
coders-64bit(1) coders-64bit(1)

NAME
Static coders for streams of integers.

Simple: Simple coding using 64-bit word buffer

Carry: Carry coding using 64-bit word buffer

Slide: Slide coding using 64-bit word buffer

PForDelta: PForDelta coding using 64-bit word buffer

Byte: byte-coding

For each of these programs (exceptByte) a 32-bit buffer version can be built by changing the Makefile flag
-D_BYTES_PER_WORD=8to -D_BYTES_PER_WORD=4.

In addition, except forSlide, a slower no-bulk-decoding version can be built by removing the compiler flag
-DFAST_DECODE from the Makefile.

For testing, run the scripttest-coderwhich also demonstrates usage.

SYNOPSIS
<coder> [−h] [−d] [−t] [−v] [−i input_file] [−o output_file]

<coder> −x[−d] [−t] [−v] [−i input_file] [−o output_file]

DESCRIPTION
The various programs encode and decode binary files of unsigned integers (or text files containing positive
integers) using five different static codes. Good compression is achieved if the integers are generally small.
Most of the methods are also sensitive to localized clustering.

Input is assumed to be a sequence of independent values. The−d option indicates that the input values are
monotonically increasing, and in this case consecutive differences are calculated before compression is
undertaken.

The main virtue of these implementations is speed − they all obtain plausible compression rates at very
high throughput speeds. Output is tostdoutunless changed with the−o option; input is fromstdin unless
changed with the−i option.

USAGE
To use coder to encode a filenumberscontaining unsigned integers into a filenumbers-encand then
decode that file to createnumbers-decthe following two commands are used:

coder< numbers> numbers-enc

coder −x< numbers-enc> numbers-dec

The filesnumbersandnumbers-decshould be the same, and can be checked with

cmp numbers numbers-dec

Other options can be seen usingcoder −h

OPTIONS
−h display a help message

−x decode (default is to encode)

−v generate details of the input and output files (encoding only)

−t input (or output if−x is specified) is a text file. NB, in this case the output file may differ from the input
file because of leading zeros and/or whitespace considerations.

Vo Ngoc Anh and Alistair Moffat September 2009 1



coders-64bit(1) coders-64bit(1)

−d input (or output if−x is specified) is a monotonically increasing list of integers; what is coded is the dif-
ferences between consecutive values.

ORIGINS
Simple, Carry , and Slide are primarily based on research work of the two authors [publication details will
be provide here after paper review is complete]. For details of the implementation of these three methods,
see the paper; the 32-bit versions of the compression schemes were described elsewhere, see the reference
list of our paper.

ThePForDelta implementation is based on the work of Zukowski, Heman, New, and Boncz, "Super-scalar
RAM-CPU cache compression",International Conference on Data Engineering, page 59, April 2006; and
of Zhang, Long, and Suel, "Performance of compressed inverted list caching in search engines",Confer-
ence on the World Wide Web, page 387, 2008.

TheByte coder has a long history, see, for example, Scholer, Williams, Yiannis, and Zobel, "Compression
of inverted indexes for fast query evaluation", SIGIR International Conference on Research and Develop-
ment in Information Retrieval, page 222, 2002.

For general information about compression and coding, seeCompression and Coding AlgorithmsA. Moffat
and A. Turpin, Kluwer Academic Press, February 2002.Further information about this book is available at
http://www.cs.mu.oz.au/caca/

We ask that, if you use this software to derive experimental results that are reported in any way, you cite the
original work in which the underlying processes are described (by referencing the listed paper); and also
acknowledge our authorship of the implementation you have used.

BUGS
These coders have not been extensively tested, and should be used for research purposes only. Portability
of the software or of the compressed files is not guaranteed.There is no warranty, either express or
implied, that the software is fit for any purpose whatsoever, and neither the authors nor The University of
Melbourne accept any responsibility for any consequences that may arise from your use of this software.

LICENSE
Use and modify for your personal use, but do not distribute in any way shape or form (for commercial or
noncommercial purposes, modified or unmodified, including by passively making it available on any inter-
net site) without prior consent of the authors.

AUTHORS
Vo Ngoc Anh and Alistair Moffat, Department of Computer Science and Software Engineering, The Uni-
versity of Melbourne, Victoria 3010, Australia. Email: vo@csse.unimelb.edu.au, alis-
tair@csse.unimelb.edu.au.

Vo Ngoc Anh and Alistair Moffat September 2009 2


