous text, the index takes
space proportional to s.

I Such a kind of index does not exist today.

G. Navarro Indexing LZ77

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes

I LZ76, LZ77, LZ78... compressors converge to nHk , but
slowly: k = o(logσ n) for the extra terms to be o(n log σ).

I On the other hand, they can be break the nHk bound by far.
I For typical texts, they are indeed not the best, but on

repetitive texts they could be much better.
I Interestingly, Lempel-Ziv indexes predate other

compressed text indexes.
I The sparse suffix tree [Kärkkäinen 1996] indexed only

LZ77(-like) phrase beginnings, achieving O(nHk) + |T |.
I It has been the first index achieving space proportional of

the k -th order entropy, yet it was not a self-index.
I It was able to locate each occurrence in O(log n) time after

an O(m2 + m log n) initial cost. No counting is supported.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes

I Several self-indexes followed, building on Kärkkäinen’s
basic LZ-index design.

I [Ferragina and Manzini 2001] use LZ78 parsing combined
with an FM-index to get O(nHk logγ n) bits of space and
O(m(1 + log σ

log log n) + occ) locating time.
I [N. 2002] uses LZ78 parsing to get 4nHk (1 + o(1)) bits and

O(m3 log σ + (m + occ) log n) time.
I [Russo and Oliveira 2006] use a modified LZ78 parsing

(maximal parsing) to achieve 5nHk (1 + o(1)) bits and
O((m + occ) log n) time.

I [Arroyuelo and N. 2006] use LZ78 parsing to achieve
(2 + ε)nHk (1 + o(1)) bits and O(m2 + (m + occ) log n) time.

I [Arroyuelo and N. 2007] use LZ78 parsing plus an
FM-index to achieve (3 + ε)nHk (1 + o(1)) bits and
O((m + occ) log n) time.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes

I Notice some important things:
I These are fully-compressed indexes, as they have no

incompressible extra space complexity terms.
I Although they built on the sparse suffix tree idea, no one

ever again tried to build on LZ77, but on LZ78.
I They cannot count efficiently (unless you add a

compressed suffix array of some kind).

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes
I Question: Why then trying to index LZ77, if LZ78 is easier

to handle?
I Answer: LZ78 is too weak to profit from highly repetitive

texts.

0.00 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Mutation rate

M
B

CSA
LZI
RLFM
SSA

AFFM
RLCSA
RLWT
RLFM+

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes
I Instead, LZ77 is extremely promising:

G. Navarro Indexing LZ77

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I We came back to the original LZ77-based index and
“modernized” it.

I We used compact data structures to achieve the minimum
space we could.

I We are trying to convert it into a self-index.
I I will show you now what we have and where are we stuck.
I This is joint work with Diego Arroyuelo, Veli Mäkinen, Luis

Russo, ... and hopefully anyone else able of getting us off
this mess!

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I From now on let T [1, u] be the text, partitioned into n LZ77
phrases.

I We call primary occurrences those that span more than
one phrase.

I We call secondary occurrences those included in a phrase.
I We find first the primary and from those the secondary

occurrences.

2

(0,0,l) (1,1,b) (1,1,r) (0,0,_) (1,1,_) (2,2,−)(1,6,d) (1,1,$)

a b a r a_ _la l a _ a l a b a r d a $
1 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 0 15 62

1 1 1 1 1 1 1 1 1 1 2

(0,0,a)

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I A sparse suffix tree indexes phrase beginnings, n leaves.
I It is represented with at most

I 4n + o(n) bits for parentheses (DFUDS representation)
I 2n log σ bits for letters
I n log n bits for the phrase identifiers

I Skips are not stored (could require too much space), we
see later how to recover them.

I Allows navigation to child labeled x in constant time, apart
from several tree operations.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

5,9,6,3,1,8,4,7,2

a b a r a_ _la l a _ a l a b a r d a $
1 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 0 15 62

1 1 1 1 1 1 1 1 1 1 2 2

_ (l,2)
(a,1)

_ b

2
$ _

3

b r(l,5)

_

1

d

1 2 3 4 5 6 7 8 9

6 49

8

7

(()(()()()(()())())(()()))

5

_a$_bl_drl_b

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I A reverse trie indexes reversed phrases but the last, n − 1
leaves.

I It is represented with at most
I 4n + o(n) bits for parentheses (DFUDS representation)
I 2n log σ bits for letters

I Skips, again, are not stored.
I Allows navigation to child labeled x in constant time, apart

from several tree operations.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

$

a b a r a_ _la l a _ a l a b a r d a $
1 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 0 15 62

1 1 1 1 1 1 1 1 1 1 2 2

1 2 3 4 5 6 7 8 9

76

l

(_,1)

(a,1)

$

a

1 3

b d
8
l r

2 4

((()(()()))()()()()())

_alabdlr

5

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I A range structure connects both trees: the suffix starting at
phrase k with the reverse phrase k − 1.

I Requires n log n + O(n log log n) bits of space.
I Allows range counting in O(log n) time and reporting each

point in O(log n) time as well.
I Implemented with a wavelet tree.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

7

7
6

l

(_
,1

)

(a
,1

)

$

a 1
3

b
d

8l
r

2
4

5

$

a b a r a_ _la l a _ a l a b a r d a $
1 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 0 15 62

1 1 1 1 1 1 1 1 1 1 2 2

1 2 3 4 5 6 7 8 9

_ (l,2)
(a,1)

_ b

2
$ _

3

b r(l,5)

_

1

d

6 49

8

5

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I Partition P[1, m] into P[1, i] and P[i + 1, m] for each
1 ≤ i < m.

I Search the sparse suffix tree for P[i + 1, m] and the
reverse trie for (P[1, i])rev .

I The search gives two preorder intervals [r1, r2] and [l1, l2],
respectively.

I Extract the points in the range data structure to get all the
primary occurrences (phrase numbers, using the identifiers
we store).

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I Tries can be traversed in constant time per symbol using
DFUDS.

I But we miss skip information: go to leftmost and rightmost
leaves, extract symbols from there until they differ, and this
gives the skip.

I Assuming that can be done in constant time per symbol,
total search time is O(m2 + m log n + occ · log n).

I We obtain the phrase numbers and offsets where each
occurrence starts.

I We now introduce other data structures to convert these
into text positions and also solve secondary occurrences.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I With n log u
n + O(n log log u

n) extra bits we convert phrase id
into text position and vice versa in O(log n) time.

I This is through rank and select operation on the bitmap.
I Thus time for reporting stays O(log n) per (primary)

occurrence.

0

a b a r a_ _la l a _ a l a b a r d a $
1 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 0 15 62

1 1 1 1 1 1 1 1 1 1 2 2

1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 01 0

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index
I For secondary occurrences we need another bitmap and a

permutation π.
I The second bitmap marks beginning of phrase sources

with 1s, and change to the next text position with a 0.
I It also provides rank and select in O(log n) time.
I Sources starting at the same position are ordered from

shortest to longest.
I The permutation maps 1s in the bitmap of targets to 1s in

the bitmap of sources.
I We add data to compute π−1 in O(log n) time.
I Total space added is

n log u+n
n + O(n log log u+n

n) + n log n + O(n) =
n log u + O(n log log u

n)

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

1

a b a r a_ _la l a _ a l a b a r d a $
1 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 0 15 62

1 1 1 1 1 1 1 1 1 1 2 2

1 1 1 1 1 0 1 0

1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 01 0 0

011

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I For each primary occurrence found, we find the 0 of its
starting position in the bitmap of sources.

I We consider the 1s preceding it backwards, one by one
(disregarding 0s).

I We map each such 1 to the target, find out its length, and
see if the source covers the primary occurrence.

I If it does, report a secondary occurrence.
I If it does not, stop and consider the next primary

occurrence.
I Repeat the process with the secondary occurrences found,

until no more occurrences are reported.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I The total time is O(log n) per occurrence reported.
I But it works only if no source strictly contains another

source (strictly from left and right extremes)
I This can be enforced in the parsing as in Kärkkäinen’s

proposal.
I Our example does not obey this rule! (it is a pure LZ77

parsing).
I There is another proposal by Kärkkäinen that permits LZ77

parsing and uses a more complicated structure for
mapping sources to targets.

I We have also considered compact variants of that one,
omitted here.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index
I What is missing is the ability to extract a text substring,

both for displaying and for supporting the Patricia tree
search.

I We go to the target bitmap, and using rank, find out the
phrases to output.

I The last symbol of each phrase is obtained directly (by
storing them, n log σ more bits).

I For the other symbols of each involved phrase, use π to
find the source positions, obtain the last symbols of the
included phrases, and so on until all the symbols are
discovered.

I Each step takes O(log n) time...
I ... but we cannot bound the number of steps to carry out!

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I Total space is 2n log u + n log n + O(n(log σ + log log u))
bits.

I Total locating time is O(m2 + (m + occ) log u)...
I ... plus m2 times the cost to extract a text symbol, which we

cannot bound!
I We could store the skips to partially avoid this:

I n log u more bits for the sparse suffix tree.
I n log u

n more bits for the reverse trie.
I Make just one final check for any point in the range, for the

Patricia search.
I But this requires extracting m symbols from T .

I A self index needs to extract arbitrary text positions, so this
problem is central anyway.

G. Navarro Indexing LZ77

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index

I For example, what about using a denser sampling of
letters.

I Build a dependency forest with the u letters of T .
I Ensure every path of length, say, log u, contains a sampled

letter.
I Each letter could then be extracted in O(log u) time.
I But if the tree is a root with

√
u children, each with a chain

of length
√

u, then we need u/ log u letters stored, too
much.

I Such can happen, e.g. with text 1 12 123 1234 12345

G. Navarro Indexing LZ77

Part II: Lempel-Ziv Self-Indexing

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

Conclusions

I An LZ77-based fully compressed self-index is extremely
attractive for highly repetitive text collections.

I We have modernized an old compressed index proposal to
convert it into a fully compressed self-index.

I Asymptotically it could be about 1.5 times the size of the
file compressed with LZ77 (this is probably a bit optimistic).

I But we are stuck in how to give worst-case time
guarantees for text extraction.

I Ideas very welcome!

G. Navarro Indexing LZ77

	The Past Century
	Self-Indexing: The Dawn of a New Era
	A New Challenge: Fully Compressed Self-Indexes
	Current Lempel-Ziv Indexes
	A LZ77 Self-Index
	Conclusions

