
GOOD Publishing System: Generic Online/Offline Delivery
Short Paper

Jacek Radajewski

Distance and e-Learning Centre
University of Southern Queensland

Queensland 4350 Australia

jacek@usq.edu.au

Sally MacFarlane

Distance and e-Learning Centre
University of Southern Queensland

Queensland 4350 Australia

macfarla@usq.edu.au

Stijn Dekeyser

Mathematics and Computing
University of Southern Queensland

Queensland 4350 Australia

dekeyser@usq.edu.au

Abstract GOOD is a tailor-made, fully integrated
publishing system that creates output documents
for multiple media types used in both online and
offline teaching modes at the University of Southern
Queensland. It is used in the Distance and e-Learning
Centre of USQ to create course material for thousands
of on-campus, online and external students. Among
the end products generated from a single XML
input document containing study material for a
specific course are study books, introductory books,
and web sites in a variety of formats. Future end
products currently being investigated include voice
rendering. TheGOOD system is entirely based on open
standards such asXML , XSLT, DOM, and XSL:FO and
implemented withJAVA /J2EE technology. Among its
features is a smart editing client to allow technically
non-proficient staff to edit their own course material.

Keywords Document Management and Publishing,
XML authoring.

1 Introduction
USQ is among the leading Australian universities cater-
ing to international and off-campus students. The Dis-
tance and e-Learning Centre (DeC) provides services
to lecturers in publishing educational material both in
print form and for web based systems.

Aside from using theGOOD system presented in
this paper, course material at USQ is typically writ-
ten using commercial word processing or publishing
software, or LATEX in the university’s mathematics and
computing department. Academics working withDeC

staff collaborate on a wide range of file formats. The
main drawback of this approach is that the aim of “write
once, publish in any format” is difficult and expensive

Proceedings of the 9th Australasian Document Computing
Symposium, Melbourne, Australia, December 13, 2004.
Copyright for this article remains with the authors.

to reach. To this end, theDeC in 2000 started work on
a generic system to author course material in XML and
deliver output in a wide range of formats for both online
and offline delivery.

Related Work
To our knowledge, a complete, fully integrated
publishing system specifically for authoring and
delivery of course material based on XML technology
did not yet exist when work commenced on the one
described here. The well-known DocBook [15] system
is too complex for use by technically non-proficient
academics. Furthermore, DocBook was designed for
authoring IT-specific documentation, making itsDTD

unsuitable for course material.
Additionally, commercial and other XML authoring

clients currently assume some knowledge of XML and
tend to offer onlyDTD-based checking of structure. The
absence of a more intuitive interface to write course
material in XML format is a significant limiting factor
for the adoption of such generic editors.

As well as not being an XML-based system (thus
making conversion from it to any other format non-
trivial in general), LATEX often is too complex for non-
computing oriented staff.

2 GOOD Document Type
To specify the document type forGOOD, the DTD

technology was chosen instead of the more expressive
XML Schema [9] (XSD) because at that timeXSD’s
specification was not yet aW3C recommendation.
Furthermore, types are not so important in this very
document-oriented application. Even so, adoption of
XSD is planned for the future (see Section 6).

TheGOOD DTD [11] consists of four main sections.
These are meta-data, introductory material, study mod-
ules and selected readings. Cross-referencing is per-
mitted between all sections. We briefly describe each



of these sections. Themeta-datasection holds infor-
mation about the course, for example course code, year
and semester offered. Theintroductorysection includes
information about assessment, general study resources
and faculty policies, as well as the course introduction.
The study modulessection consists essentially of any
number of modules, which can be grouped into parts.
Modules include the basic content of the course, as well
as learning objectives, recommended references and ac-
tivities. Modules can be further divided into topics,
sub-topics and ideas. Arbitrarily deep nesting of topics
is not allowed for typesetting and pedagogical reasons.
Other elements which are optional in this section in-
clude ‘executive overview’, ‘index’, ‘glossary’ and ‘ap-
pendix’. Finally, theselected readingssection contains
any number of selected readings which may be grouped
by module, or be independent of modules. Each reading
may include a scanned reading or a reference to aURL.

Elements of varying degrees of granularity, from
paragraph up to module, can be marked for conditional
delivery. For example, some content may only be in-
tended for print delivery and is required to be excluded
from the web delivery. This is implemented as a group
of optional attributes on specific elements. Finally, the
DTD provides support for images, standard LATEX equa-
tions, and various types of media, such as Macromedia
Flash.

2.1 Meta DTD
The GOOD DTD is contained within a “MetaDTD”
XML file [11]. Naturally this file is governed by a
DTD itself. The MetaDTD document contains ‘help’
information for each element in the actualGOOD

DTD, as well as theDTD definition for each element.
This enables developers to easily update the help
information as elements are added or altered. From the
MetaDTD, using Java, DOM [10] and LATEX, we render
HTML help, PDF documentation, and theGOOD DTD

itself. Use of our MetaDTD tool will also facilitate the
eventual migration to XML Schema.

2.2 DTD updates
The GOOD DTD is constantly evolving, with attributes
and elements being added, deleted and updated. This
means that occasionally theDTD is changed in such
a way that existing documents become invalid with
respect to the new version of theDTD. Each such
DTD change is released with an accompanying updater,
essentially a SAX [5] parser which is run over existing
documents to make any necessary changes. This
prevents users from being exposed to validation errors
caused byDTD changes.

3 Client: XML Authoring
As mentioned in the introduction, authoring documents
conforming to a specificDTD using current editors typ-
ically is not very intuitive. For this reason, theGOOD

system comprises an editor (Arbortext’s Epic [2]) that
has been extended with specificGUIs to make editing
of course material by end-users much easier. Even so,
the GOOD system’s architecture is neutral to whatever
XML editor is used. Thus, sophisticated end-users may
use their preferred tools.

Epic displays the traditional two views of the XML
document: a tree-based map view, and a styled-up view
usingFOSI [6]. The FOSI stylesheets enable automatic
numbering of elements such as modules, topics and
readings; display of grouped data in html tables; and
display of information from cross-referenced elements.
Thus, the use of Epic allows authors to get a swift, if
inaccurate, feel for how the final product will look.

In the next three sections, we describe two addi-
tional features of the extended Epic editor. The first
is specific to Epic, while the second and third comprise
our own extensions.

3.1 Change Tracking
It is important to the workflow ofGOOD documents
that users can see the changes made to the document by
themselves and other users. Epic implements change
tracking using elements (such as add and delete) within
a namespace. These elements which are specific to
change-tracking remain in the document until the
change is either accepted or rejected by a user through
Epic.

Epic automatically handles the validation of docu-
ments containing change-tracking with respect to the
DTD. Outside Epic, however, documents containing
change-tracking cannot be validated with respect to the
DTD. All the XML parsers used as part of the rendering
process are for this reason non-validating, leaving the
validation to the editor. As part of future work, we will
investigate the development of an XML Schema that
would accept both forms of the document.

3.2 Custom-built Java SwingGUIs
There are also a number of custom-builtGUIs, written
in Swing [8], which are used to simplify certain opera-
tions for the user.

The GOOD DTD supports some twenty reference
types, including book, database, journal and email.
The user enters information through a referenceGUI

which clearly indicates mandatory fields and other
requirements, based on the reference type. These
GUIs are based on a common framework so that it
is relatively simple to change the requirements for
existing reference types or add new ones. Fields or
groups of fields that are commonly used across various
reference types, for exampleURL or group of authors,
are represented by Java classes.

The GOOD DTD specifies a number of cross-
reference types, each referencing different elements,
including textbook, reading, resource and module, as
well as a generic cross-reference that can reference
any type of element. The cross-referencingGUI



displays a tree of elements, filtered depending on the
cross-reference type, from which the user selects a
cross-reference. This enables users to easily select an
element to cross-reference, with validation performed
by the application.

There is also aGUI to enable the user to perform
check in/out operations, without knowing anything
about the version control system in use. Access to
documents is restricted by access control lists. Also,
the user is able to view theHTML help for any element
in the GOOD DTD. This help is produced from the
MetaDTD presented in Section 2.1. The LATEX viewer
GUI enables the user to preview LATEX equations.
Finally, the render GUI allows the user to specify
exactly what they wish to produce, for example web,
print, draft, cd label or print cover pages.

3.3 Document Checker
Some constraints on document contents cannot be spec-
ified by DTD or schema. These constraints include re-
strictions on empty elements, duplicate references and
invalid URLs. Thedocument checkerGUI performs this
validation, reporting errors and warnings back to the
user, with a cross-reference to the location of each error
so that the user can easily rectify the problem.

4 Rendering Servers
The server side of theGOOD system is mainly con-
cerned with managing course documents and rendering
them to any of the supported output formats. The ren-
dering phase is somewhat different for print products
than for web publishing. However, both have a number
of steps in common, as described next.

4.1 Common Rendering Steps
The rendering process essentially consists of a number
of sequential DOM and SAX parses and transforma-
tions of the document, after which the resultant XML
is transformed using XSLT to the desired output type.
As mentioned previously, all of these XML parsers are
non-validating.

The SAX Document Builderperforms initial pro-
cessing of the document. This includes normalizing
filenames and converting images to different formats
depending on the target. For PostScript output, high
quality EPS images can be used, while forPDF or web
output these images are converted to a lower quality
image format. The SAX Document Builder also de-
references non-ASCII character entities.

Next, theDelivery Filterfilters out content which is
marked not to be delivered to the render target. This is
done before pre-processing so that excluded sections do
not affect the numbering or format of the final output.

To enable users to view the effect of their changes
on the rendered output,GOOD has two options for
rendering documents containing change tracking.
Users can render the document “without” change

tracking, that is render the document as though all
changes had been accepted. There is also an option
to render “with” change tracking, that is render the
document with added content highlighted in green
and deleted content in red. The change tracking filter
makes the necessary changes to the document.

ThePre-processoruses both XSL and Java to num-
ber certain elements, collate reference lists, normalise
image height and width attributes and populate element
titles.

4.2 Print Rendering Steps
After pre-processing, the print render process is simple.
To generate the XSL:FO [1] document, the appropriate
XSLT stylesheet is chosen, depending on the document
type being rendered (study book, introductory book, se-
lected readings or solutions manual). XEP [16] is then
used to render either PDF or PostScript from the FO
document. The table of contents, including bookmarks,
is done by the XSL. Cross-references are rendered as
internal links.

4.3 Web Rendering Steps
Unlike print output, web output consists of any number
of separate pages, with cross-references rendered as
links within and between these pages. A SAX parser
processes the cross-references, modifying the links
so that they will work once the content is broken up
into separate pages. The content is then broken up
into chunks, each chunk representing a discrete section
of the course, for example module, reading or course
overview. Each chunk is then passed to anXHTML

XSL transformer to generate a separateHTML page.
The same chunk is passed to an XSL:FO transformer
to produce a PDF version of the same page.

The navigation for the site, including a JavaScript
menu and site map, are also generated using XSL. Im-
ages,CSSand other content are then packaged with the
generatedXHTML files to make a complete web site.
For output of hypertext files to a hybrid cd, an ISO-
9660 CD image file is created.

5 Implementation Issues
We now turn to a few implementation-related issues in
the GOOD system. Since this is a short technology pa-
per, this section is necessarily brief. More information
about the system’s design and implementation can be
found in [13].

5.1 Scalability
At present, theGOOD system is used primarily byDeC

staff and a small number of academics from different
faculties. As the number of users of the GOOD system
grows, scalability is increasingly important. A number
of users may be rendering concurrently, or simultane-
ously require access to the document repository. The
following two sections describe how theGOOD system
is designed to deal with such issues.



5.1.1 JMS render queue

To enable multiple users to render concurrently, the ren-
der process is implemented as an asynchronous process.
The client sends a render request which is queued on a
JMS [14] queue of render jobs. There are a number
of distributed rendering servers, each with a Message
Driven Bean [14] monitoring this queue. The Mes-
sage Driven Bean picks up the job and initiates the ren-
der. This solution is scalable since while each rendering
server executes only one render at a time, any number
of rendering servers can connect to the same queue.

The rendering server sends progress messages to the
client, at various stages of the render process. When
the render completes, the output file is automatically
opened on the user’s machine.

5.1.2 XEP memory use

XEP uses a significant amount of memory, particularly
for rendering images. Initially some documents were
causing out of memory errors on the rendering servers.
There is now a separate queue and rendering server for
large render jobs.

5.2 Version control
GOOD currently uses CVS for version control. CVS
commands are run from shell scripts called from Java.
There are some transaction issues with this, since it can
be difficult to tell whether the shell script has failed.

6 Future Work
While GOOD is already in operation, it has a sizable
wish list attached. We classify each of these future fea-
tures based on a time-frame for their implementation.

Short Term

• Role-based accessto course documents (Read-
only, Write, Team Leader).

• Document preferencesallowing a user to set up
preferences relating to document structure, so that
based on these preferences we can create a course
document skeleton. Also for example, when they
add a module, the editor will be able to set attribute
values and create required elements based on these
preferences.

• Access toGOOD from outside USQ.

Medium Term

• Migration to XML Schema[9] instead ofDTD.

• Voice renderingusing VoiceXML [12] to support
visually impaired students.

• Closer integrationwith other university systems
such as calendar and course specifications.

• Cross-platform support.

Long Term

• Migration to XML Databases[3] instead ofCVS.

• Concurrent Authoringeither by use ofCVS or
more elaborate mechanisms [3, 7].

• Import/Exportto and from LATEX and to and from
the emerging Open Document Standard [4].

References
[1] S. Adler, A. Berglund, J. Caruso et al. Extensible

stylesheet language (XSL) version 1.0. Recommen-
dation, World Wide Web Consortium (W3C), October
2001.http://www.w3.org/TR/xsl.

[2] Arbortext. Epic editor overview. Arbortext.com Web
Article, 2004. http://www.arbortext.com/html/

epic_editor_overview.html.

[3] R. Bourret. XML and databases. Website, 2004.www.

rpbourret.com/xml/XMLAndDatabases.htm.

[4] M. Brauer, G. Edwards, D. Vogelheim et al. Open office
specification 1.0. Committee draft 1, Oasis, March
2004. http://www.oasis-open.org/committees/
office/.

[5] D. Brownell. SAX 2. O’Reilly, January 2002. ISBN:
0-596-00237-8.

[6] G. Charlebois. Standard generalized markup lan-
guage (SGML): Overview and new developments.
Network Notes, Volume 3, 1994. http://www.

collectionscanada.ca/9/1/p1-202-e.html.

[7] S. Dekeyser, J. Hidders and J. Paredaens. A transaction
model for XML databases.World Wide Web Journal,
2004.

[8] R. Eckstein, M. Loy, D. Wood et al. Java Swing.
O’Reilly, second edition, 2002. ISBN: 0-596-00408-7.

[9] D. Fallside. XML Schema. Recommendation, World
Wide Web Consortium (W3C), May 2001.http://
www.w3.org/XML/Schema.

[10] A. Le Hors, P. Le Hegaret, L. Wood et al. Document
object model (DOM) level 2. Recommendation, World
Wide Web Consortium (W3C), November 2000.http:

//www.w3.org/DOM/DOMTR.

[11] S. MacFarlane, J. Radajewski et al.GOOD and
MetaDTD DTDs. Technical report, Distance and e-
Learning Centre, USQ, 2004.http://www.sci.usq.
edu.au/staff/dekeyser/Good/index.php.

[12] S. McGlashan, D. Burnett, J. Carter et al. Voice
extensible markup language (VoiceXML) version 2.0.
Recommendation, W3C, March 2004.http://www.
w3.org/TR/voicexml20/.

[13] J. Radajewski et al. TheGOOD System. Technical
report, Distance and e-Learning Centre, USQ, 2004.

[14] B. Shannon. Java 2 platform, enterprise edition (J2EE).
Specification, v1.4, Sun Microsystems, 2003.http:
//java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

[15] N. Walsh and L. Muellner.DocBook: The Definitive
Guide. O’Reilly, October 1999. ISBN: 1-56592-580-7.

[16] xAttic. XEP XSL Rendering Engine. xAttic.com Web
Article, 2003.


