
4.2 CASE STUDY PAGE 49

Any expressions are permitted as the initializing and updating components, a
range of possibilities that includes theempty expression. As an extreme, “for(;;); ”
is a perfectly validfor loop, according to the rules of C. It does nothing before it
starts, then it performs no test (and in doing so, arrives at the value true), then it does
nothing and does the non-existent test again, and so on. Endlessly. Which brings us
back to the distinction made at the beginning of this chapter between treadmills and
spirals.

Loops should spiral, and move at each iteration towards a goal. When a controlled
variable is initialized, tested in the guard, and then updated, as has been the case in all
of the examples shown so far, positive progress along the path of the spiral is pretty
much guaranteed. But in the loop “for(i=0;i<10;) ” there is no progress made,
and no spiral. It is a treadmill – which in computing is called aninfinite loop– and
is an unwelcome addition to a program. In this simple case the error is reasonably
obvious, and almost certainly there is ani++ or similar statement missing. In more
complex settings, writing a loop that doesn’t make progress is an easy mistake to
make, and all programmers have agonized over the “why” of an endless loop at some
stage of their career.

So if you are faced with a program that appears to be “stuck” somewhere, the
very first thing to check is the loops – ensure that every loop makes progress, in
that whatever variable is being controlled in the loop moves towards the stopping
condition, as expressed in the guard.

In mostfor loops the controlled variable will appear in all of the
initialize, the guard, and the update parts.

The other reason why a program might get “stuck” is that it might be at ascanf

waiting for you to enter some data, without you realizing. That is why you should
always useprintf to generate a prompt immediately prior to everyscanf – to
minimize this possible confusion.

Sometimes a loop appears to unexpectedly execute fewer times that you think it
should. Look at the following code, and see if you can work out what it generates:

for (i=0; i<10; i++); {
printf("i=%d\n", i);

}

It prints the numbers0 to 9, right? Wrong. In fact, the third semi-colon in the first
line of the fragment means that thefor executes theempty statementten times, and
then goes on to do theprintf once and write the messagei=10 .

Beware of loops that execute the empty statement.

4.2 Case study: Calculating compound interest

You are now ready to try an exercise that involves loops. Have a go at the following
task before reading on:

PAGE 50 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

Write a program that shows how, for interest rates of 2%, 3%, 4%, 5%,
6%, and 7%, a regular savings amount of $100 per month grows over
periods of 1 to 7 years. Figure 4.5 shows the desired output.

Figure 4.6 shows a complete program that makes use of nested loops to create a
two-dimensional table. Each iteration of the outer loop – the one in which the control
variable alters more slowly – generates one row of the table. Each iteration of the
second loop generates a single number for the table. And to generate that value, a
third innermost loop is required, which calculates the number to be printed into that
cell of the table. (The innermost loop could be replaced by a direct evaluation of
a formula if we were prepared to investigate the mathematics involved, but for our
purposes an iterative computation is perfectly valid.) After each row of values is
generated, a newline character is required. Theprintf that generates that newline
is the last statement in each iteration of the outermost loop. The two outer loops
directly reflect the structure of the table – it is a two-dimensional report where each
entry is a function of two parameters. A two-dimensional loop structure is thus the
appropriate way of generating it.

A lot of the actual program (Figure 4.6) is concerned with output formatting. This
is not uncommon – to make the output of a program look neat and tidy can be quite
hard work, but as has already been noted, is well worth doing.

4.3 Program layout and style

A point to note in connection with programs in general is that tidy program layout
is essential if human readers are to be able to access the structure of your program.
Believe it or not, the jumble in the top box of Figure 4.7 has exactly the same func-
tionality as the fragment in Figure 4.2 on page 47 – the C compiler doesn’t care
whether spaces or newlines or tabs are used to delimit the various components. But
can you read it? And can you be sure that it does what it claims to? In this ex-
ample, at least the variable names have been retained. Imagine if they were called
qxfgc andfczxp , and so on. Indeed, there is a regular “obfuscated C” programming
competition, seehttp://www.ioccc.org/ , in which the objective is to write the
most creative, but non-obvious, C program. When you are an expert programmer you

Monthly savings of $100, with monthly compounded interest
Annual Rate | 2% 3% 4% 5% 6% 7%
After 1 years | 1211 1217 1222 1228 1234 1239
After 2 years | 2447 2470 2494 2519 2543 2568
After 3 years | 3707 3762 3818 3875 3934 3993
After 4 years | 4993 5093 5196 5301 5410 5521
After 5 years | 6305 6465 6630 6801 6977 7159
After 6 years | 7643 7878 8122 8376 8641 8916
After 7 years | 9008 9334 9675 10033 10407 10800

Figure 4.5: A two-dimensional table.

