
PAGE 168 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

#define MAXCHARS 1000 /* max chars per word */
#define INITIAL 100 /* initial size of word array */

typedef char word_t[MAXCHARS+1];
int getword(word_t, int);
void exit_if_null(void*, char*);

int
main(int argc, char **argv) {

word_t one_word;
char **all_words;
size_t current_size=INITIAL;
int numdistinct=0, totwords=0, i, found;
all_words = malloc(INITIAL*sizeof(*all_words));
exit_if_null(all_words, "initial allocation");
while (getword(one_word, MAXCHARS) != EOF) {

totwords = totwords+1;
/* linear search in array of previous words... */
found = 0;
for (i=0; i<numdistinct && !found; i++) {

found = (strcmp(one_word, all_words[i]) == 0);
}
if (!found) {

/* a new word exists, but is there space? */
if (numdistinct == current_size) {

current_size *= 2;
all_words = realloc(all_words,

current_size*sizeof(*all_words));
exit_if_null(all_words, "reallocation");

}
/* ok, there is definitely space in array */
all_words[numdistinct] =

malloc(1+strlen(one_word));
exit_if_null(all_words[numdistinct],

"string malloc");
/* and there is also a space for the new word */
strcpy(all_words[numdistinct], one_word);
numdistinct += 1;

}
}
printf("%d words read\n", totwords);
for (i=0; i<numdistinct; i++) {

printf("word #%d is \"%s\"\n", i, all_words[i]);
free(all_words[i]);
all_words[i] = NULL;

}
free(all_words);
all_words = NULL;
return 0;

}

Figure 10.3: Using realloc so that an array can grow as large as is required. Function
getword is described in Figure 7.14 on page 124, and functionexit if null is defined in
the body of the text.

10.1 RUN-TIME ARRAYS PAGE 169

The functionrealloc is used to manage arrays that must expand to
accept more data. The first array must be created withmalloc ,

thereafter array sizes should grow as a geometric sequence.

Note the type of variableall words . It is a pointer to a pointer to a character –
with that character being the first one in an array of characters, and its pointer being
the first one in an array of pointers to characters. Hence the declared type:char** ,
the same as the program argumentargv .

Figure 10.3 also shows a second common operation in C – that of usingmalloc

to obtain exactly enough space for some particular string to be stored, usingstrlen

to determine the length of it. The “1+” in that call is to allow for the null byte at the
end of the string. Apart from the null, there is no waste space at all in the strings being
stored. In this framework, the memory wastage caused by over-sizingall words by
as much as a factor of two might be more than compensated for by not wasting any
space in the stored strings.

When usingmalloc to create an array to store a string, one extra
character must be requested, to hold the terminating null byte.

A third point is illustrated by Figure 10.3: the use of a functionexit if null

to test each pointer after any of the memory allocation routines has been used. If
the allocation fails, the pointer isNULL, and program execution should be aborted.
The second argument passed toexit if null is a message to be printed prior to
program exit. The flexibility associated withvoid* pointers means that a possible
implementation of the function is thus:

void
exit_if_null(void *p, char *msg) {

if (!p) {
printf("unexpected null pointer: %s\n", msg);
exit(EXIT_FAILURE);

}
}

The minimalist guard is possible becauseNULL is equivalent to integer zero, meaning
that !p is one (true) exactly whenever the pointerp is NULL.

A more general way of achieving a similar result is to use theassert function
specified in the header fileassert.h :

assert(all_words[numdistinct] != NULL);

If the argument expression is false, program execution is halted and a diagnostic
message printed indicating the line number and the assertion that has been violated.
It is also perfectly reasonable to write:

assert(0 <= numdistinct && numdistinct < current_size);

This one checks that two variables are maintaining an expected relationship, and
could be used to guard an array access.

