Indexing LZ77: The Next Step in Self-Indexing



Gonzalo Navarro Department of Computer Science, University of Chile gnavarro@dcc.uchile.cl

CONIC'

・ロト ・日下・・日下

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

◆□▶ <個▶ < E▶ < E▶ E のQ@</p>

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

In the past century...

- Inverted indexes were the only serious solution for indexing large text collections.
- They even achieved index and text compression, without ruining good I/O performance.
- They were (and still are) the best developed solution for the problem.
- BUT... they work only for natural language texts.

In the past century...

Applications such as

- Computational biology
- Music and multimedia processing
- Software repositories
- Text retrieval on Chinese and other oriental languages
- ... and even some kinds of text retrieval on natural language!

were not included in this framework.

The only way to deal with those sequences was to treat them as strings.

In the past century...

- For example, the Human Genome, with 3G bases, easily fits in a 1 GB memory.
- But its suffix array requires 12 GB... and its suffix tree more than 30 GB!
- One can use secondary storage, but still this is much slower.
- In practice, usage of these structures was confined to handle not so large texts...
- where at least the simple search problem could be reasonably handled by sequential scanning!

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Self-Indexing: The Dawn of a New Era

- In year 2000, several researchers simultaneously figured out how to compress suffix arrays.
- Initially, the idea was to provide a compressed data structure that replaced the suffix array [Grossi & Vitter].
- But soon it was realized that a more ambitious goal, dubbed self-indexing, was achievable:
 - Take space proportional to the compressed text.
 - Be able to reproduce any text substring (hence replacing the text).
 - Provide fast searching on the text (hence incorporating an index within the same space).
- The most famous self-index families appeared in year 2000, the Compressed Suffix Array [Sadakane] and the FM-index [Ferragina & Manzini].

Self-Indexing: The Dawn of a New Era

- A lot of research on these self-indexes has been carried out in this decade. Today, the best representatives offer:
 - Space close to the *k*-th order entropy of *T*, $H_k(T) + o(|T|)$. This is in practice as little as 30% of an English text.
 - Counting time O(m(1 + log σ log log n)) in theory, and very competitive with plain suffix arrays in practice, 1 Mchar/sec.
 - Locating time O(log^{1+e}n) per occurrence in theory, and decent in practice, 100 Kocc/sec (yet this is much slower than suffix arrays — others get much closer but are not that small).
 - Extracting a text of length *l* in O(log^{1+ε} n + l(1 + log σ)) in theory, and decent in practice, 1 Mchar/sec.

N. I.

Self-Indexing: The Dawn of a New Era

- Of course there are still many challenges ahead, some of these partially solved and others not solved at all:
 - How to manage them in secondary memory, when even compressed they do not fit in RAM.
 - How to build them within a space close to their final compressed representation.
 - How to handle updates to the text collection.
 - How to provide more powerful searches.
- But the solutions of most of those challenges are under way, and one can be in general extremely satisfied with, and optimistic about, this technology.

The Past Century

Self-Indexing: The Dawn of a New Era

A New Challenge: Fully Compressed Self-Indexes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

N. I.

A New Challenge: Full Compression

- But there is one further challenge that may hit a fundamental limit of this technology in its current form.
- It is about a compressibility measure many were happy with in the beginning:

$$nH_k(T) + \frac{n\log\sigma\log\log n}{\log n}$$

- ► Note it has a sublinear term that is not compressible.
- Note that the compressible part refers to k-th order entropy, which is far from capturing all the relevant sources of compressibility that arise in applications.

The Past Century Self-Indexing: The Dawn of a New Era A New Challenge: Fully Compressed Self-Indexes

A New Challenge: Full Compression

- In particular, applications handling very repetitive collections, such as
 - Databases of genomes and proteins.
 - Code repositories containing multiple versions.
 - Temporal textual databases containing versions of documents.

do not benefit from the H_k model.

 Recall the empirical entropy definition (similar to the classical one but using *T* itself as the model)

$$nH_k(T) = \sum_{i=k}^n \log \frac{occ(T, t_{i-k} \dots t_{i-1})}{occ(T, t_{i-k} \dots t_i)}$$

► It holds $H_k(TT) \approx H_k(T)$, thus H_k is totally insensitive to repetitions that are farther than *k* symbols in the past.

Application Scenario: Computational Biology

- Sequencing genomes is becoming cheap and fast.
- We are not far from the day where we will have databases of thousands or millions of genomes.
- The applications of such a database are unimaginable, BUT...
- ► 1 million uncompressed genomes ⇒ about 3 petabytes
- a classical suffix tree \implies 30 petabytes
- just the sublinear part we mentioned \implies 200 terabytes
- Overall, the best we can do requires close to 1 petabyte.

Application Scenario: Computational Biology

- However, those genomes may be up to 99.9% identical.
- This means (very roughly) that 99.9% of the substrings of one genome can be found in another genome.
- If we were able of exploiting these repetitions, our petabyte would become an inoffensive terabyte.
- ► However, the H_k measure is totally unable of spotting these regularities.

Application Scenario: Computational Biology

- ► With Sirén, Välimäki and Mäkinen we studied another compressibility measure: the number of runs in Ψ.
- We also aimed at largely reducing the uncompressible part.
- This turned to be more sensitive to large repetitions, and even better than LZ78.
- However, we found that the approach was inferior to LZ77, both in theory and in practice.
- ▶ In theory, a single difference can produce \sqrt{n} new runs in Ψ , but only one new phrase in LZ77.
- In practice, p7zip compressed our genomes 10 times better than our indexes.

- We can call our improved index fully compressed, that is, with no or very mild incompressible term in the space.
- This is a first necessary step towards handling very repetitive collections.
- We expect that the full-compression concept will spread in self-indexing in the next years.
- However, the index does not achieve space linear in the number of differences between the texts, only LZ77 compression achieved this.
- This seems to be essential to achieve an order of magnitud less space.

- ► However, LZ77 is a compression method, not a self-index.
- We are thus faced to the challenge of building a text index that:
 - Is a self-index.
 - Is fully compressed.
 - If the collection can be split into s pieces, so that each piece appears somewhere in previous text, the index takes space proportional to s.
- Such a kind of index does not exist today.

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Current Lempel-Ziv Indexes

A LZ77 Self-Index

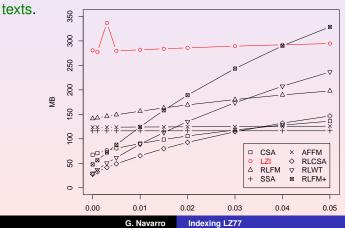
Conclusions

- LZ76, LZ77, LZ78... compressors converge to *nH_k*, but slowly: *k* = *o*(log_σ *n*) for the extra terms to be *o*(*n* log σ).
- On the other hand, they can be break the nH_k bound by far.
- For typical texts, they are indeed not the best, but on repetitive texts they could be much better.
- Interestingly, Lempel-Ziv indexes predate other compressed text indexes.
- ► The sparse suffix tree [Kärkkäinen 1996] indexed only LZ77(-like) phrase beginnings, achieving O(nH_k) + |T|.
- It has been the first index achieving space proportional of the k-th order entropy, yet it was not a self-index.
- It was able to locate each occurrence in O(log n) time after an O(m² + m log n) initial cost. No counting is supported.

- Several self-indexes followed, building on Kärkkäinen's basic LZ-index design.
 - [Ferragina and Manzini 2001] use LZ78 parsing combined with an FM-index to get $O(nH_k \log^{\gamma} n)$ bits of space and $O(m(1 + \frac{\log \sigma}{\log \log n}) + occ)$ locating time.
 - ► [N. 2002] uses LZ78 parsing to get $4nH_k(1 + o(1))$ bits and $O(m^3 \log \sigma + (m + occ) \log n)$ time.
 - [Russo and Oliveira 2006] use a modified LZ78 parsing (maximal parsing) to achieve 5nH_k(1 + o(1)) bits and O((m + occ) log n) time.
 - [Arroyuelo and N. 2006] use LZ78 parsing to achieve $(2 + \epsilon)nH_k(1 + o(1))$ bits and $O(m^2 + (m + occ) \log n)$ time.
 - [Arroyuelo and N. 2007] use LZ78 parsing plus an FM-index to achieve $(3 + \epsilon)nH_k(1 + o(1))$ bits and $O((m + occ) \log n)$ time.

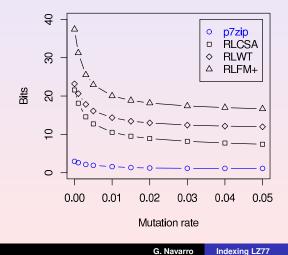
- Notice some important things:
 - These are fully-compressed indexes, as they have no incompressible extra space complexity terms.
 - Although they built on the sparse suffix tree idea, no one ever again tried to build on LZ77, but on LZ78.
 - They cannot count efficiently (unless you add a compressed suffix array of some kind).

- Question: Why then trying to index LZ77, if LZ78 is easier to handle?
- Answer: LZ78 is too weak to profit from highly repetitive



Current Lempel-Ziv Indexes

Instead, LZ77 is extremely promising:



◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

- We came back to the original LZ77-based index and "modernized" it.
- We used compact data structures to achieve the minimum space we could.
- We are trying to convert it into a self-index.
- I will show you now what we have and where are we stuck.
- This is joint work with Diego Arroyuelo, Veli Mäkinen, Luis Russo, ... and hopefully anyone else able of getting us off this mess!

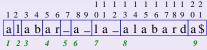
- ► From now on let T[1, u] be the text, partitioned into n LZ77 phrases.
- We call primary occurrences those that span more than one phrase.
- ► We call secondary occurrences those included in a phrase.
- We find first the primary and from those the secondary occurrences.

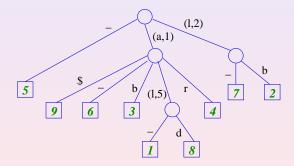
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 $(0,0,a) \ (0,0,l) \ (1,1,b) \ (1,1,r) \ (0,0,_) \ (1,1,_) \ (2,2,-)(1,6,d) \ (1,1,\$)$

- ► A sparse suffix tree indexes phrase beginnings, *n* leaves.
- It is represented with at most
 - 4n + o(n) bits for parentheses (DFUDS representation)
 - $2n \log \sigma$ bits for letters
 - n log n bits for the phrase identifiers
- Skips are not stored (could require too much space), we see later how to recover them.
- Allows navigation to child labeled x in constant time, apart from several tree operations.

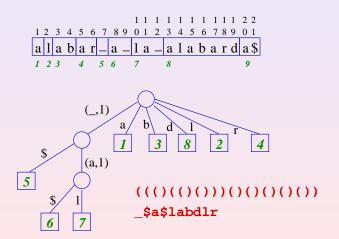
A LZ77 Self-Index





(()(()()()()())())(()))(())) _a\$_bl_drl_b 5,9,6,3,1,8,4,7,2

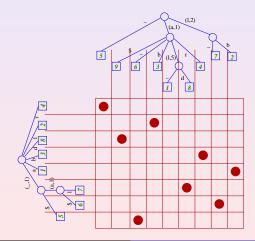
- A reverse trie indexes reversed phrases but the last, n 1 leaves.
- It is represented with at most
 - 4n + o(n) bits for parentheses (DFUDS representation)
 - $2n \log \sigma$ bits for letters
- Skips, again, are not stored.
- Allows navigation to child labeled x in constant time, apart from several tree operations.



- ► A range structure connects both trees: the suffix starting at phrase k with the reverse phrase k 1.
- Requires $n \log n + O(n \log \log n)$ bits of space.
- Allows range counting in O(log n) time and reporting each point in O(log n) time as well.
- Implemented with a wavelet tree.

Current Lempel-Ziv Indexes A LZ77 Self-Index Conclusions

A LZ77 Self-Index



G. Navarro Ind

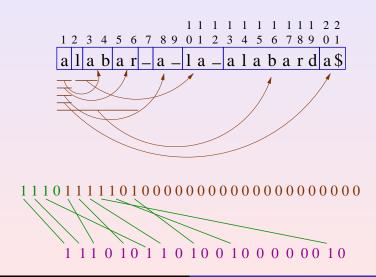
Indexing LZ77

- Partition P[1, m] into P[1, i] and P[i + 1, m] for each $1 \le i < m$.
- Search the sparse suffix tree for P[i + 1, m] and the reverse trie for (P[1, i])^{rev}.
- ► The search gives two preorder intervals [*r*₁, *r*₂] and [*l*₁, *l*₂], respectively.
- Extract the points in the range data structure to get all the primary occurrences (phrase numbers, using the identifiers we store).

- Tries can be traversed in constant time per symbol using DFUDS.
- But we miss skip information: go to leftmost and rightmost leaves, extract symbols from there until they differ, and this gives the skip.
- ► Assuming that can be done in constant time per symbol, total search time is $O(m^2 + m \log n + occ \cdot \log n)$.
- We obtain the phrase numbers and offsets where each occurrence starts.
- We now introduce other data structures to convert these into text positions and also solve secondary occurrences.

- With $n \log \frac{u}{n} + O(n \log \log \frac{u}{n})$ extra bits we convert phrase id into text position and vice versa in $O(\log n)$ time.
- This is through rank and select operation on the bitmap.
- Thus time for reporting stays O(log n) per (primary) occurrence.

- For secondary occurrences we need another bitmap and a permutation π.
- The second bitmap marks beginning of phrase sources with 1s, and change to the next text position with a 0.
- It also provides rank and select in O(log n) time.
- Sources starting at the same position are ordered from shortest to longest.
- The permutation maps 1s in the bitmap of targets to 1s in the bitmap of sources.
- We add data to compute π^{-1} in $O(\log n)$ time.
- ► Total space added is $n \log \frac{u+n}{n} + O(n \log \log \frac{u+n}{n}) + n \log n + O(n) =$ $n \log u + O(n \log \log \frac{u}{n})$



- For each primary occurrence found, we find the 0 of its starting position in the bitmap of sources.
- We consider the 1s preceding it backwards, one by one (disregarding 0s).
- We map each such 1 to the target, find out its length, and see if the source covers the primary occurrence.
- If it does, report a secondary occurrence.
- If it does not, stop and consider the next primary occurrence.
- Repeat the process with the secondary occurrences found, until no more occurrences are reported.

- ► The total time is *O*(log *n*) per occurrence reported.
- But it works only if no source strictly contains another source (strictly from left and right extremes)
- This can be enforced in the parsing as in Kärkkäinen's proposal.
- Our example does not obey this rule! (it is a pure LZ77 parsing).
- There is another proposal by Kärkkäinen that permits LZ77 parsing and uses a more complicated structure for mapping sources to targets.
- We have also considered compact variants of that one, omitted here.

- What is missing is the ability to extract a text substring, both for displaying and for supporting the Patricia tree search.
- We go to the target bitmap, and using rank, find out the phrases to output.
- The last symbol of each phrase is obtained directly (by storing them, n log σ more bits).
- For the other symbols of each involved phrase, use π to find the source positions, obtain the last symbols of the included phrases, and so on until all the symbols are discovered.
- Each step takes O(log n) time...
- ... but we cannot bound the number of steps to carry out!

- ► Total space is $2n \log u + n \log n + O(n(\log \sigma + \log \log u)))$ bits.
- Total locating time is $O(m^2 + (m + occ) \log u)...$
- Implus m² times the cost to extract a text symbol, which we cannot bound!
- We could store the skips to partially avoid this:
 - n log u more bits for the sparse suffix tree.
 - $n \log \frac{u}{n}$ more bits for the reverse trie.
 - Make just one final check for any point in the range, for the Patricia search.
 - But this requires extracting *m* symbols from *T*.
- A self index needs to extract arbitrary text positions, so this problem is central anyway.

- For example, what about using a denser sampling of letters.
- ▶ Build a dependency forest with the *u* letters of *T*.
- Ensure every path of length, say, log u, contains a sampled letter.
- Each letter could then be extracted in $O(\log u)$ time.
- ► But if the tree is a root with √u children, each with a chain of length √u, then we need u/ log u letters stored, too much.
- Such can happen, e.g. with text 1 12 123 1234 12345....

Part II: Lempel-Ziv Self-Indexing

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Current Lempel-Ziv Indexes

A LZ77 Self-Index

Conclusions

Conclusions

- An LZ77-based fully compressed self-index is extremely attractive for highly repetitive text collections.
- We have modernized an old compressed index proposal to convert it into a fully compressed self-index.
- Asymptotically it could be about 1.5 times the size of the file compressed with LZ77 (this is probably a bit optimistic).
- But we are stuck in how to give worst-case time guarantees for text extraction.
- Ideas very welcome!