
PAGE 6 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

Second, it is robust. Over the last twenty-five years C has evolved into a sta-
ble, mature, language, controlled by a formal standard, and guided by a wealth
of practical experience. You can find information about the standard athttp://

std.dkuug.dk/JTC1/SC22/WG14/ , and purchase a copy of the current version,
ISO/IEC 9899:1999, athttp://www.ansi.org .

Third, it is appropriate to a wide range of applications. For example, much of the
Unix operating system is written in C, and so are a wide range of programming and
other software tools. Commercial software houses use it for product development,
and hobbyists use it for their personal computing. And because its lineage stretches
back to Fortran, a wide range of software – old, but perhaps still useful – can be
rewritten in C and used if necessary, with a minimum of translation effort.

Finally, as a procedural language, there is a close mapping between constructs
in the language and the facilities available in the hardware it executes on. Because
of this close correspondence, a great deal of general-purpose programming work is
carried out using C and related languages – programs are efficient when written in C.
Advances both in programming language technology and in hardware have reduced
this link in recent years, but there is still a sense in which C is close to the raw
machine.

There are better languages for particular applications – just as a carpenter has
many saws at their disposal. But if you are going to use only one saw, it needs to be
a general-purpose one, a jack of all trades. And that is the role filled by C.

C is a robust, standardized, portable, and widely available language
suitable for a broad range of computing, engineering, and scientific

calculations.

1.3 A first C program

Having convinced you that C is a useful tool in your future career, it is time to look
at a C program:

/* A first C program. Just writes a message, then exits.
Alistair Moffat, alistair@cs.mu.oz.au, July 2002.

*/
#include <stdio.h>

int
main(int argc, char **argv) {

printf("Hello world!\n");
return 0;

}

The program in the box doesn’t do much, nevertheless, it is always a useful task to
get this program working on any new computer system you encounter, and to also
write the equivalent program in any new language you must master.

There are a number of points to note. First, the text between the/* and*/ pair
is discarded by the C system, and is purely for the benefit of any human readers – it
is acomment. Comments can be placed at almost any point of a program, and once

1.3 A FIRST C PROGRAM PAGE 7

the /* is read, all further text is discarded until a*/ combination is encountered.
Unfortunately, comments cannot appear within other comments – there is no sense
of nesting.

Programs typically commence with a comment that records the author of the
program, a history of any modifications to the program and a set of associated dates,
and a summary of the operation of the program. For brevity the programs shown in
this book contain relatively terse commenting, and you should be more expansive in
the software that you write.

Second, most of the rest of the program is a kind of standard recipe that is used
without discussion for the next few chapters – the#include line and int main

lines are going to appear exactly the same way in every program, as are thereturn

statement and final closing brace.
In fact, the only interesting part in this program is theprintf line, which says

that the sequence of characters – orstring – Hello world! is to be written to the
output. The next box shows a possible interaction with this program on a computer
running the Unix operating system, assuming that the program’s lines have been
typed into a file calledhelloworld.c using a program known as aneditor. The
word vice: is the prompt from the computer’s operating system, and indicates that
user input is expected. The commands beside each prompt (ls , which lists the files
in the current directory, andgcc , which compiles the program) were typed by an
imaginary user; the other lines resulted from the execution of those commands.

vice: ls
helloworld.c
vice: gcc -Wall -ansi -o helloworld helloworld.c
vice: ls
helloworld helloworld.c
vice: ./helloworld
Hello world!
vice:

The gcc commandcompilesthe C source code in filehelloworld.c using the C
compiler distributed by the Free Software Foundation2, and creates an executable
file calledhelloworld that contains machine-language instructions corresponding
to the C source program. On a Windows system the executable would have a.exe

filename extension, but in Unix it is conventional to create executables that have no
extension. All of the examples in this book presume a Unix environment, as shown
in the example. The last command executes the compiled program, and the “Hello
world!” output message appears.

Figure 1.2 shows a second C program, and an execution of it. This one reads
a set of numbers, and calculates and prints their sum. It is presented to give you a
feel for what a more substantial program looks like, and you are not expected to have
yet mastered the intricacies of how it was put together (so please don’t panic!). But
with a bit of luck, by reading the code – and the comments – you can identify the
basic building blocks: some variable declarations; awhile loop that gets the input
numbers one by one into variablenext , and adds them onto a running totalsum that
is at first set to the value zero; and aprintf that prints out the value ofsum.

2Seehttp://www.gnu.org .

