
PAGE 106 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

/* assume that A[0] to A[n-1] have valid values */
didswaps = 1;
while (didswaps) {

didswaps = 0;
for (i=0; i<n-1; i++) {

if (A[i] > A[i+1]) {
int_swap(&A[i], &A[i+1]);
didswaps = 1;

}
}

}

vice: ./bubblesort
Enter as many as 10 values, ˆD to end
1 8 15 3 17 12 4 8 4
ˆD
9 values read into array
Before: 1 8 15 3 17 12 4 8 4
After : 1 3 4 4 8 8 12 15 17

Figure 7.3: Program fragment showing how to sort an array from smallest to largest using
the bubble sort algorithm. Functionint swap is defined in Figure 6.8 on page 95. The lower
box shows an execution of a program containing the fragment.

were out of order, then the array is sorted. In this latter case, at the end of the inner
for loop, variabledidswaps will still retain the zero (false) value with which it was
initialized at the start of the loop, and the outerwhile loop can terminate. Note the
use of the functionint swap from Figure 6.8 on page 95 – there is no point not
making ongoing use of functions that were written for other initial purposes. Good
software design facilitates this kind of re-use.

The name “bubble sort” comes about because of the way that the largest remain-
ing item is bubbled toward the top of the array at each iteration of thewhile loop.
This is the spiraling convergence referred to in Chapter 4 – each time thewhile loop
repeats, one more item in the array reaches its final resting position. Hence, it is
possible to guarantee that the array is sorted aftern-1 iterations of thewhile loop.

As an example, suppose that the seven numbers{22, 14, 17, 42, 27, 28, 23} are
to be sorted. Table 7.1 illustrates the passes that are required. Items shaded in grey
move one spot to their left in that pass as larger items step over them to the right. A
total of four passes are required: three to get the array into sorted order, and then a
fourth to establish that no more swaps are required.

The discussion in this chapter is more about arrays than about sorting, and while
the exercises at the end of this chapter introduce other sorting algorithms, they too are
of the “agricultural” quality of bubble sort rather than being “formula one” perform-
ers. Sorting algorithms that can be used to efficiently sort very large sets of values –
the Ferraris of sorting – are discussed in detail in Chapter 12. Those clever algorithms
are to bubble sort what binary search is to linear search, and mean that sorting is not
usually a bottleneck operation in data processing applications.



7.4 ARRAYS AND FUNCTIONS PAGE 107

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Initially 22 14 17 42 27 28 23
After pass 1 14 17 22 27 28 23 42
After pass 2 14 17 22 27 23 28 42
After pass 3 14 17 22 23 27 28 42
After pass 4 14 17 22 23 27 28 42

Table 7.1: Tracing the action of bubble sort on the array{22, 14, 17, 42, 27, 28, 23}. Items
in grey swap one location to their left during that pass. The fourth pass finds that no further
swaps are required.

To understand why bubble sort is considered to be slow, look again at Table 7.1.
Small objects move only one position to their left during each pass. Hence, if the
smallest object is initially in the rightmost position, thenn − 1 passes are required
to sort an array ofn objects. Moreover, each pass involvesn − 1 comparisons. To
sort n = 100 objects takes as many as992 ≈ 9,800 comparisons, and completes
in far less than a second of computation time (recall from Chapter 1 that a rule of
thumb for current computers is around10 million steps per second). But to sortn =
100,000 items using bubble sort will take rather longer: as many as999,9992 ≈ 1010

comparisons, or perhaps1,000 seconds. The key point to note is that the bound on the
execution cost grows quadratically in the number of objects in the array. This point
is returned to in Chapter 12 when more efficient sorting algorithms are introduced.

Bubble sort is one of many different sorting algorithms. It has the
advantage of being simple to understand and to implement, but is slow

to execute if more than a few thousand objects are being sorted.

7.4 Arrays and functions

This section discusses one of the genuinely insightful decisions that was made during
the development of the C language. It concerns the relationship between arrays and
pointers, and the way arrays are handled in functions.

Suppose thatA is an array ofn integer values. The first variable inA is A[0] ,
and is stored at location&A[0] . Similarly, the second variable isA[1] , stored at
&A[1] . The developers of C specified that the array itself,A, is defined to be a
pointer constantwhose value is the address of the first variable in the array, that is,
&A[0] . As an example, ifp is a variable of type pointer toint (that is,p is of type
int* ), then the assignmentp=A has exactly the same effect asp=&A[0] – it leaves
p pointing at the first variable inA.

The identifier used as an array name is a constant of type pointer toT ,
whereT is the type underlying the array.

This relationship makes it easy to pass arrays into functions. Since the array name
is a pointer constant, if the array is passed into a function, what is transferred into the


