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Abstract. We explore the implications of tied scores arising in the document
similarity scoring regimes that are used when queries are processed in a retrieval
engine. Our investigation has two parts: first, we evaluate past TREC runs to de-
termine the prevalence and impact of tied scores, to understand the alternative
treatments that might be used to handle them; and second, we explore the impli-
cations of what might be thought of as “deliberate” tied scores, in order to allow
for faster search. In the first part of our investigation we show that while tied
scores had the potential to be disruptive to TREC evaluations, in practice their
effect was relatively minor. The second part of our exploration helps understand
why that was so, and shows that quite marked levels of score rounding can be
tolerated, without greatly affecting the ability to compare between systems. The
latter finding offers the potential for approximate scoring regimes that provide
faster query processing with little or no loss of effectiveness.

1 Introduction

Batch evaluation techniques are widely used in information retrieval system measure-
ment. Each system that is to be compared generates a ranking, or run, for each of a set
of topics, with documents included in the run and also ordered within the run on the
basis of some computed textual similarity score relative to the given query. Possible
similarity computations include the Okapi BM25 mechanism of Robertson et al. [10]
and the language modeling techniques of Ponte and Croft [9]. Static score components
such as Pagerank or other assessments of document quality can also be included. Those
runs are then mapped to numeric effectiveness values using a set of relevance judgments
and an effectiveness metric, which generates a single number as an assessment of the
quality, or utility, of that run in the eyes of the user that is presumed to have inspected
it. Finally, the effectiveness values are aggregated in some way across topics to get an
overall performance measure which is often used, with a suitable statistical test, as a
basis for answering the question “is System A demonstrably better than System B?”.

In this work we consider the consequences of allowing tied similarity scores (or
just ties) in the ranking. The obvious issue is that ties admit a level of ambiguity in the
effectiveness metric values, and hence (potentially) in the outcome of a system versus
system comparison, since a group of documents that all share the same computed simi-
larity score could be presented to the user in any permutation that is consistent with the
scores being non-increasing. Our first goal is thus to quantify the extent to which past
Text Retrieval Conference (TREC) evaluation exercises have been affected by tied sim-
ilarity scores, and determine whether the presence of ties may have caused ambiguity to
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flow through into system scores. In this part of the project we make use of a range of tie-
breaking regimes, including the rules embedded in the well-known trec eval program,
and conclude that while ties have had the potential to be significantly disruptive, in
practice they did not influence the outcomes of the measurements that were undertaken.

A second related goal is to ask whether the deliberate introduction of ties might be
useful in some way. For example, a range of approaches in which similarity scoring
might be approximated or otherwise quantized have been suggested over the years in-
cluding, for example the quantized document weights of Moffat et al. [8], or the impact-
ordered indexes of Anh and Moffat [1]. If we allow that the retrieval system might gain
tangible efficiency benefits from assigning scores with low precision to documents,
then we may end up with large numbers of ties in the runs that the system generates,
and being able to estimate the extent to which ties can be tolerated before there is risk
of degraded system retrieval effectiveness is a key component of the approximation.
In experiments using submitted TREC runs, we show that quite marked levels of ap-
proximation can be tolerated before system scores change significantly, and hence that
relatively low-precision scoring can be employed if it boosts efficiency.

2 Ties, and Methods for Dealing With Them

Terminology We suppose that the similarity scores generated for a query partition the
document ranking – the run – into groups within which the documents have the same
score. Let bg be the rank in the run at which the g th equi-score group commences, with,
by definition, b1 = 1; and let eg be the rank of the last document in that group, with
bg+1 = eg +1. That is, the g th group of tied documents spans the items [bg . . . eg], and
contains sg = bg+1 − bg documents. We further define Gg to be the multiset of gain
values associated with the documents in the g th group, Gg = {rk | bg ≤ k ≤ eg}, with
rk ∈ {0, 1} the gain associated with the document at rank k; and define tg to be the total
gain associated with the g th group, tg =

∑
{rk | bg ≤ k ≤ eg}. For example, consider

the ten-item ranking shown in Figure 1, with each document given a single letter label
for convenience, and with five different computed similarity scores. The second row
shows a presumed relevance value for each corresponding document (“0” and “1”); and
the third row lists the similarity scores that are presumed to have led to that ranking.

If the scores are ignored and only the list of relevance values is employed, com-
putation of (for example) the metric precision at depth k = 5 (P@5) yields a score of
2/5 = 0.4, because there are two “1”s among the first five gain values. Similarly, the
ranking shown has a reciprocal rank (RR) score of 1/3 = 0.333, since the first relevant
document appears at rank k = 3. Other metrics such as average precision (AP), rank-
biased precision (RBP) [7], and normalized discounted cumulative gain (NDCG) [5],
can also be computed, based solely on that third “gain” row, without consideration of
the document labels in the first row, or their scores in the second row.

When scores are included, the situation changes. Now documents M and S can be
seen to have the same similarity score, and are part of a tied group. That means that
P@5 might be either 2/5 or 3/5, depending on the tie-breaking rule employed to order
them. Similarly, RR might be 1/2 or 1/3, because of the tie involving documents H and
A and C (but note that there is no possible arrangement in which RR can be 1/4).
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rank, k 1 2 3 4 5 6 7 8 9 10
document, dk D H A C M S W B E J
gain, rk 0 0 1 1 0 1 1 0 0 1
score 9.8 9.3 9.3 9.3 8.4 8.4 8.2 8.0 8.0 8.0
groups b1=1 b2=2 b3=5 b4=7 b5=8

Fig. 1: Example run showing five equi-score groups.

Run Order A range of mechanisms have evolved to deal with tied scores. The first and
most obvious option is to do as has already been suggested in connection with the ex-
ample shown in Figure 1, and that is to ignore the document scores and process the run
in the order in which the documents are presented – in effect, pushing the responsibility
for tie-breaking back to the retrieval system, whether or not it accepts it. This approach
presumes that the system has employed more information than is captured in the final
score, perhaps via further precision in the internal computation above and beyond what
is passed to the evaluation regime, or perhaps via a secondary-key ordering process that
is not part of the scores at all. However the system’s ordering arises, respecting the
sequential presentation of documents is a plausible default way of handling tied scores.

External Tie-Break Rule A second option is to make use of some external fixed order-
ing criterion and use it to reorder the documents within each tied group, thereby obtain-
ing a canonical representation for the run. For example, the documents in each group
might be sorted according to their document identifier, or according to their length,
or according to their URL or filename. As one specific example of this type of ap-
proach, the widely-used trec eval program (see http://trec.nist.gov/trec_eval/)
sorts tied groups into decreasing order of document identifier before performing its
various effectiveness metric computations.

Optimistic and Pessimistic Limits A third way of handling runs with ties is to com-
pute the best and worst scores that might arise, and then present a score range rather
than a score value. The advantage of this approach is that it makes clear when scores
contain potential ambiguity, in a way that mirrors the residuals of Moffat and Zobel
[7], which provide guidance as to the metric weight assigned to unjudged documents.
To compute an optimistic upper score bound, the tg relevant documents within the g th
group are assumed to appear in the first rank positions, that is, [bg . . . bg + tg − 1], and
the metric score then computed in the usual way. Similarly, to get a pessimistic lower
score bound, the tg relevant documents in the group are assumed to appear as a block
as deep in the run as is possible, at ranks [eg − tg + 1 . . . eg]. In the example shown
in Figure 1, the ordering “H then A then C” (and similarly in the other groups) is used
to derive a lower bound on the score, and the ordering “A then C then H” (and so on)
is used to obtain an upper bound. If a document is unjudged, then for many metrics
(but notably, not for AP or NDCG) it should be assumed to be non-relevant for the pur-
poses of establishing the lower bound, and assumed to be relevant for the purposes of
establishing the upper bound.

Averaging Across Permutations While the worst-case bounds can be informative,
they are also somewhat pessimistic, and computing the average, or expected, value of
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the metric across all possible permutations of documents within each of the tied score
groups provides a useful balance. If every permutation of documents in each group
is equally likely, then computing the expectation is simply the process of computing
the metric for each permutation and taking their average. For a small number of small
groups, this O(

∏
g(sg!)) brute-force approach is computationally feasible. But if there

are many blocks, or if there are any large blocks, it is expensive. Fortunately, the sum-
mation over all permutations telescopes for most metrics, leading to a tractable compu-
tation. McSherry and Najork [6] describe this process in detail, and present an incre-
mental formulation for average precision that computes the expected score across all
possible permutations of documents in each group. A similar computation can be used
to compute an expected (across permutations within groups) RR score.

For weighted-precision metrics such as RBP, a similar process can be adopted. The
set of gain values associated with each group is summed and averaged, and then that
average gain applied at each rank position, and weighted according to the decay func-
tion. For the example shown in Figure 1, and an RBP parameter p = 0.5, the expected
RBP0.5 score is computed as

0.5× 0

1
+ (0.25 + 0.125 + 0.0625)× 2

3
+ (0.0313 + 0.0156)× 1

2
+ · · ·

We use these formulations for expected AP, expected RR (not to be confused with the
metric ERR), and expected RBP in the experiments described in the next two sections.

3 Ties in TREC Experimentation

TREC Resources In this section we examine the role that ties may have had on past
TREC evaluations. The primary resource we make use of are the 103 runs submitted as
part of the 1998 TREC7 Ad-Hoc experimentation round [13], see trec.nist.gov, and
Harman [4] for a broad overview. Each run is a list of (up to) 1,000 responses from that
system for each of 50 topics, with each row in the run file including fields for docnum,
rank, and score. There are thus three possible ways that each run could be interpreted:

– by the line number ordering implicit in the presentation of the run;
– by (increasing, or at least, non-decreasing) values in the rank field;
– by (decreasing, or at least, non-increasing) values in the score field.

Line numbers are unique within each system-topic combination, and do not admit ties,
but both ranks and scores might provide ties in runs. To explore the prevalence of ties,
the TREC7 Ad-Hoc runs were analyzed. Somewhat surprisingly, we discovered that
there were 254 instances in the archived runs where scores were increasing rather than
non-increasing in terms of the line ordering, and that five systems were affected by
this inconsistency. The primary reason appears to be incorrect sorting of scores when
exponential formatting is being used. For example, in the run bbn1, for topic 355, the
second-to-last score in the run is -1.37; and final score is -7.763e-05. In fact, that last
document’s correct position is some 700 locations higher, at rank 304, the rank that row
was labeled with. When rank ordering was similarly checked the situation was even
more confused, and 7.3% of the documents in the archived runs (358,631 entries in
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Percentage affected

systems system-topics documents

Tied scores 95.2 91.0 14.0
Rank/score contradictions 6.8 4.2 1.4

Table 1: Ties occurring in 103 TREC7 Ad-Hoc runs after score-based re-sorting: the
percentage of systems, system/topic combinations, and documents that include tied
scores; and the corresponding percentages of score-rank contradictions. There are 103
systems, 103× 50 system-topic combinations, and 4,900,042 documents. Note that not
all runs contain 1,000 documents.

total) were mis-ordered according to their stated ranks. That is, the supplied document
ordering in the runs corresponds to neither increasing rank nor to non-decreasing score.

To resolve this apparent mislabeling, we re-sorted all of the TREC7 submissions,
taking care to treat the exponential formats correctly. We used decreasing numeric score
as the primary key, and then increasing rank as a secondary key. This is guaranteed to
give rise to runs in which there are no score-based out-of-order items. We then counted
the occurrences of score ties at the document, topic, and system level; and the occur-
rence of rank contradictions, where a “contradiction” is a pair of adjacent documents
that when sorted by score have ranks that indicate the opposite ordering. Table 1 shows
the results of this processing. As can be seen, 14% of the documents in the runs have the
same score as their predecessor document in that run, a fact that provides the motivation
for our work here; and, of equal concern, a further 1.4% of the documents cannot be
placed in a manner that is consistent with both their assigned score and their assigned
rank, with seven of the 103 systems affected. We can only assume that the cause of
the latter issue was programming errors at the time the runs were created by the corre-
sponding research groups. There were no ties on rank in any of the TREC7 runs.

To ensure that the results in the remainder of the paper were not affected by pro-
gramming mistakes and other experimental misunderstandings on the part of the 1998
TREC7 participants, we then took the top 80 systems, as ordered by average AP score
over the 50 topics, discarding the other 23 systems from further evaluation. Similar
restrictions have also been employed by other authors.

Ties in TREC7 The primary evaluation metric used in TREC7 was average preci-
sion, as implemented in the program trec eval (version 9.0). Working with the 80
score/rank-sorted runs, we next sought to examine the effect that the score-ties had
on AP scores for systems. Figure 2 plots those systems. The horizontal axis is the
trec eval score for that system, expressed as a mean AP value over the 50 topics.
By inspecting the trec eval source code we were able to confirm that it (a) ignored
line ordering in the input runs; (b) used exponential number formats correctly when
performing its sorting-by-score step; and (c) resolved score ties by reverse sorting on
document number, paying no attention to the supplied rank field. The scale on the ver-
tical axis in Figure 2 is the AP score range measured by taking the difference between
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Fig. 2: Imprecision in AP scores caused by ties in a set of 80 TREC7 runs.

the pessimal and optimal topic scores, and then averaging across topics to get a system
range. The higher up the axis a system is plotted, the greater the uncertainty in its score.

Each system is plotted as a segment. The right and left ends of the segment reflect
the scores that would be generated by the optimistic and pessimistic orderings for each
of the tied groups; the trec eval score is shown as a circle; and the “average across per-
mutations” score as a triangle. The color of each point reflects the number of document
ties for that system, in terms of Table 1. The vertical axis is truncated at 10−6, and the
points plotted along that line have a score difference of 10−6 or below. At the top of the
graph, many tied scores lead to wide score ranges, with the trec eval ordering being
just one of them, usually not too far from the average overall. But for some systems the
optimal-to-pessimal spread is wide, and as can be seen in the overlapping vertical ex-
tents, ties may have affected the relative ordering of the top few systems (AP ≥ 0.30).
At the bottom of the graph, only a tiny minority of systems have no tied scores at all; but
for most evaluations the ties that do exist do not result in any appreciable score range,
with optimal-to-pessimal ranges less than 10−4 when averaged across topics.

Ties in Other Years We carried out the same analysis on several other TREC rounds,
and found similar rates of tied scores in general (Table 1), and instances of systems with
wide potential score ranges. However we found no further years in which the ordering
of the top few systems might have been affected by the tie-breaking rule employed.

4 Deliberate Score Grouping

We now consider whether the deliberate use of tied scores has a discernible effect on
retrieval effectiveness.
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Score Approximation Scoring documents using modern similarity computations in-
volves non-trivial amounts of arithmetic, especially if phrase components or term prox-
imity components are being used. Regimes such as WAND [3] seek to minimize the
number of documents scored, while still giving rise to exactly the same ranking for
the top-k documents, an approach that meets the requirements for being rank-safe to
depth k. That is, the WAND process ensures that all of the documents in the first k places
of the ranking are in their right positions, but makes no guarantee for documents beyond
depth k. This is a relatively stringent requirement, and other computation-pruning tech-
niques might also be considered that provide more flexible trade-offs.

In particular, we now consider the following weaker requirement: that each docu-
ment must be scored in a manner that guarantees that it is in the correct band of the
ranking, where the bands are defined geometrically based on a parameter ρ > 1. More
precisely, let b1 = 1, and thereafter let bg+1 = dρ · bge. The g th band, for g ≥ 1,
spans the ranks from bg to eg = bg+1 − 1 inclusive. For example, if ρ = 2, then the
bands are [1 . . . 1], [2 . . . 3], [4 . . . 7], and so on; and if (say) ρ = 1.62 (the golden ratio)
the bands are [1 . . . 1], [2 . . . 3], [4 . . . 6], [7 . . . 11], and so on, with widths given by the
Fibonacci sequence. The smaller the value of ρ, the smaller the band is that spans any
given position in the ranking, and the nearer the approximate ranking is to the “true”
and exact ranking. In the limit, as ρ approaches 1, the retrieval system is obliged to
place each document at its final “correct” position; that is, ρ = 1 corresponds to a “full”
computation in which all document relationships are finalized. But when ρ > 1, we
allow the retrieval system to economize on its computational costs and return groups of
documents [bg . . . eg], with equal scores assumed within each band.

Worst-Case Bounds It is straightforward to show that when ρ > 1 the first group
containing more than one document starts at rank v = bv = 1+ b1/(ρ− 1)c. That fact
implies that the approximate scoring mechanism is rank-safe to depth v − 1, and more
generally, allows bounds on the imprecision in scores to be computed. For example,
consider the metric reciprocal rank (RR). With the v th group the first one with multiple
documents in it, the loss of score that can arise when permutation-based averaging is
applied is given by

∆RR =
1

bv
− 1

ev − bv + 1

ev∑
k=bv

1

k
,

where the bound arises because the worst situation is when the original run has its first
relevant document at rank bv , and no other document in that group is relevant. Table 2
gives some ∆RR values; when ρ ≤ 2, all are less than 0.1.

It is also possible to compute worst-case differences for rank-biased precision (RBP,
see Moffat and Zobel [7]). In the case of RBP, the maximum difference score difference
arises when the run has a sequence of relevant documents at the start of each of its
groups, followed by non-relevant documents for the rest of each group. The exact num-
ber 1 ≤ tg ≤ (eg + bg)/2 of relevant documents required in the initial run for the g th
group varies according to both p (the RBP parameter) and ρ, and is chosen indepen-
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ρ
Metric

RR RBP0.5 RBP0.85

1.1 0.0038 0.0002 0.0087
1.2 0.0119 0.0052 0.0231
1.4 0.0417 0.0429 0.0482
1.7 0.0833 0.0945 0.0777
2.0 0.0833 0.1016 0.0971

Table 2: Worst-case metric score differences associated with geometric grouping of
documents in runs, controlled by parameter ρ. It is not possible to derive equivalent
bounds for AP.

dently in each group to maximize the differencebg+tg−1∑
k=bg

(1− p)pk−1

− ( tg · wg

eg − bg + 1

)
,

where wg =
∑eg

k=bg
(1−p)pk−1 is the sum of the RBP weights associated with that g th

group. The overall bound on the difference, ∆RBP, is the sum of the group maximum
differences. Table 2 includes ∆RBP differences for two values of the RBP parameter p.
Recall-based metrics such as average precision (AP) cannot be analyzed as readily,
because assuming additional documents to be relevant might decrease rather than in-
crease the score. Experimental results showing that practice that AP has less divergence
of scores than does RBP are presented in the next subsection.

Effectiveness Score Differences in Practice Given these worst-case bounds, the next
question we ask is this: to what extent does an allowance for rank-based score impreci-
sion affect effectiveness scores in practice? To respond to this question, we again make
use of the 1998 TREC7 resources, taking the same system runs as were already exam-
ined in Section 3, and for each run, mapping it to a set of equivalent banded runs based
on a set of ρ values, with the documents ranked in band g in each of those runs assigned
a synthetic score of 1/g. The original system scores that were part of the TREC7 data
were ignored as the grouping operation was being carried out, and original file order
was used as the reference point for each run. As already detailed in Section 3, 23 low-
scoring systems were removed as part of the experimental methodology.

Figure 3 shows the results of this experimentation, plotted as a sequence of box-
whisker elements using four different effectiveness metrics and a single representative
value of ρ = 1.4. In all cases the score difference calculated is the across-permutations
computation that was illustrated in Section 2 when applied to the deliberately-tied rank-
ings, subtracted from the score the same metric achieved on the original submitted rank-
ing for that same topic. We followed standard protocols and assumed that unjudged
documents were not relevant for the purposes of scoring the runs.

Figure 3 shows that the average score variation arising from the banding process
is small, and that there are nearly as many system-topic combinations that gain from
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Fig. 3: Variation in metric effectiveness score across a set of 80 runs and 50 topics (that
is, 50 × 80 points are plotted in each column), as a function of ρ, for four different re-
trieval effectiveness metrics. The whiskers indicate the last outlier still within 1.5 times
of the inter-quartile range from the corresponding quartile (the limits of the boxes).

the approximation process as there are that lose from it. Most RR values are unaf-
fected (both quartiles are zero, for all of the ρ values tested), and the two deep metrics
(RBP0.85 and AP) also have small inter-quartile ranges on the computed score differ-
ences. The average original metric scores across all system-topic combinations for RR,
RBP0.5, RBP0.85, and AP are, respectively, 0.6939, 0.5556, 0.4677, and 0.2311; and
hence the smaller AP score differences are in part a matter of relative scale. The shal-
low metric RBP0.5 suffers the most from the score grouping process; even so, it is only
when ρ > 1.5, the first value for which ranks 2 and 3 are placed in the same group, that
the differences are large. When ρ ≤ 2 the first group always contains a single document.

Table 3 explores whether the small score differences identified in Figure 3 can be
regarded as being significant. To generate the table, each of the 80 systems was scored
for the 50 topics using the original runs, and then re-scored using the grouped runs. The
set of original topic scores was then multiplied by 0.99, and compared to the grouped
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ρ
Relative to 99% of original score Relative to 97% of original score

RR RBP0.5 RBP0.85 AP RR RBP0.5 RBP0.85 AP

1.1 80 80 80 80 80 80 80 80
1.2 80 80 80 80 80 80 80 80
1.4 77 44 65 44 80 80 80 80
1.7 37 11 14 0 80 67 80 77
2.0 38 10 3 0 80 61 71 20

Table 3: Number of systems (maximum 80) for which a t-test across 50 topics yields
confidence at the p ≤ 0.05 level that the grouped runs yield a metric score greater than
or equal to 99% (left) and 97% (right) of the original run score.

scores, using a one-tail paired t-test. If a p value less than or equal to 0.05 was generated
by that test, that system was counted as being one for which the grouping process de-
graded the system score by 1% or less. The closer the count of such systems is to 80, the
greater the confidence we can have that the grouping process will not give notably in-
ferior system scores overall, where “notably inferior” is defined (at first) as being a 1%
degradation in measured score. Those values are shown in the left half of Table 3, and
the corresponding counts when “notably inferior” is defined as being a 3% degradation
are shown in the right half. The relationship between ρ and score fidelity is reflected by
the decreasing numbers down each column of the table, and as ρ increases, the possible
implications of changes in score also increase. When the “tolerable degradation limit”
was further reduced to 95%, all 16 entries for metric and ρ were 80.

System Comparison Sensitivity Effectiveness measurements are also used to com-
pare systems in a pairwise manner. In a final experiment, we explore the implications
that score rounding has on the ability of metrics to differentiate between systems. The
normal approach to comparing systems is to take their computed scores across a set of
topics, and perform a paired t-test to explore the null hypothesis that the two systems are
in fact the same. The process of carrying out the t-test generates a p value; the smaller
the p value, the smaller the chance that the two systems being compared are giving the
same performance on the data used. To establish significance, a threshold value α is
employed, often α = 0.05, with p ≤ α being regarded as a significant outcome.

To measure the effect that score rounding has on system comparisons, we took the
50 topics of the TREC7 collection and the 80 runs associated with it that we have
been using, and computed, for each of eleven different values of ρ, the set of p values
generated for the 80×79/2 distinct system pairs. In all cases when ρ > 1, the averaging
processes described in Section 2 were used; when ρ = 1, each run was processed in
sorted-by-score order, and then the scores were discarded.

Figure 4 shows that score grouping has almost no effect at all on the ability to dis-
tinguish between systems using a statistical test (the discrimination ratio of the metric,
see Sakai [11]), across the four metrics used in our experiments. For example, the plot
in the lower-right for AP shows when ρ = 1.0 that 62.2% of the system pairs yield
“significant at p = 0.05” comparison outcomes; at ρ = 1.4, that fraction is 62.1%, with
only 0.1% of false positives, and 0.2% false negatives. The situation is similar for the
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Fig. 4: Correlation of p values for all pairs of systems (80 × 79/2 = 3,160 points per
pane), with the p value from a paired t-test using the original system scores across 50
topics plotted on the horizontal axis, and the p value for the corresponding system pair
with grouped runs (ρ = 1.4) on the vertical axis. The dotted lines at are p = 0.05, with
the grid showing the percentage of data points in each quadrant.

other metrics, with the discrimination ratios (down to 45% for RR) determined prim-
rily by the effective evaluation depth, and only a small fraction of false positives and
negatives.

5 Conclusion and Future Work

We have explored the impact of score ties on the evaluation of retrieval system effective-
ness, as measured using binary relevance judgments and three established effectiveness
metrics. Ties have the potential to affect system comparisons, and using TREC data,
we showed that a small number of systems did indeed generate runs with very ambigu-
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ous score outcomes, but that – fortunately – the overall conclusions from those rounds
of experimentation were unlikely to have been compromised. We further demonstrated
that allowing a controlled grouping of scores in runs – in a sense, permitting the de-
liberate introduction of ties – resulted in only small changes in the ability to compare
systems. This approach represents a novel direction in which retrieval efficiency im-
provements might be achieved. We have not yet addressed the question of how those
efficiency gains might be achieved, and a clear direction for future work is to reexamine
the computation embedded in standard similarity scoring regimes and existing dynamic
pruning heuristics, to identify and measure ways in which processing economies might
accrue through the use of inexact scoring.

Another area for future work is in the space of test collection construction. Previous
investigations [2, 12, 14] have explored the reliability and quality of the collected judg-
ments; it may be that the pooled documents can be stratified according to the groups
they appear in, and less emphasis placed on judgment quality for deeper pools, relying
instead on averaging effects to preserve overall evaluation quality.
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