
PAGE 138 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

#define NAMESTRLEN 40
#define MAXSUBJECTS 8

typedef char namestr[NAMESTRLEN+1];

typedef struct {
namestr given, others, family;

} fullname_t;

typedef struct {
int yy, mm, dd;

} date_t;

typedef struct {
int subjectcode;
date_t enrolled;
int status;
int finalmark;

} subject_t;

typedef struct {
fullname_t name;
int employeenumber;
date_t dob;
date_t datecommenced;
int status;
int annualsalary;

} staff_t;

typedef struct {
fullname_t name;
int studentnumber;
date_t dob;
int nsubjects;
subject_t subjects[MAXSUBJECTS];

} student_t;

staff_t jane;
student_t bill;

Figure 8.4: Declaration of nested structures.

Note how the common elements have been abstracted out into separate declared
types: fullname t , date t , and so on. Components in different structures can
have the same name – for example, the componentsname anddob are common to
bothstaff t andstudent t . Indeed, when components in two different structures
have the same interpretation, it makes perfect sense for them to be named alike.

Note also that this is just a sketch – in a real personnel or student record man-
agement system there would be literally dozens of other types and fields involved
(address, entrance marks, payroll history, annual leave records, next of kin, tax paid,
applications for special consideration, enrollment history for previous years of study,
and so on) and the structures would be correspondingly more complex. But the same



8.3 STRUCTURES AND FUNCTIONS PAGE 139

overall rules apply –data abstractionis used to create a hierarchical structure to the
information that must be maintained, in the same way that function abstraction allows
grouping of repeated execution patterns on that data.

Finally in connection with Figure 8.4, note the use of the “t ” convention on type
names. There are other possible conventions, including the use of initial uppercase
letters for types,Fullname , Date , Subject , and so on. In some languages this latter
approach is mandatory. There is no requirement in C that types be differentiated in
any particular way; nevertheless, without some kind of convention like this, you are
quickly going to lose track of which identifiers are being used for types and which
are being used for variables. In this book the “t ” suffix is used to distinguish types
from variables and functions. Use of this rule (or a similar style) allows declarations
of the formdate t date , which is probably more helpful than the alternative of
usingtypedef to create a typedate , and then hunting for an alternative name for
the actual variable being declared:date dte , for example.

Type names for structures and other types can be any valid identifier.
But for readability, and ease of maintenance, you should adopt a

sensible convention and use it methodically.

Another way of thinking about structures, and nested structures, is to imagine that
you are going on a skiing holiday. Your toothbrush, toothpaste, and other toiletries
get packed into a small bag, and then it gets zipped closed. They correspond to one
sub-structure. Your passport, travelers checks, and credit cards then get sealed into
a document wallet – another sub-structure. Perhaps some underclothes get put into
yet another package; your gloves, goggles, and hat into another; and some pairs of
shoes into yet another special purpose bag. Finally, all of these components, plus
some shirts and trousers and jackets, get assembled together, put into a suitcase, and
the suitcase closed – the main structure. Then, when you check-in at the airport for
your flight, and they ask “just one bag?”, you answer “yes”, because by now you do
have just one bag, and all the other components are inside it at the first level, or at the
second level, or perhaps even at a third level. In the same way, structures allow us to
manipulate a suitcase full of variables without having to list every object individually.
In particular, we are able to take structures into and out of functions – the equivalent
of taking a suitcase on holiday, and then bringing it back home again.

8.3 Structures, pointers, and functions

Structures are passed into functions in exactly the same manner as scalar variables of
type int or float – the value of the argument expression is copied into a local ar-
gument variable of the corresponding type, and within the function the local variable
is manipulated. Functionprint planet in Figure 8.5 shows this mode of argument
passing, where the types are as declared in Figure 8.1. Within the function, variable
one planet is local, and changes made to it are not reflected in the passed variable
planet declared within the scope of functionmain . In the case ofprint planet

(the body of which consists of aprintf statement that appears in Figure 8.2), this is
not a problem.


