
Contents

Preface vii

1 Computers and Programs 1
1.1 Computers and computation . 2
1.2 Programs and programming . 3
1.3 A first C program . 6
1.4 The task of programming . 9
1.5 Be careful . 10
Exercises . 12

2 Numbers In, Numbers Out 13
2.1 Identifiers . 13
2.2 Constants and variables . 14
2.3 Operators and expressions . 19
2.4 Numbers in . 21
2.5 Numbers out . 22
2.6 Assignment statements . 23
2.7 Case study: Volume of a sphere . 25
Exercises . 26

3 Making Choices 29
3.1 Logical expressions . 29
3.2 Selection . 32
3.3 Pitfalls to watch for . 33
3.4 Case study: Calculating taxes . 36
3.5 The switch statement . 38
Exercises . 40

4 Loops 45
4.1 Controlled iteration . 45
4.2 Case study: Calculating compound interest 49
4.3 Program layout and style . 50
4.4 Uncontrolled iteration . 52
4.5 Iterating over the input data . 56
Exercises . 59

iii

PAGE IV PROGRAMMING, PROBLEM SOLVING, AND ABSTRACTION

5 Getting Started with Functions 63
5.1 Abstraction . 63
5.2 Compilation with functions . 66
5.3 Library functions . 70
5.4 Generalizing the abstraction . 72
5.5 Recursion . 74
5.6 Case study: Calculating cube roots 76
5.7 Testing functions and programs . 78
Exercises . 79

6 Functions and Pointers 83
6.1 The main function . 83
6.2 Use of void . 84
6.3 Scope . 85
6.4 Global variables . 87
6.5 Static variables . 89
6.6 Pointers and pointer operations . 90
6.7 Pointers as arguments . 93
6.8 Case study: Reading numbers . 95
Exercises . 96

7 Arrays 99
7.1 Linear collections of like objects 99
7.2 Reading into an array . 101
7.3 Sorting an array . 103
7.4 Arrays and functions . 105
7.5 Two-dimensional arrays . 109
7.6 Array initializers . 112
7.7 Arrays and pointers . 113
7.8 Strings . 116
7.9 Case study: Distinct words . 121
7.10 Arrays of strings . 123
7.11 Program arguments . 124
Exercises . 126

8 Structures 129
8.1 Declaring structures . 129
8.2 Operations on structures . 131
8.3 Structures, pointers, and functions 135
8.4 Structures and arrays . 137
Exercises . 138

PAGE V

9 Problem Solving Strategies 141
9.1 Generate and test . 141
9.2 Divide and conquer . 142
9.3 Simulation . 147
9.4 Approximation techniques . 152
9.5 Physical simulations . 156
9.6 Solution by evolution . 159
Exercises . 160

10 Dynamic Structures 163
10.1 Run-time arrays . 163
10.2 Linked structures . 170
10.3 Binary search trees . 176
10.4 Function pointers . 179
10.5 Case study: A polymorphic tree library 183
Exercises . 189

11 File Operations 193
11.1 Text files . 193
11.2 Binary files . 195
11.3 Case study: Merging multiple files 199
Exercises . 202

12 Algorithms 203
12.1 Measuring performance . 203
12.2 Dictionaries and searching . 205
12.3 Hashing . 207
12.4 Quick sort . 212
12.5 Merge sort . 218
12.6 Heap sort . 220
12.7 Other problems and algorithms . 225
Exercises . 226

13 Everything Else 229
13.1 Some more C operations . 229
13.2 Integer representations and bit operations 230
13.3 The C preprocessor . 235
13.4 What next? . 238
Exercises . 239

Index 241

PAGE VI PROGRAMMING, PROBLEM SOLVING, AND ABSTRACTION

Preface to the Revised Edition

When I commenced this project in 2002, I was motivated by twenty years of teaching
programming to first-year university students, watching their reactions to and behav-
ior with a range of texts and programming languages. My observations at that time
led to the following specification:

• Length: To be palatable to undergraduate students, and accessible when re-
ferred to, a programming text must be succinct. Books of 500+ pages are
daunting because of their sheer size, and the underlying message tends to get
lost among the trees. I set myself a length target of 250 pages, and have
achieved what I wanted within that limit. For the most part I have avoided
terseness; but of necessity some C features have been glossed over. I don’t
think that matters in a first programming subject.

• Value for money: Students are (quite rightly) sceptical of $100 books, and will
often commence the semester without owning it. Then, if they do buy one, they
sell it again at the end of the semester, in order to recoup their money. I sought
to write a book that students would not question as a purchase, nor consider
for later sale. With the cooperation of the publishers, and use of the “Pearson
Original” format, this aim has also been met.

• Readability: More than anything else, I wanted to write a book that students
would willingly read, and with which they would engage as active learners.
The prose is intended to be informative rather than turgid, and the key points
in each section have been highlighted, to allow students to quickly remind
themselves of important concepts.

• Practicality: I didn’t want to write a reference manual, containing page upon
page of function descriptions and formatting options. Students learning pro-
gramming for the first time instead need to be introduced to a compact core
of widely-applicable techniques, and be shown a pool of examples exploring
those techniques in action. The book I have ended up with contains over 100
examples, each a working C program.

• Context: I wanted to do more than describe the syntax of a particular language.
I also wanted to establish a context, by discussing the programming process
itself, instead of presenting programs as static objects. I have also not shirked
from expressing my personal opinions where appropriate – students should be

PAGE VIII PROGRAMMING, PROBLEM SOLVING, AND ABSTRACTION

encouraged to actively question the facts they are being told, to better cement
their own understanding.

• Excitement: Last, but certainly not least, I wanted a book that would enthuse
students, and let them see some of the excitement in computing. Few programs
can match the elegance of quick sort, for example.

Those thoughts led to the first edition, finalized in late 2002, and published in early
2003. Now it is nearly 2013, and another decade has gone by. I have used this book
every year since then in my classes, and slowly built up a list of “I wish I hadn’t done
it that way” issues. Those “I wishes” are all addressed in this revised edition. Most of
the changes are modest, and I think I have remained true to the original goals. (One
of the more interesting changes is that I have removed all mention of floppy disks!)

How to use this book

In terms of possible courses, this book is intended to be used in two slightly different
ways. Students who are majoring in non-computing disciplines require C program-
ming skills as an adjunct rather than a primary focus. Chapters 1 to 8 present the
core facilities available in almost all programming languages. Chapter 9 then rounds
out that treatment with a discussion of problem solving techniques, including some
larger programs, to serve as models. There are also six case studies in the first nine
chapters, intended to provide a basis on which the exercises at the ends of the chap-
ters can be tackled. For a service course, use Chapters 1 to 9, and leave the more able
students to read the remainder of the book on their own.

Chapters 10 to 13 delve deeper into the facilities that make C the useful tool that
it is, and consider dynamic structures, files, and searching and sorting algorithms.
They also include two more case studies. These four chapters should be included in
a course for computer science majors, either in the initial programming subject, or,
as we do at the University of Melbourne, as a key component of their second subject.

In terms of presentation, I teach programming as a dynamic activity, and hope that
you will consider doing the same. More than anything else, programmers learn by
programming, in the same way that artists learn by drawing and painting. Art students
also learn by observing an expert in action, and then mimicking the same techniques
in their own work. They benefit by seeing the first lines drawn on a canvas, the way
the paint is layered, and the manner in which the parts are balanced against each other
to make a cohesive whole.

The wide availability of computers in lecture theaters has allowed the introduc-
tion of similarly dynamic lessons in computing classes. By always having the com-
puter available, I have enormous flexibility to show the practical impact of whatever
topic is being taught in that lecture. So my lectures consist of a mosaic of prepared
slides; pre-scripted programming examples using the computer; and a healthy dose
of unscripted exploratory programming. With the live demonstrations I am able to let
the students see me work with the computer exactly as I am asking them to, including
making mistakes, recognizing and fixing syntax errors, puzzling over logic flaws, and
halting infinite loops.

PREFACE PAGE IX

The idea is to show the students not just the end result of a programming exercise
as an abstract object, but to also show them, with a running commentary, how that
result is achieved. That the presentation includes the occasional dead end, judicious
backtracking and redesign, and sometimes quite puzzling behavior, is all grist for
the mill. The students engage and, for example, have at times chorused out loud at
my (sometimes deliberate, sometimes inadvertent) introduction of errors. The web
also helps with this style of teaching – the programs that are generated in class can
be made accessible in their final form, so students are free to participate, rather than
frantically copy.

Running a lecture in this way requires a non-trivial amount of confidence, both
to be able to get it right, and to deal with the consequences of sometimes getting it
wrong. More than once I have admitted that I need to go and read a manual before
coming back to them in the next class with an explanation of some obscure behav-
ior that we have uncovered. But the benefits of taking these risks are considerable:
“what will happen if. . . ” is a recurring theme in my lectures, and whether it is a
rhetorical question from me, or an actual interjection from a student, we always go to
the computer and find out.

Supervised laboratory classes should accompany the lecture presentations. Stu-
dents learn the most when trying it for themselves, but need to be able to ask questions
while they do. Having students work on programming projects is also helpful. The
exercises at the end of each chapter include broader non-programming questions, for
use in discussion-based tutorial classes.

Software and teaching support

All of the program fragments in this book exist and are available for your use, as are
sample answers to many of the exercises. If you are planning to make use of this book
in an educational environment, please contact me (ammoffat@unimelb.edu.au)
identifying your institution, and the subject you are teaching. I will gladly reply with
a complete set of programs, and a guide as to which page of the book each is from. A
set of PDF lecture slides to match the book is also available on request. For obvious
reasons, I do not plan to make these resources publicly available via a web page,
so you do have to ask. An errata page listing known defects in the book appears at
http://www.csse.unimelb.edu.au/˜alistair/ppsaa/errata2.pdf.

Acknowledgements

I learned programming in the first half of the 1970s as a secondary school student in
Wellington, New Zealand, and will always be grateful to my two maths teachers, Bob
Garden and Ron Ritz, for their vision and enthusiasm. Our programming involved
a dialect of Fortran, and was carried out with a bent paper clip; special preprinted
cards that you popped chads out of; and a bike ride to the local bank branch to drop
the completed programs into a courier bag for transmission to their “Electronic Data
Processing Center”. Each compile/execute cycle took about three days, so we quickly
learned to be accurate.

My interest in computing was deepened during my University study, and I thank

PAGE X PROGRAMMING, PROBLEM SOLVING, AND ABSTRACTION

all of the Computer Science staff that worked at the University of Canterbury in New
Zealand during the period 1977–1979. Worth special mention is Tadao Takaoka: in
his own inimitable way, it was he who interested me in algorithms, and who served
as a role model for the academic life that I have pursued for thirty years.

Since then, it has primarily been academic colleagues at the University of Can-
terbury and at the University of Melbourne that have influenced me, by sharing their
knowledge and skills. I first taught introductory programming in 1982, and have done
so every year since then. The people that I have worked with on those subjects, or on
other academic projects, have all left a mark on this book. In roughly chronological
order, they include: Rod Harries, Robert Biddle, Tim C. Bell, Ian Witten, Ed Morris,
Rodney Topor, Justin Zobel, Liz Sonenberg, Lee Naish, Harald Søndergaard, Roy
Johnston, Peter Stuckey, Tim A.H. Bell, Bernie Pope, Peter Hawkins, Martin Sulz-
mann, Owen de Kretser, Michael Kirley, Lars Kulik, and Alan Blair. Many students
have pointed out errors or assisted in various ways, and will continue to do so into
the future; I thank them all.

Finally, there is family, and I gratefully acknowledge the long-ago input of my
parents, Duncan and Hilda Moffat; and the more recent encouragement supplied by
my wife Thau Mee, and our own children, Anne and Kate.

Alistair Moffat,
Melbourne, Australia
http://www.csse.unimelb.edu.au/˜alistair
November 28, 2012

