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Preface to the Revised Edition

When I commenced this project in 2002, I was motivated by twenty years of teaching
programming to first-year university students, watching their reactions to and behav-
ior with a range of texts and programming languages. My observations at that time
led to the following specification:

• Length: To be palatable to undergraduate students, and accessible when re-
ferred to, a programming text must be succinct. Books of 500+ pages are
daunting because of their sheer size, and the underlying message tends to get
lost among the trees. I set myself a length target of 250 pages, and have
achieved what I wanted within that limit. For the most part I have avoided
terseness; but of necessity some C features have been glossed over. I don’t
think that matters in a first programming subject.

• Value for money: Students are (quite rightly) sceptical of $100 books, and will
often commence the semester without owning it. Then, if they do buy one, they
sell it again at the end of the semester, in order to recoup their money. I sought
to write a book that students would not question as a purchase, nor consider
for later sale. With the cooperation of the publishers, and use of the “Pearson
Original” format, this aim has also been met.

• Readability: More than anything else, I wanted to write a book that students
would willingly read, and with which they would engage as active learners.
The prose is intended to be informative rather than turgid, and the key points
in each section have been highlighted, to allow students to quickly remind
themselves of important concepts.

• Practicality: I didn’t want to write a reference manual, containing page upon
page of function descriptions and formatting options. Students learning pro-
gramming for the first time instead need to be introduced to a compact core
of widely-applicable techniques, and be shown a pool of examples exploring
those techniques in action. The book I have ended up with contains over 100
examples, each a working C program.

• Context: I wanted to do more than describe the syntax of a particular language.
I also wanted to establish a context, by discussing the programming process
itself, instead of presenting programs as static objects. I have also not shirked
from expressing my personal opinions where appropriate – students should be
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encouraged to actively question the facts they are being told, to better cement
their own understanding.

• Excitement: Last, but certainly not least, I wanted a book that would enthuse
students, and let them see some of the excitement in computing. Few programs
can match the elegance of quick sort, for example.

Those thoughts led to the first edition, finalized in late 2002, and published in early
2003. Now it is nearly 2013, and another decade has gone by. I have used this book
every year since then in my classes, and slowly built up a list of “I wish I hadn’t done
it that way” issues. Those “I wishes” are all addressed in this revised edition. Most of
the changes are modest, and I think I have remained true to the original goals. (One
of the more interesting changes is that I have removed all mention of floppy disks!)

How to use this book

In terms of possible courses, this book is intended to be used in two slightly different
ways. Students who are majoring in non-computing disciplines require C program-
ming skills as an adjunct rather than a primary focus. Chapters 1 to 8 present the
core facilities available in almost all programming languages. Chapter 9 then rounds
out that treatment with a discussion of problem solving techniques, including some
larger programs, to serve as models. There are also six case studies in the first nine
chapters, intended to provide a basis on which the exercises at the ends of the chap-
ters can be tackled. For a service course, use Chapters 1 to 9, and leave the more able
students to read the remainder of the book on their own.

Chapters 10 to 13 delve deeper into the facilities that make C the useful tool that
it is, and consider dynamic structures, files, and searching and sorting algorithms.
They also include two more case studies. These four chapters should be included in
a course for computer science majors, either in the initial programming subject, or,
as we do at the University of Melbourne, as a key component of their second subject.

In terms of presentation, I teach programming as a dynamic activity, and hope that
you will consider doing the same. More than anything else, programmers learn by
programming, in the same way that artists learn by drawing and painting. Art students
also learn by observing an expert in action, and then mimicking the same techniques
in their own work. They benefit by seeing the first lines drawn on a canvas, the way
the paint is layered, and the manner in which the parts are balanced against each other
to make a cohesive whole.

The wide availability of computers in lecture theaters has allowed the introduc-
tion of similarly dynamic lessons in computing classes. By always having the com-
puter available, I have enormous flexibility to show the practical impact of whatever
topic is being taught in that lecture. So my lectures consist of a mosaic of prepared
slides; pre-scripted programming examples using the computer; and a healthy dose
of unscripted exploratory programming. With the live demonstrations I am able to let
the students see me work with the computer exactly as I am asking them to, including
making mistakes, recognizing and fixing syntax errors, puzzling over logic flaws, and
halting infinite loops.
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The idea is to show the students not just the end result of a programming exercise
as an abstract object, but to also show them, with a running commentary, how that
result is achieved. That the presentation includes the occasional dead end, judicious
backtracking and redesign, and sometimes quite puzzling behavior, is all grist for
the mill. The students engage and, for example, have at times chorused out loud at
my (sometimes deliberate, sometimes inadvertent) introduction of errors. The web
also helps with this style of teaching – the programs that are generated in class can
be made accessible in their final form, so students are free to participate, rather than
frantically copy.

Running a lecture in this way requires a non-trivial amount of confidence, both
to be able to get it right, and to deal with the consequences of sometimes getting it
wrong. More than once I have admitted that I need to go and read a manual before
coming back to them in the next class with an explanation of some obscure behav-
ior that we have uncovered. But the benefits of taking these risks are considerable:
“what will happen if. . . ” is a recurring theme in my lectures, and whether it is a
rhetorical question from me, or an actual interjection from a student, we always go to
the computer and find out.

Supervised laboratory classes should accompany the lecture presentations. Stu-
dents learn the most when trying it for themselves, but need to be able to ask questions
while they do. Having students work on programming projects is also helpful. The
exercises at the end of each chapter include broader non-programming questions, for
use in discussion-based tutorial classes.

Software and teaching support

All of the program fragments in this book exist and are available for your use, as are
sample answers to many of the exercises. If you are planning to make use of this book
in an educational environment, please contact me (ammoffat@unimelb.edu.au)
identifying your institution, and the subject you are teaching. I will gladly reply with
a complete set of programs, and a guide as to which page of the book each is from. A
set of PDF lecture slides to match the book is also available on request. For obvious
reasons, I do not plan to make these resources publicly available via a web page,
so you do have to ask. An errata page listing known defects in the book appears at
http://www.csse.unimelb.edu.au/˜alistair/ppsaa/errata2.pdf.
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