
PAGE 68 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

/* Read a number and determine if it is prime.
*/
#include <stdio.h>

int isprime(int);

int
main(int argc, char **argv) {

int n;
printf("Enter a number n: ");
scanf("%d", &n);
if (isprime(n)) {

printf("%d is a prime number\n", n);
} else {

printf("%d is not a prime number\n", n);
}
return 0;

}

/* Determine whether argument is prime. */
int
isprime(int n) {

int divisor;
if (n<2) {

return 0;
}
for (divisor=2; divisor*divisor<=n; divisor++) {

if (n%divisor==0) {
/* factor found, so can’t be prime */
return 0;

}
}
/* no factors, so must be prime */
return 1;

}

Figure 5.3: A function isprime , and amain function that calls it. This program is complete
within a single file, and can be compiled and executed.

variables are recreated in an uninitialized state. They donot resume their final values
from the previous call to that function.

The simplest way to manage a program that uses functions is to put all
components of the program into a single file and then compile that file.

When a program is more complex, or when several programs are sharing a com-
mon pool of useful functions, inserting the text of the function definition in each file
that needs it is wasteful. To avoid the redundancy,separate compilationis used. Fig-
ure 5.4 shows how this works, assuming (as in Section 1.3) that thegcc compiler is
available. Two files are manipulated in the interaction shown in the figure:func.c ,
which is assumed to contain a function definition (perhaps functionsavings plan ,

5.3 COMPILATION PAGE 69

vice: ls
func.c prog.c
vice: gcc -Wall -ansi -c func.c
vice: gcc -Wall -ansi -c prog.c
vice: ls
func.c func.o prog.c prog.o
vice: gcc -Wall -o prog prog.o func.o
vice: ls
func.c func.o prog prog.c prog.o
vice: ./prog
<<< whatever the program does >>>
vice:

Figure 5.4: Example showing separate compilation. After the threegcc commands, the file
prog contains a self-contained and executable program. Neitherfunc.o nor prog.o can
be executed.

as shown in Figure 5.1 on page 64); and fileprog.c , which is assumed to contain a
program that uses that function (for example, as shown in Figure 5.2 on page 66).

In the example, each of the two C files is first compiled separately. Use of the
-c flag to the C compiler instructs it to simply compile the code in the file to make
anobject file(with a “.o ” extension), without attempting to locate functions that are
used but not defined. The thirdgcc instruction then combines the two “.o ” files to
build an executable program calledprog . The complete compilation could also have
been achieved using a single command-line:

gcc -Wall -ansi -o prog prog.c func.c

However, in a big program, comprising a large number of separate source files, it
is more economical to only recompile the files that have been edited since the last
compilation, and then rebuild the final executable.

Separate compilation allows efficient reuse of software modules. Each
source file contains a group of logically related functions, and is

compiled independently of other modules. A final linking step then
creates the executable program.

For a program to be executable once it is compiled, whether it is all in a single
file or spread across multiple files, exactly onemain function should be present.

If separate compilation is used, keeping track of which files have been edited
can become a chore. Fortunately, there is a tool for helping with this, calledmake,
that examines the “last modified” time-stamps on a set of files and determines which
components need recompilation. It is not appropriate to provide a detailed discussion
of make here, but when you start working with bigger programs, you are going to
need to know about it and how to structure the controllingmakefile .

