O e e B
e e
LS |
T

= 3rd Workshop on Compression, Text, ¥\
j and Algorithms P
A Melbourne. November 13, 2008

wfoo

=] Bas-
o S

Francisco Claude
Antonio Farina

-
[

O(atOr;b

%3 503’

fcdm
Ll | '-'it._—;. E R A

Gonzalo Navarro

* e Introduction

¢ Dealing with inverted lists
+ Re-pair and inverted lists

e Structure
* Intersection algorithms

* Experimental Results
e Conclusions

tory,
o220
o o
N ®
m m
Ny, 1 @
— o A &
- ‘e P
- Qap

Introduction

Text Retrieval Scenario

e Very large text collections of data
— Need of TR

— Techniques aiming at:
» Reducing space needs: compression
* Improving efficiency of retrieval

e Searches

* Online searches imply a sequential scan
— Over compressed text? - 0,3 - |T|

* Indexed searches.
— Inverted indexes, suffix arrays, ...

Introduction

Inverted Indexes and their variants (for Nat. Lang.)

Searches

Word -2 fetching the posting of the word
Phrase -2 intersection of posting lists

Space-time trade-off

Granularity:
- Full-positional information of words
- Doc/Block-addressing

Vocabulary Posting Lists
| SPIRE | [0 [103]
[workshop | [147[277]
| string | [58 [1591399]
mmsmp-| retrieval | [92 [313]
|__processing | [65 [166 [406 |
e information | [80 [302
| Europe | [476]
| even | [486]
8
Indexed text
b SPIRE 2008 1is the 15th Annual Edition of the
o Symposium on string processing and information
O retrieval. SPIRE has its origins iIn the South
American workshop on string processing which was
___First__held__in__Belo Horizonte (Brazil, 1993).
Starting in 1998, the focus of the workshop was |
o broadened to include information retrieval due to
8 its increasing relevance and its inter-relationship
with the area of string processing. In addition,
since 2000, SPIRE venue has been iIn Europe iIn even
years.

Compression

- Indexed text (+- 30% ratio)

-Huffman, Dense Cgqding...

- Posting lists!

Introduction

Compression of Posting-Lists

— Compression usually rely on two main features
» Postings lists contain increasing values
» Gaps between them are smaller in the longer lists

¥

» Keep gaps instead of absolute values
» Compress those gaps with a variable-length representation

original | 4 |10 |15|25|29 |40 |46 |54 |57|70|79]|81

Posting list

Var-length coded c4|c6|c5(clOjcd|cll|{c6|c8|c3|cl3|co|c2 Full .
decompression

Absolute sampling + | 4 ~ 29 ~ 57 w ¢ Random access
Var-length coded Partial

decompression

c6 | c5 |cl10 cll| c6 | c8 cl3|(c9|c2

Introduction

Posting lists: Compression & Intersection

— But at the end... it is a typical case of trading space/time
e Space
« Fetching time - a fast decoding algorithm is mandatory
* Intersection time - fast access to the compressed
representation is needed

— Re-pair
* |s a grammar-based compression technique with:
— Fast decompression.
— Allows fast access to the compressed data (even in 22 memory)
— Obtains good compression

» We show that... with posting lists
— It gives a competitive space/time tradeoff

¢ Introduction

» ¢ Dealing with inverted lists
+ Re-pair and inverted lists

e Structure
* Intersection algorithms

* Experimental Results
e Conclusions

Dealing with inverted lists

Intersection algorithms

e |ntersection of two inverted lists N and M

— Merge-wise intersection
« Traversing both lists in parallel
« Best choice if both lists have similar length: [N| <= 20|M|
e Can be done along with decoding

— Set-vs-set approach
* The elements of the smallest list are searched for in the longest list.

 Different search options:
— Sequential search

— Binary search Requires random access to the
— Exponential search longest inverted list

— Others...

Dealing with inverted lists

Data structures

— Variable-length encoding of gaps (golomb codes, bytecodes,...)
* merge-type algorithms are still possible

» Algorithms that need random access to elements require using a 2-level data
structure

— Atop-level array indexes the compressed sequence in the bottom level

» 2 different choices:
— Sampling at regular intervals of the list [Moffat-Culpepper '07]
Search is needed in the top-level array = buckets of the same size*
— Sampling regularly at domain values [Sanders-Trasier '07]

Values belong to a bucket depending on their most significative bits - buckets of
different size
L

& »
< »

original | 4 |10 |15 (25|29 |40 |46 |54 |57 |70|79 |81

Posting list
P 1 2 3 4 . 5 6 7 8 > 9 10 11 12 >
k k k
k =Kk x (log2 L) .
4 | ptrl |29| ptr2 |57 ptr3 ptrl | ptr2 | ... | ptr2~k | K= log(u*B/L)=4
VAN x
Ce/Cd Cio| Cas | Co| Ca| Cis| Co| C; 0<=x<=2k (i-1)2"k<=x<=i*27k

2 3 4 6 7 8 10 11 12 x mod 27k is stored in the buckets

Introduction

Compression of Posting-Lists + sampling

— Gap encoding

— Variable-length coding of gaps (golomb codes, bytecodes,...)
» Avoiding full decompression - 2-level structure.
» [Moffat&Culpepper’07], [Sanders et al’07] ...

[
>

A

orginal 14 110|15|25(29 |40 (46|54 |57|70|79 |81

Posting list

1 2 3 4 5 6 7 8 9 10 11 12
h K i K T K "
k=K x(log2 L)
4 29 57 & Random access
Compressed 1 5 9

version

CslCq Cip| Ci1| Gl Cg| Ci5| Cy| C,| € Partial decompression

2 3 4 6 7 8 10 11 12

e Introduction
¢ Dealing with inverted lists

» + Re-pair and inverted lists

e Structure
* Intersection algorithms

* Experimental Results
e Conclusions

Repair of inverted lists

Repair: The compression algorithm

o Steps:
— Find the most frequent pair ab of symbols in L
— Replace all the occurrences of ab by Sin L
* Add arule S—>ab to a dictionary R (S not appearing before)
— lterate until every pair in L appears only once

L a2 al2z a2 2al2]2]2[2]2]22]z2
A A 1lalafl2]1]a]2]2]-2]A A 2
A A 1(4a]1]2]1]4|8B 2| A A B
A A C 1]2]c B 1] A A B
C | D C 1]2]c B 1| D B

« The compressed sequence C keeps phrases:
— Of length 1 if the symbol is a terminal one
— Of length >1 for the new added symbols (phrase)

Rules

Repair of inverted lists

Repair: Compressing the dictionary

 Rules are represented as a set of trees and each tree as:

— Rb = Bitmap representing the Tree shape in preorder {O=leaf, 1=internal}
* The value of the i-th leaf in Rb is found at Rs[rankO(RD,i)]

* Non-terminals are shifted by u to differentiate against terminals (u = max
terminal value)

» Expanding non-terminals implies—>

— Traversing Rb and extract the leaf values until processing more 0's than 1's
— Non-terminals are recursively expanded

— Phrase is expanded in optimal time (time proportional to its length)
— Rs = Sequence of |eaf nodes

* Non terminals are represented by the starting position of their tree in Rb

A>1,2 @ 9 G D A B C

B>2,2 { R.[1|1|o]ofo]1]o]o|1]o0]o0
C->14 @ ° 1 2 3 4 5 6 7 8 9 10 1
D>AA Re [1]2]2: 2 |2 1] 4

Example: Expanding (“A”) =2 R [Rank,(R;,2)] R{Rank,(R;,3)] = 1,2

Repair of inverted lists

Application to inverted lists

« Differentially encode the inverted lists
<P1; P2y P3s--- P> 2 <Py, P2-P1s P3P2s--+ PxPy1™

* Apply Re-pair to the concatenation of all the lists
— Ensuring no phrase spans more than 1 list (use of artificial symbol)

— Storing also Re-pair dictionary
 Terminal symbols store themselves their differential value

— Keeping a pointer of each vocabulary entry to its first occ in C

ptrs

1| 3fale|[7aalal2]3[7]o]ua]2[2]3]4a]6]8]10
2112124 2l2]2lalzal22l2lz2]z2l2]212] p=ll |
D C 112 | C D >11 - internal

<=11 - terminal
12 20 2 |20 17 12 12

Repair of inverted lists

Searching: skipping data

e Some skipping data (for non-terminals) can be added to R,
— Avoids expanding some non-terminals

— Adding data aligned with R,
» Rank, is no longer needed for expanding a symbol
« S0 adds some data into R, but saves “rank structures” - similar space
requirements
— Searching for a given value in a list:

» Scanning of the list [summing values] until exceeding the value sought
— If we reach a terminal > we are done (add its value)
— If we reach a non-terminal - skipping data indicates if it has to be:
» expanded (currValue + skip_data > value sought) or,
» just skipped (currValue + skip _data < value sought)

D A B C
C |12|120]| 2 (20|17 |12 |12 Rb 1111lo0lolol1lolol1]lo0lo

ptrs -

| ow=11 |
>11 - internal
<=11 - terminal

Repair of inverted lists

Searching: intersection algorithms proposed

* Intersection of 2 lists:
— We sort them by its uncompressed length (so that lenght is also kept)

— Apply an intersection algorithm (currently svs+seq-search)
» Using skipping data
— As show before.
» Using skipping data PLUS

sampling at regular intervals in the sequence of phrases (C)

C |12|120]| 2 |20(|17 12|12 Rb 1111o0lolol1]lo0]o0
j 1 2 3 4 5 6 7 8 9 10 11
R.[e[a[1]z2|2[a]2]2]5]1]4

ptrs| —

lens

=
o
o

e Introduction
¢ Dealing with inverted lists
+ Re-pair and inverted lists

e Structure
* Intersection algorithms

* Experimental Results
e Conclusions

Experimental Results

Framework used

= Corpus FT91 to FT94: TRECA4
= 495Mb English text (indexed in lowercase)
= 210,138 documents (2.4Kb on average)
= Doc-oriented index - 50,285,802 entries

= Intel Core2duo[T8300]@2.4GHz, 4GB, 3MB-L2cache, Ubuntu, gcc (-O9)

= Comparing.
=Repair vs
=[Sanders, Trasier, 2007 -2 lookup structure, parameter B]
=[Moffat, Culpepper, 2007 =2 2-levels, parameter K]
=Merge-wise version
= Bottom-layer -2 using bytecodes

= Showing...
= Space needed by the structures
= Intersection time of 2 lists

Experimental Results: Espace usage

Method Vocabulary Extra data | Inverted lists Total
repair 2,699,656 | (dict) 594,467 50,586,760 | 53,880,883
(k=1) 3,955,308 + 1,606,640 50,586,760 | 56,744,691

merge 1,569,568 — 59,406,108 | 60,975,676
bin,seq (k = 2) 4,456,556 8,606,754 55,668,305 | 68,732,645
(k= 32) 4,269,208 1,629,688 57,912,204 | 63,811,100
lookup (B = 8) 4,457,556 8,467,733 58,970,767 | 71,896,056
(B = 64) 4,269,208 1,170,400 59,355,998 | 64,795,606

— Repair with/without sampling (including skipping data)
» Dictionary size is negligible - It fits in RAM

e Sjze:

— Around 10% of the original text
— Around 25% of a representation of the inverted lists with 32-bit integers

Experimental Results: curiosities of lists lengths

5
:

8
g

_é

Avg compressed list length (in # phrases)

_§

\ \
100,000 150,000 200,000
original list length (in # of entries)

— The longer lists involve much more repetitions - they compress
better

Experimental results: List intersection (doc size 2.4kb)

L &
3 ° e 60,075,676 merge
1.6 """:f ‘ .{o 68,732,645 =~ ® -~ SVs-bin k=2
14 l:'f:i ““‘?“ 63,811,100 | ® svs-bin k=32
alll :;., . e sw-seq k=32

c “a;» | I . .
0 12 '.' ;‘ 53,880,883 | — = repair (no sampling)
o o %o 64,795,606 lookup B=64
g 1 *“ 56,744,691 | — © repair(sample k=1)
£ 08,
S
= 08|
g
D 0.6+
o
@)

0.4~

0.2+~

0 | | |) | 5 —
0 100 200 300 400 500 600 700 800 900

longer/shorter list length

— Lookup - faster but more space
— Merge - good if similar list lengths
— Svs - good choice. Improves results as lengths vary
— Repair>
* good compression. Sampling good for x>120
» Performing similar to bc+svs (with large sampling values)

Experimental results: List intersection (zoomed)

bk \
\ @ ®
0l !\\‘ \ “.
)
iy \.‘\V .\ [J
® O [
Ne ® .$ L °
&0 o
i ®
& S . °
S
= °
I3} N R e Qf "
Q i Y ~. 3
g)!Eg “e&§ M\ ,‘ \w
= [PSS S #% o
= ¢ E““a - %R Sgen ® i N‘.Q
— BN WNSSS ®)
8 ~Q. =N e \1\ °5e§-6") o .Q‘ R
=SEATH n 0 R ®
Q .—.5== N O “’.'.".' “Q A A) []
£ i SN R 8 0 et
- — merge Mo O “r.==!===-“m no K
- bin k=2 .. U Ny e, 0
--- @ - Svs-bhink= ¥
o 0.6 d
O -~ @ svs-bin k=32 T —
Mo
04 | e svs-seqk=32 aas PPN |
—=a—— repair (no sampling) iy P8 ,‘.
0.2 lookup B=64 w
——o— repair(sample k=1)
O T T T | | | | | |

J
0 10 20 30 40 50 60 70 80 90 100
longer/shorter list length

e Introduction
¢ Dealing with inverted lists
+ Re-pair and inverted lists

e Structure
* Intersection algorithms

* Experimental Results
e Conclusions

Conclusions

Re-pair on inverted lists (document-addressing)

— Better compression than those techniques using bytecodes
* More space for sampling can be wasted

— Implicit skipping data

— Good space/time tradeoff

» Expecting good performance in 22 memory

— Dictionary can be kept in RAM (it is very small)

Future work

— Trying other representations/search algorithms:: More experiments!!
— Dealing with word-addressing indexes

— New dictionary representation allowing improved descending of the parse
tree - important for searches

)

and Algorithms
Melbourne. November 13, 2008

[Iriversity of
Waterloo
Francisco Claude

. .~ ,\Ge as&m
Antonio Farifia g@%
P o

Gonzalo Navarro

