
Re-pair compression of inverted indexes

3rd Workshop on Compression, Text, 
and Algorithms 

Melbourne. November 13, 2008

Francisco Claude
Antonio Fariña

Gonzalo Navarro



Outline

Introduction
Dealing with inverted lists
Re-pair and inverted lists
• Structure
• Intersection algorithms

• Experimental Results
• Conclusions



Introduction

• Very large text collections of data 
– Need of TR
– Techniques aiming at:

• Reducing space needs: compression
• Improving efficiency of retrieval

• Searches
• Online searches imply a sequential scan

– Over compressed text? 0,30,3 · |T|
• Indexed searches.

– Inverted indexes, suffix arrays, …

Text Retrieval Scenario



Introduction

Inverted Indexes and their variants (for Nat. Lang.)

Space-time trade-off

Granularity:
- Full-positional information of words
- Doc/Block-addressing

Searches

Word fetching the posting of the word
Phrase intersection of posting lists

SPIRE
workshop

string
retrieval

processing
information

Europe
even

0 103

58 159 399
277147

92 313
65 166 406
80 302

476
486

Vocabulary Posting Lists

Compression

- Indexed text (+- 30% ratio)

·Huffman, Dense Coding…

- Posting lists!!Posting lists!!

SPIRE 2008 is the 15th Annual Edition of the 
Symposium on string processing and information
retrieval. SPIRE has its origins in the South 
American workshop on string processing which was 
first held in Belo Horizonte (Brazil, 1993). 
Starting in 1998, the focus of the workshop was 
broadened to include information retrieval due to 
its increasing relevance and its inter-relationship 
with the area of string processing. In addition, 
since 2000, SPIRE venue has been in Europe in even
years. 

Indexed text

D
oc

1
D

oc
2



– Compression usually rely on two main features
• Postings lists contain increasing values
• Gaps between them are smaller in the longer lists

Introduction
Compression of Posting-Lists

4 10 15 25 29 40 46 54 57 70 79 81Original 
Posting list

1 2 3 4 5 6 7 8 9 10 11 12

• Keep gaps instead of absolute values
• Compress those gaps with a variable-length representation

4 6 5 10 4 11 6 8 3 13 9 2Gaps

c4 c6 c5 c10 c4 c11 c6 c8 c3 c13 c9 c2Var-length coded Full
decompression

4

c6 c5 c10

29

c11 c6 c8

57

c13 c9 c2

Absolute sampling + 
Var-length coded

Random access 

Partial
decompression



– But at the end… it is a typical case of trading space/time
• Space
• Fetching time         a fast decoding algorithm is mandatory
• Intersection time    fast access to the compressed  

representation is needed

– Re-pair
• Is a grammar-based compression technique with:

– Fast decompression.
– Allows fast access to the compressed data (even in 2ary memory)
– Obtains good compression

• We show that… with posting lists
– It gives a competitive space/time tradeoff

Introduction
Posting lists:  Compression & Intersection



Outline

Introduction
Dealing with inverted lists
Re-pair and inverted lists
• Structure
• Intersection algorithms

• Experimental Results
• Conclusions



• Intersection of two inverted lists N and M
– Merge-wise intersection

• Traversing both lists in parallel
• Best choice if both lists have similar length:  |N| <= 20|M|
• Can be done along with decoding

– Set-vs-set approach
• The elements of the smallest list are searched for in the longest list.
• Different search options:

– Sequential search
– Binary search
– Exponential search

– Others…

Dealing with inverted lists
Intersection algorithms

Requires random access to the 
longest inverted list



Dealing with inverted lists
Data structures

– Variable-length encoding of gaps (golomb codes, bytecodes,…)
• merge-type algorithms are still possible
• Algorithms that need random access to elements require using a 2-level data 

structure
– A top-level array indexes the compressed sequence in the bottom level

• 2 different choices:
– Sampling at regular intervals of the list [Moffat-Culpepper ’07]

Search is needed in the top-level array buckets of the same size*
– Sampling regularly at domain values [Sanders-Trasier ’07]

Values belong to a bucket depending on their most significative bits buckets of 
different size

ptr1 ptr3ptr24 29 57

C6 C8 C13 C9 C2C6 C5 C10 C11
2

5

6 7 8

9

10 11 12

k = k’ x (log2 L)

1

43

ptr1 ptr2
B=2

… ptr2^k K= log(u*B/L)=4

0<=x<=2^k (i-1)2^k<=x<=i*2^k
x mod 2^k is stored in the buckets

L

4 10 15 25 29 40 46 54 57 70 79 81Original 
Posting list

k
1 2 3 4 5 6 7 8 9 10 11 12

kk



4 29 57

C6 C8 C13 C9 C2C6 C5 C10 C11

Compressed 
version

2

5

6 7 8

9

10 11 12

– Gap encoding

Introduction
Compression of Posting-Lists + sampling

– Variable-length coding of gaps (golomb codes, bytecodes,…)
• Avoiding full decompression 2-level structure.
• [Moffat&Culpepper’07], [Sanders et al’07] …

L

4 10 15 25 29 40 46 54 57 70 79 81Original 
Posting list

k
1 2 3 4 5 6 7 8 9 10 11 12

kk

k = k’ x (log2 L)

Random access 

Partial decompression

1

43



Outline

Introduction
Dealing with inverted lists
Re-pair and inverted lists
• Structure
• Intersection algorithms

• Experimental Results
• Conclusions



Repair of inverted lists

• Steps:
– Find the most frequent pair ab of symbols in L
– Replace all the occurrences of ab by S in L

• Add a rule S ab to a dictionary R (S not appearing before)
– Iterate until every pair in L appears only once

Rules

Repair: The compression algorithm

L 1 11 2 1 2 4 -1 2 4 2 12 -2 1 2 2 2 2

A 1,21 1A A 4 -1 2 4 2 A2 -2 A 2 2 A 1,2
B 2,21 1A A 4 -1 2 4 B A-2 A B
C 1,4C CA A -1 2 B A-1 A B

D A,AC CD -1 2 B -1 D BC

• The compressed sequence C keeps phrases:
– Of length 1 if the symbol is a terminal one
– Of length >1 for the new added symbols (phrase)



Repair of inverted lists

• Rules are represented as a set of trees and each tree as:
– Rb = Bitmap representing the Tree shape in preorder {0=leaf, 1=internal}

• The value of the i-th leaf in Rb is found at Rs[rank0(Rb,i)]
• Non-terminals are shifted by μ to differentiate against terminals (μ = max 

terminal value)
• Expanding non-terminals implies

– Traversing Rb and extract the leaf values until processing more 0’s than 1’s
– Non-terminals are recursively expanded
– Phrase is expanded in optimal time (time proportional to its length)

– Rs = Sequence of leaf nodes
• Non terminals are represented by the starting position of their tree in Rb

Repair: Compressing the dictionary

A 1,2
B 2,2
C 1,4
D A,A

D

A A

1 2

B

2 2

C

1 4 11
0 11 1 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8 9 10

CD A B

1 2 2 22 1 4

Rb

Rs

Example: Expanding (“A”) Rs[Rank0(Rb,2)] Rs[Rank0(Rb,3)] 1,2



Repair of inverted lists

• Differentially encode the inverted lists
<p1, p2, p3,… pk>  <p1, p2-p1, p3-p2,… pk-pk-1>

• Apply Re-pair to the concatenation of all the lists
– Ensuring no phrase spans more than 1 list (use of artificial symbol)
– Storing also Re-pair dictionary

• Terminal symbols store themselves their differential value
– Keeping a pointer of each vocabulary entry to its first occ in C

Application to inverted lists

7 31 3 4 6 11 -1 2 7 9 411 -2 1 3 6 8 10

1 11 2 1 2 4 -1 2 4 2 12 -2 1 2 2 2 2

ptrs

C CD -1 2 B -1 D B

20 2012 2 17 12 12C

11
0 11 1 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8 9 10

CD A B

1 2 2 22 1 4

Rb

Rs

μ=11
>11 internal

<=11 terminal



Repair of inverted lists

• Some skipping data (for non-terminals) can be added to Rs
– Avoids expanding some non-terminals
– Adding data aligned with Rb

• Rank0 is no longer needed for expanding a symbol
• So adds some data into Rb but saves “rank structures” similar space 

requirements
– Searching for a given value in a list: 

• Scanning of the list [summing values] until exceeding the value sought
– If we reach a terminal we are done (add its value)
– If we reach a non-terminal skipping data indicates if it has to be:

» expanded (currValue + skip_data > value sought) or,
» just skipped (currValue + skip_data < value sought)

Searching: skipping data

ptrs

20 2012 2 17 12 12C
11

0 11 1 0 0 1 0 0 0 0
1 2 3 4 5 6 7 8 9 10

CD A B

1 2 2 22 1 4

Rb

Rs

μ=11
>11 internal

<=11 terminal

56 3 4



Repair of inverted lists

• Intersection of 2 lists:
– We sort them by its uncompressed length (so that lenght is also kept)

– Apply an intersection algorithm (currently svs+seq-search)
• Using skipping data

– As show before. 

• Using skipping data PLUS
sampling at regular intervals in the sequence of phrases (C)

Searching: intersection algorithms proposed

ptrs

20 2012 2 17 12 12C
11

0 11 1 0 0 1 0 0 0 0
1 2 3 4 5 6 7 8 9 10

CD A B

1 2 2 22 1 4

Rb

Rs 56 3 4

lens



Outline

Introduction
Dealing with inverted lists
Re-pair and inverted lists
• Structure
• Intersection algorithms

• Experimental Results
• Conclusions



Experimental Results

Corpus FT91 to FT94:  TREC4
495Mb English text   (indexed in lowercase)
210,138 documents (2.4Kb on average)
Doc-oriented index 50,285,802 entries 

Intel Core2duo[T8300]@2.4GHz, 4GB, 3MB-L2cache, Ubuntu, gcc (-O9)

Comparing.
Repair vs 

[Sanders, Trasier, 2007 lookup structure, parameter B]
[Moffat, Culpepper, 2007 2-levels, parameter K] 
Merge-wise version

Bottom-layer using bytecodes

Showing…
Space needed by the structures
Intersection time of 2 lists

Framework used



Experimental Results: Espace usage

– Repair with/without sampling (including skipping data) 
• Dictionary size is negligible It fits in RAM 
• Size:

– Around 10% of the original text
– Around 25% of a representation of the inverted lists with 32-bit integers

++

--

Len of lis
ts

Ptr to
 posting lists

Sampling structs



Experimental Results: curiosities of lists lengths

– The longer lists involve much more repetitions they compress 
better

0 50,000 100,000 150,000 200,000
0

10,000

20,000

30,000

40,000

 original list length (in # of entries)

A
vg

 c
om

pr
es

se
d 

lis
t l

en
gt

h 
(in

 #
 p

hr
as

es
)



Experimental results: List intersection (doc size 2.4kb)

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

longer/shorter list length

C
P

U
 ti

m
e 

fo
r i

nt
er

se
ct

io
n

 

 
merge
svs-bin k=2
svs-bin k=32
svs-seq k=32
repair (no sampling)
lookup B=64
repair(sample k=1)

68,732,645

60,975,676

63,811,100

53,880,883

56,744,691

64,795,606

– Lookup faster but more space
– Merge good if similar list lengths
– Svs good choice. Improves results as lengths vary 
– Repair

• good compression. Sampling good for x>120
• Performing similar to bc+svs (with large sampling values)



Experimental results: List intersection (zoomed)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

longer/shorter list length

C
P

U
 ti

m
e 

fo
r i

nt
er

se
ct

io
n

 

 

merge
svs-bin k=2
svs-bin k=32
svs-seq k=32
repair (no sampling)
lookup B=64
repair(sample k=1)



Outline

Introduction
Dealing with inverted lists
Re-pair and inverted lists
• Structure
• Intersection algorithms

• Experimental Results
• Conclusions



Conclusions

• Re-pair on inverted lists (document-addressing)
– Better compression than those techniques using bytecodes

• More space for sampling can be wasted

– Implicit skipping data

– Good space/time tradeoff
• Expecting good performance in 2ary memory

– Dictionary can be kept in RAM (it is very small)

• Future work
– Trying other representations/search algorithms:: More experiments!!  

– Dealing with word-addressing indexes

– New dictionary representation allowing improved descending of the parse 
tree important for searches



Re-pair compression of inverted indexes

3rd Workshop on Compression, Text, 
and Algorithms 

Melbourne. November 13, 2008

Francisco Claude
Antonio Fariña

Gonzalo Navarro


