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Huffman Coding

ALISTAIR MOFFAT, The University of Melbourne, Australia

Huffman’s algorithm for computing minimum-redundancy prefix-free codes has almost legendary status in
the computing disciplines. Its elegant blend of simplicity and applicability has made it a favorite example
in algorithms courses, and as a result it is perhaps one of the most commonly implemented algorithmic
techniques. This paper presents a tutorial on Huffman coding, and surveys some of the developments that
have flowed as a consequence of Huffman’s original discovery, including details of code calculation, and of
encoding and decoding operations. We also survey related mechanisms, covering both arithmetic coding and
the recently-developed asymmetric numeral systems approach; and briefly discuss other Huffman-coding
variants, including length-limited codes.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Data compression; •
Information systems → Data compression; Search index compression; • Mathematics of computing →
Coding theory;

Additional Key Words and Phrases: Huffman code, minimum-redundancy code, data compression

1 INTRODUCTION
No introductory computer science algorithms course would be complete without consideration
of certain pervasive problems, and discussion and analysis of the algorithms that solve them.
That short-list of important techniques includes heapsort and quicksort, dictionary structures
using balanced search trees, Knuth-Morris-Pratt pattern search, Dijkstra’s algorithm for single-
source shortest paths, and, of course, David Huffman’s iconic 1951 algorithm for determining
minimum-cost prefix-free codes [33] – the technique known as Huffman coding.
The problem tackled by Huffman was – and still is – an important one. Data representation

techniques are at the heart of much of computer science, and Huffman’s work marked a critical
milestone in the development of efficient ways for representing information. Since its publication
in 1952, Huffman’s seminal paper has received more the 7,500 citations1, and has influenced many
of the compression and coding regimes that are in widespread use today in devices such as digital
cameras, music players, software distribution tools, and document archiving systems.

Figure 1 shows a screen-shot illustrating a small subset of the many hundreds of images related
to Huffman coding that can be found on the world-wide web, and demonstrates the ubiquity
of Huffman’s tree-based approach. While an important underlying motivation for Huffman’s
algorithm, the prevalence of trees as a way of explaining the encoding and decoding processes
is, for the most part, a distraction; and much of the focus in this article is on implementations
that avoid explicit trees. It is also important to distinguish between a set of codewords and a set
of codeword lengths. Defining the code as a set of codeword lengths allows a choice to be made

1Google Scholar, accessed 2 August 2018.
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Fig. 1. A small section of the search result page returned for the query “Huffman code” at Google Image
Search, captured as a screen-shot on 5 August 2018. The full result page contains approximately one thousand
such images.

between many different sets of complying codewords, a flexibility that is – as is explained shortly –
very important as far as implementation efficiency is concerned.

The first three sections of this article provide a tutorial describing Huffman coding and its
implementation. Section 4 then surveys some of the many refinements and variants that have been
proposed through the six decades since Huffman’s discovery. Next, Section 5 summarizes two
complementary techniques for entropy-coding, the general task of representing messages using as
few symbols as possible. Finally, Section 6 evaluates the relative strengths and drawbacks of those
two newer techniques against the key properties of Huffman’s famous method.

1.1 Minimum-Redundancy Coding
With those initial remarks in mind, we specify the problem of minimum-redundancy prefix-free
coding via the following definitions. A source alphabet (or simply, alphabet) of n distinct symbols
denoted by the integers 0 to n − 1 is assumed to be provided, together with a set of normally strictly
positive symbol weights, denotedW = ⟨wi > 0 | 0 ≤ i < n⟩. The weights might be integers in some
cases, or fractional/real values summing to 1.0 in other cases. It will normally be assumed that
the weights are non-increasing, that is, thatwi ≥ wi+1 for 0 ≤ i < n − 1. Situations in which this
assumption is not appropriate will be highlighted when they arise; note that an ordered alphabet
can always be achieved by sorting the weights and then permuting the alphabet labels to match. In
a general case we might also allowwi = 0, and then during the permutation process, make those
symbols the last ones in the permuted alphabet, and work with a reduced alphabet of size n′ < n.
An output alphabet (sometimes referred to as the channel alphabet) is also provided. This

is often, but not always, the binary symbols {0, 1}. A code is a list of n positive integers T =
⟨ℓi > 0 | 0 ≤ i < n⟩, with the interpretation that symbol i in the source alphabet is to be assigned a
unique fixed codeword of length ℓi of symbols drawn from the output alphabet. As was already
anticipated above, note that we define the code in terms of its set of codeword lengths, and not
by its individual code words. A code T = ⟨ℓi ⟩ over the binary output alphabet {0, 1} is feasible, or
potentially prefix-free if it satisfies

K(T ) =
n−1∑
i=0

2−ℓi ≤ 1 , (1)
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an inequality that was first noted by Kraft [40] and elaborated on by McMillan [48]. If a code
T = ⟨ℓi ⟩ is feasible, then it is possible to assign to each symbol 0 ≤ i < n a codeword of length ℓi in
a manner such that no codeword is a prefix of any other codeword, the latter being the standard
definition of “prefix free code”. A set of codewords complies with code T if the i th codeword is
of length ℓi , and none of the codewords is a prefix of any other codeword. For example, suppose
that n = 4, that T = ⟨2, 3, 2, 3⟩ and hence that K(T ) = 3/4. Then T is feasible, and (amongst many
other options) the codewords 01, 000, 10, and 001 comply with ⟨ℓi ⟩. On the other hand, the set of
codewords 00, 111, 10, and 001 have the right lengths, but nevertheless are not compliant with
T = ⟨2, 3, 2, 3⟩, because 00 is a prefix of 001. Based on these definitions, it is useful to regard a prefix
free code as having been determined once a feasible code has been identified, without requiring
that a complying codeword assignment also be specified.

The cost of a feasible code, denoted C(·, ·), factors in the weight associated with each symbol,

C(W ,T ) = C(⟨wi ⟩, ⟨ℓi ⟩) =

n−1∑
i=0

wi · ℓi . (2)

If the wi ’s are integers, and wi reflects the frequency of symbol i in a message of total length
m =

∑
i wi , then C(·, ·) is the total number of channel symbols required to transmit the message

using the code. Alternatively, if thewi ’s are symbol occurrence probabilities that sum to one, then
C(·, ·) is the expected per-input-symbol cost of employing the code to represent messages consisting
of independent drawings from 0 . . .n − 1 according to the probabilitiesW = ⟨wi ⟩.

Let T = ⟨ℓi | 0 ≤ i < n⟩ be a feasible n-symbol code. Then T is a minimum-redundancy code for
W if, for every other n-symbol code T ′ that is feasible, C(W ,T ) ≤ C(W ,T ′). Note that for any
sequenceW there may be multiple different minimum-redundancy codes with the same least cost.

Continuing the previous example,T = ⟨2, 3, 3, 2⟩ cannot be a minimum-redundancy code for any
sequence of weights ⟨wi ⟩, since the feasible code T ′ = ⟨2, 2, 2, 2⟩ will always have a strictly smaller
cost. More generally, when considering binary channel alphabets, a Kraft sum K(·) that is strictly
less than one always indicates a code that cannot be minimum-redundancy for any set of weights
W , since at least one codeword can be shortened, thereby reducing C(·, ·). Conversely, a Kraft sum
that is greater than one indicates a code that is not feasible – there is no possible set of complying
codewords. The code T = ⟨1, 2, 2, 2⟩ is not feasible, because K(T ) = 5/4, and hence T cannot be a
minimum-redundancy code for any input distributionW = ⟨w0,w1,w2,w3⟩.

1.2 Fano’s Challenge
The origins of Huffman coding are documented by Stix [73], who captures a tale that Huffman
told to a number of people. While enrolled as a graduate student at MIT in 1951 in a class taught
by coding pioneer Robert Fano, Huffman and his fellow students were told that they would be
exempted from the final exam if they solved a coding challenge as part of a term paper. Not realizing
that the task was an open problem that Fano had been working on himself, Huffman elected to
submit the term paper. After months of unsuccessful struggle, and with the final exam just days
away, Huffman threw his attempts in the bin, and started to prepare for the exam. But a flash
of insight the next morning had him realize that the paper he had thrown in the trash was in
fact a path through to a solution to the problem. Huffman coding was born at that moment, and
following publication of his paper in Proceedings of the Institute of Radio Engineers (the predecessor
of Proceedings of the IEEE) in 1952, it quickly replaced the previous suboptimal Shannon-Fano
coding as the method of choice for data compression applications.
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2 HUFFMAN’S ALGORITHM
This section describes the principle underlying Huffman code construction; describes in increasing
levels of detail how Huffman coding is implemented; demonstrates that the codes so generated are
indeed minimum-redundancy; and, to conclude, considers non-binary output alphabets.

2.1 Huffman’s Idea
Huffman’s idea is – with the benefit of hindsight – delightfully simple. The n symbols in the input
alphabet are used as the initial weights attached to a set of leaf nodes, one per alphabet symbol.
A greedy process is then applied, with the two least-weight nodes identified and removed from
the set, and combined to make a new internal node that is given a weight that is the sum of the
weights of its two components. That new node-weight pair is then added back to the set, and the
process repeated. After n − 1 iterations of this cycle the set contains just one node that incorporates
all of the original source symbols, and has an associated weight that is the sum of the original
weights,m =

∑n−1
i=0 wi ; at this point the process stops. The codeword length ℓi to be associated with

symbol i can be determined as the number of times that the original leaf node for i participated
in combining steps. For example, consider the set of n = 6 symbol weightsW = ⟨10, 6, 2, 1, 1, 1⟩.
Using bold to represent weights, the initial leaves formed are:

(0, 10), (1, 6), (2, 2), (3, 1), (4, 1), (5, 1) .

Assume (for definiteness, and without any loss of generality) that when ties on leaves arise, higher-
numbered symbols are preferred; that when ties between internal nodes and leaf nodes arise, leaves
are preferred; and that when ties between internal nodes arise, the one formed earlier is preferred.
With that proviso, the last two symbols are the first ones combined. Using square brackets and the
original identifiers of the component symbols to indicate new nodes, the set of nodes and weights
is transformed to an arrangement that contains one internal node:

(0, 10), (1, 6), ([4, 5], 2), (2, 2), (3, 1) .

Applying the tie-breaking rule again, the second combining step joins two more of the original
symbols and results in:

(0, 10), (1, 6), ([2, 3], 3), ([4, 5], 2) .
At the next step, those two newly created internal nodes are the ones of least weight:

(0, 10), (1, 6), ([[2, 3], [4, 5]], 5) ;

the fourth step combines the nodes of weight 6 and 5, to generate:

([1, [[2, 3], [4, 5]]], 11), (0, 10) ;

and then a final step generates a single node that represents all six original symbols:

([0, [1, [[2, 3], [4, 5]]]], 21) .

The depth of each source symbol in the final nesting of square brackets is the number of times it
was combined, and yields the corresponding codeword length: symbol 0 is one deep, and so ℓ0 = 1;
symbol 1 is two deep, making ℓ1 = 2; and the remaining symbols are four deep in the nesting.
Hence, a Huffman code for the weightsW = ⟨10, 6, 2, 1, 1, 1⟩ is given by T = ⟨1, 2, 4, 4, 4, 4⟩. As is
the case with all binary Huffman codes, K(T ) = 1; the cost of this particular code is 10 × 1 + 6 ×
2 + (2 + 1 + 1 + 1) × 4 = 42 bits. If the tie at the second step had been broken in a different way the
final configuration would have been:

([0, [1, [2, [3, [4, 5]]]]], 21) ,
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Algorithm 1 – Compute Huffman codeword lengths, textbook version.
0: function CalcHuffLens (W , n)
1: // initialize a priority queue, create and add all leaf nodes
2: set Q ← [ ]
3: for each symbol s ∈ ⟨0 . . .n − 1⟩ do
4: set node← new(leaf )
5: set node.symb← s
6: set node.wght ←W [s]
7: Insert(Q, node)
8: // iteratively perform greedy node-merging step
9: while |Q | > 1 do
10: set node0 ← ExtractMin(Q)
11: set node1 ← ExtractMin(Q)
12: set node← new(internal)
13: set node.left ← node0
14: set node.rght ← node1
15: set node.wght ← node0.wght + node1.wght
16: Insert(Q, node)
17: // extract final internal node, encapsulating the complete hierarchy of mergings
18: set node← ExtractMin(Q)
19: return node, as the root of the constructed Huffman tree

and the codeT ′ = ⟨1, 2, 3, 4, 5, 5⟩ would have emerged. This code has different maximum codeword
length to the first one, but the same cost, since 10 × 1 + 6 × 2 + 2 × 3 + 1 × 4 + (1 + 1) × 5 is also
equal to 42. No symbol-by-symbol code can representW = ⟨10, 6, 2, 1, 1, 1⟩ in fewer than 42 bits.

2.2 Textbook Implementation
As was noted above, Huffman coding is used as an example algorithm in many algorithms text-
books. Rather than compute codeword lengths, which is the description of the problem preferred
here, textbooks tend to compute binary codeword assignments by building an explicit code tree.
Algorithm 1 describes this process in terms of trees and tree operations; and Figure 2 shows two
such Huffman trees. The tree on the left is formed by an exact interpretation of Algorithm 1, so that
as each pair of elements is combined, the first node extracted from the queue is assigned to the left
subtree (step 13), and the second one is assigned to the right subtree (step 14). In this example the
priority queue is assumed to comply with the tie-breaking rule that was introduced in the previous
section. Note that in both trees the source alphabet {0, 1, 2, 3, 4, 5} has been mapped to the labels
{a, b, c, d, e, f} to allow differentiation between symbol labels and numeric symbol weights.
The tree on the right in Figure 2 is a rearranged form of the left-hand tree, achieved by reordering

the leaves according to their depths and symbol numbers, and then systematically re-assigning
tree edges to match. In this example (but not always, as is noted in Section 2.5), the rearrangement
is achieved by swapping left and right edges at some of the internal nodes. In either of the two
trees shown in Figure 2 a set of complying codewords – satisfying the prefix-free property and
possessing the required distribution of codeword lengths – can easily be generated. Using the usual
convention that a left edge corresponds to a 0 bit and right edge to a 1 bit, the codewords in the
right-hand tree are given by ⟨0, 10, 1100, 1101, 1110, 1111⟩, and – because of the rearrangement
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f, 1

11

21

b, 6

3 2

5

c, 2 d, 1 e, 1 f, 1c, 2

2 3

e, 1 d, 1

a, 10 11

5

21

b, 6

0 1 0 1

10

0 1

0 1

0

0 1

1

10

0 1 0 1

a, 10

Fig. 2. Two alternative code trees forW = ⟨10, 6, 2, 1, 1, 1⟩ and code T = ⟨1, 2, 4, 4, 4, 4⟩. Leaves are labeled
with letters corresponding to their symbol numbers, and with their weights; internal nodes with their weight
only. The tree on the left is generated by a strict application of Algorithm 1; the one on the right exchanges
left and right children at some of the internal nodes, so that the leaves are sorted. The two trees represent
different sets of complying codewords.

– are in lexicographic order. This important “ordered leaves” property will be exploited in the
implementations described in Section 3.

Other trees emerge if ties are broken in different ways, but all resulting codes have the same cost.
Any particular tie-breaking rule simply selects one amongst those equal-cost choices. The rule
given above – preferring symbols with high indexes to symbols with lower indexes, and preferring
leaves to internal nodes – has the useful side effect of generating a code with the smallest maximum
codeword length, L = max0≤i<n ℓi .
The edge rearrangements employed in Figure 2 mean that multiple complying codeword sets

can be generated for every sequence of weights. Indeed, since there are n − 1 internal nodes in
every binary tree with n leaves, and each internal node has two alternative orientations, at least
2n−1 different arrangements of a Huffman tree can be achieved via edge swaps alone. Even more
codes are possible if non-sibling leaves at the same depth are swapped with each other, which can
be done once the code has been derived, even if those nodes have different weights.
Algorithm 1 makes use of a priority queue data structure, denoted Q in the pseudo-code, and

standard priority queue operations to insert a new object, and to identify and delete the item of
smallest weight. A total of 2n − 1 queue Insert operations, and 2n − 1 queue ExtractMin operations
are required in order to construct the final tree of n leaves and n−1 internal nodes. This formulation
suggests that the binary heap is a suitable queue structure, supporting Insert and ExtractMin
operations inO(logn) time each, and hence allowing Huffman codes (via a traversal of the Huffman
tree) to be computed in O(n logn) time.

At this point most algorithms textbooks move on to their next topic, leaving the impression that
Huffman codes are constructed using an O(n logn)-time heap-based algorithm; that encoding is
carried out by tracing the path in a tree from the root through to a specified leaf; and that decoding
is also performed by following edges in the Huffman tree, this time as bits are fetched one-by-one
from the compressed data stream. The same is true for the Wikipedia article on Huffman coding.2
The remainder of this section addresses the first of these misconceptions; and then Section 3
examines the mechanics of encoding and decoding.

2https://en.wikipedia.org/wiki/Huffman_coding, accessed 17 August 2018.
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2.3 van Leeuwen’s Approach
Nearly twenty-five years after Huffman, van Leeuwen [79] recognized that a heap-based priority
queue was not required if the input weights were presented in sorted order, and thatO(n) time was
sufficient. The critical observation that makes this linear-time approach possible is that the internal
nodes constructed at step 12 in Algorithm 1 are generated in non-decreasing weight order, and are
also consumed in non-decreasing order. That is, all that is required to handle the internal nodes
is a simple queue. Hence, if the input weights are provided in sorted order, two first-in first-out
queues can be used for the priority queue structure, one storing the leaves and built from the
initial weights, inserted in increasing weight order; and one containing the internal nodes that
are generated at step 12, also inserted in increasing weight order. Each ExtractMin operation then
only needs to compare the two front-of-queue items and take the smaller of the two. Since Append
and ExtractHead operations on queues can be readily achieved in O(1) time each, the 4n − 2 such
operations required by Algorithm 1 in total consume O(n) time.

As already noted, van Leeuwen’s approach is applicable whenever the input weights are sorted.
This means that Algorithm 1 need never be implemented via a heap data structure, since an
O(n logn)-time pre-sort of the symbol weights followed by the O(n)-time sequential construction
mechanism has the same asymptotic cost, and is simpler in practice. So, while it is perfectly
legitimate to seek a minimum redundancy code for (say) the set of weightsW = ⟨99, 1, 99, 1, 99, 1⟩,
the best way to compute the answer is to develop a code T ′ for the permuted weightsW ′ =

⟨99, 99, 99, 1, 1, 1⟩, and then de-permute to obtain the required code T . In the remainder of this
article we assume that the weights are presented in non-increasing order. It is worth noting that the
example given by Huffman in his paper in 1952 similarly makes use of a sorted input alphabet, and
in effect merges two sorted lists [33, Table I]. (As an interesting sidelight, Klein and Shapira [38]
consider the compression loss that is incurred if a “sorted input required” construction algorithm is
applied to an unsorted sequence of weights.)

2.4 In-Place Implementation
In 1995 the approach of van Leeuwen was taken a further step, and an O(n)-time in-place Huffman
code computation described [56]. Algorithm 2 provides a detailed explanation of this process, and
shows how it uses just a small number of auxiliary variables to compute a code. Starting with an
input arrayW [0 . . .n − 1] containing the n symbol weightswi , three sequential passes are made,
each transforming the array into a new form. Elements in the array are used to store, at different
times, input weights, weights of internal nodes, parent locations of internal nodes, internal node
depths, and, finally, leaf depths. All of this processing is carried out within the same n-element
array, without a separate data structure being constructed.
The three phases are marked by comments in the pseudo-code. In the first phase, from steps 2

to 12, items are combined into pairs, drawing from two queues: the original weights, stored in
decreasing-weight order inW [0 . . . leaf ]; and the internal node weights, also in decreasing order,
stored inW [next + 1 . . . root]. At first there are no internal weights to be stored, and the entire
array is leaves. At each iteration of the loop, steps 5 to 10 compare the next smallest internal node
(if one exists) with the next smallest leaf (if one exists), and choose the smaller of the two. This
value is assigned toW [next]; and then the next smallest value is added to it at step 12. If either of
these two is already an internal node, then it is replaced inW by the address of its parent, next, as
a parent-pointered tree skeleton is built, still using the same array. At the end of this first phase,
W [0] is unused;W [1] is the weight of the root node of the Huffman tree, and is the sum of the
originalwi values; and the other n − 2 elements correspond to the internal nodes of the Huffman
tree below the root, withW [i] storing the offset inW of its parent.
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Algorithm 2 – Compute Huffman codeword lengths, in-place linear-time version [56].
0: function CalcHuffLens (W , n)
1: // Phase 1
2: set leaf ← n − 1, and root ← n − 1
3: for next ← n − 1 downto 1 do
4: // find first child
5: if leaf < 0 or (root > next andW [root] <W [leaf ]) then
6: // use internal node
7: setW [next] ←W [root], andW [root] ← next, and root ← root − 1
8: else
9: // use leaf node
10: setW [next] ←W [leaf ], and leaf ← leaf − 1
11: // find second child
12: repeat steps 5–10, but adding toW [next] rather than assigning to it
13: // Phase 2
14: setW [1] ← 0
15: for next ← 2 to n − 1 do
16: setW [next] ←W [W [next]] + 1
17: // Phase 3
18: set avail ← 1, and used ← 0, and depth← 0, and root ← 1, and next ← 0
19: while avail > 0 do
20: // count internal nodes used at depth depth
21: while root < n andW [root] = depth do
22: set used ← used + 1, and root ← root + 1
23: // assign as leaves any nodes that are not internal
24: while avail > used do
25: setW [next] ← d , and next ← next + 1, and avail ← avail − 1
26: // move to next depth
27: set avail ← 2 · used, and depth← depth + 1, and used ← 0
28: returnW , whereW [i] now contains the length ℓi of the i th codeword

Figure 3 gives an example of code construction, and shows several snapshots of the arrayW as
Algorithm 2 is applied to the 10-sequenceW = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩. By the end of phase 1, for
example,W [6] represents an internal node whose parent is represented inW [4]. The internal node
atW [6] has one internal node child represented atW [9], and hence also has one leaf node as a
child, which is implicit and not actually recorded anywhere. In total,W [6] is the root node of a
subtree that spans three of the original symbols.

The second phase, at steps 14 to 16, traverses that tree from the root down, converting the array
of parent pointers into an array of internal node depths. ElementW [0] is again unused; by the end
of this phase, the other n − 1 elements reflect the depths of the n − 1 internal nodes, with the root,
represented byW [1], having a depth of zero. Node depths are propagated downward through the
tree via the somewhat impenetrable statement at step 16: “W [next] ←W [W [next]] + 1”.
Steps 18 to 27 then process the array a third time, converting internal node depths into leaf

depths. Quantity avail records the number of unused slots at level depth of the tree, starting with
values of one and zero respectively. As each level of the tree is processed, some of the avail slots
are required to accommodate the required number of internal nodes; the rest must be leaves, and
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Initial arrangement,W [i] = wi

0 2 4 6 8 10

20 17 6 3 2 22 1 1 1

Phase 1, leaf = 7, next = 8, root = 9 217 6 3 2 22 120

leaf = 2, next = 5, root = 8 20 17 6 45 3 6

finished, root = 1 3 5 655 1 2 3 54

Phase 2, next = 2
4 6 8 10

4 5 61 2 3 530

0 2

next = 8 4 60 1 2 3 3 4 5

finished 0 1 43 3 4 42 5

Phase 3, next = 1, avail = 2
0 2 4 6 8 10

0 1 2 3 3 4 4 4 51

next = 3, avail = 6 2 3 3 4 4 4 51 2 4

finished,W [i] = ℓi 1 42 5 5 5 5 5 6 6

Fig. 3. Tracing Algorithm 2 for the inputW = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩. The first row shows the initial state
of the array, with brown elements indicatingW [i] = wi . During phase 1, the light blue values indicate internal
node weights before being merged; and yellow values indicate parent pointers of internal nodes after they
have been merged. Pink values generated during phase 2 indicate depths of internal nodes; and the purple
values generated during phase 3 indicate depths of leaves. Grey is used to indicate elements that are unused.
The final set of codeword lengths is T = ⟨1, 2, 4, 5, 5, 5, 5, 5, 6, 6⟩.

so can be assigned to the next slots inW as leaf depths. The number of available slots at the next
depth is then twice the number of internal nodes at the current depth.

At the conclusion of the third phase, each original symbol weightwi in array elementW [i] has
been over-written by the corresponding codeword length ℓi of a Huffman code. What is particularly
notable is that a complete working implementation of Algorithm 2 is only a little longer than the
pseudo-code that is shown here. There is no need for trees, pointers, heaps, or dynamic memory,
and it computes quickly in O(n) time.

The presentation in this subsection is derived from the description of Moffat and Katajainen [56];
Section 4.3 briefly summarizes some other techniques for computing minimum-redundancy codes.

2.5 Assigning Codewords
The definition of a code as being a set of n codeword lengths is a deliberate choice, and means
that a lexicographic ordering of codewords can always be used – a benefit that is not available if
the codeword assignment must remain faithful to the tree generated by a textbook (Algorithm 1)
implementation of Huffman’s algorithm. Table 1 illustrates this idea, using the sequence of codeword
lengths developed in the example shown in Figure 3.

Generation of a set of lexicographically-ordered codewords from a non-decreasing feasible code
T = ⟨ℓi ⟩ is straightforward [15, 69]. Define L = maxn−1i=0 ℓi to be the length of the longest codewords
required; in the case when the weights are non-increasing, that means L = ℓn−2 = ℓn−1. In the
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i wi ℓi codeword ℓi -bit integer L-bit integer

0 20 1 0 0 0
1 17 2 10 2 32
2 6 4 1100 12 48
3 3 5 11010 26 52
4 2 5 11011 27 54
5 2 5 11100 28 56
6 2 5 11101 29 58
7 1 5 11110 30 60
8 1 6 111110 62 62
9 1 6 111111 63 63
10 – sentinel – 64 64

Table 1. Canonical assignment of codewords for the example code T = ⟨1, 2, 4, 5, 5, 5, 5, 5, 6, 6⟩, with a maxi-
mum codeword length of L = maxn−1i=0 ℓi = 6. The sentinel value in the last row is discussed in Section 3.2.

example, L = 6. A codeword of length ℓi can then be thought of as being either a right-justified
ℓi -bit integer, or a left-justified L-bit integer. The rightmost column in Table 1 shows the latter, and
the column to the left of it shows the former. The first of the L-bit integers, corresponding to the
most frequent symbol, is always zero; thereafter, the i + 1 st L-bit integer is computed by adding
2L−ℓi to the L-bit integer associated with the i th symbol. For example, in the table, the 32 in the
last column in the second row is the result of adding 26−1 to the zero at the end of the first row.
Once the set of L-bit integers has been computed, the corresponding ℓi -bit values are found by

taking the first ℓi bits of the L-bit integer. Those ℓi -bit integers are exactly the bitstrings assigned
in the column headed “codeword”. To encode an instance of i th symbol, the ℓi low-order bits of
the i th value from the in the “ℓi -bit integer” column of the table are appended to an output buffer.
Section 3.1 describes the encoding process in more detail.

The codewords implied by the right-hand tree in Figure 2 were assigned in this structured manner,
meaning that the leaf depths, symbol identifiers, and codewords themselves (as L-bit integers) are all
in the same order. The result is referred to as a canonical code, the “ordered leaves” tree arrangement
that was mentioned in Section 2.2. In the example shown in Figure 2, the canonical code could be
obtained from the Huffman tree via left-right child-swaps at internal node. But such rearrangement
is not always possible. For example, consider the weightsW = ⟨8, 7, 6, 5, 4, 3⟩. Figure 4 shows two
codeword assignments for those weights, on the left as a result of the application of Algorithm 1,
and on the right as a result of the application of Algorithm 2 to obtain codeword lengths, followed
by sequential assignment of canonical codewords. The internal nodes in the two trees have different
weights, and there is no sequence of left-right child swaps that transforms one to the other, even
though the two codes have the same cost.

The desire to work with the regular codewords patterns provided by canonical codes is why Sec-
tion 1.1 defines a code as sequences of codeword lengths, rather than as particular sets of complying
codewords. To a purist, minimum-redundancy codes and Huffman codes are different because the
codeword assignment ⟨00, 01, 100, 101, 110, 111⟩ that is a canonical minimum-redundancy code for
W = ⟨8, 7, 6, 5, 4, 3⟩ cannot be generated by Algorithm 1. That is, an application of Huffman’s algo-
rithmwill always create a minimum-redundancy code, but not every possible minimum-redundancy
code can emerge from an application of Huffman’s algorithm. But for fast decoding, discussed in
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Fig. 4. Two alternative code trees forW = ⟨8, 7, 6, 5, 4, 3⟩ and minimum-redundancy code T = ⟨2, 2, 3, 3, 3, 3⟩.
Leaves are again labeled with an alphabetic symbol identifier and numeric weight; internal nodes with their
weight only. The right-hand tree cannot be generated by Algorithm 1.

Section 3.2, the tightly-structured arrangement of codewords shown in Table 1 is desirable, and if
the definition of a code is as a set of codeword lengths, then the somewhat arbitrary distinction
between “minimum-redundancy” and “Huffman” codes becomes irrelevant. That reasoning is why
we deliberately blend the two concepts here.

2.6 Optimality
To demonstrate that Huffman’s algorithm does indeed result in a minimum-redundancy code, two
steps are required [33]. The first step is to confirm the sibling property [25], which asserts that a
minimum-redundancy code exists in which the two least-weight symbols are siblings, and share a
common parent in the corresponding binary code tree. The second step is to verify that joining
those two symbols into a combined node with weight given by their sum, then constructing a
minimum-redundancy code for the reduced-by-one symbol set, then expanding that symbol again
into its two components, yields a minimum-redundancy code for the original set of symbols. The
inductive principle takes care of the remainder of the proof, because a minimum-redundancy code
for the case n = 2 cannot be anything other than ⟨ℓi ⟩ = ⟨1, 1⟩, that is, the two codewords 0 and 1.

Consider the sibling property. Suppose thatT = ⟨ℓi ⟩ is known to be a minimum-redundancy code
for the n-sequenceW = ⟨wi ⟩. Since every internal node in the code tree must have two children
(because if it did not, a whole subtree could be promoted to make a cheaper code), there must be at
least two nodes at the greatest depth, L = maxi ℓi . Now suppose, without loss of generality, that
wn−1 andwn−2 are the two lowest weights, possibly equal. If the leaves for both of these symbols
are at depth L, that is, ℓn−2 = ℓn−1 = L, then they can be moved in the code tree via a leaf relabeling
process to make them both children of the same internal node in a way that does not alter the cost
C(·, ·) of the code. This is sufficient to satisfy the sibling property.
On the other hand, if (say) ℓn−1 = L and ℓn−2 < L then there must be a different symbol a such

that ℓa = L, that is, there must be a symbol a at the deepest level of the code tree that is neither
symbol n − 2 nor symbol n − 1. Now consider the code T ′ formed by exchanging the lengths of the
codewords assigned to symbols a and n − 2. The new code may have an altered cost compared to
the old code; if so, the difference is given by

C(W ,T ′) − C(W ,T )

= (wa · ℓn−2 +wn−2 · ℓa) − (wa · ℓa +wn−2 · ℓn−2)

= (wa −wn−2) · (ℓn−2 − ℓa)

≥ 0 ,
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with the final inequality holding because the original code T is minimum-redundancy forW ,
meaning that no other code can have a smaller cost. Butwa ≥ wn−2 and ℓn−2 < ℓa , in both cases as
a result of the assumptions made, and hence it can be concluded thatwa = wn−2. That is, symbol
a and symbol n − 2 must have the same weight, and can have their codeword lengths exchanged
without altering the cost of the code. With that established, the sibling property can be confirmed.

Consider the second inductive part of the argument, and suppose that

T1 = ⟨ℓ0, . . . , ℓn−2, ℓn−1⟩

is an n-element minimum-redundancy code of cost C(W1,T1) for the n weights

W1 = ⟨w0, . . . ,wn−3,wn−2,wn−1 + x⟩ ,

for some set of weights such that w0 ≥ w1 ≥ · · · ≥ wn−1 ≥ x > 0. Starting with the n-symbol
feasible code T1, now form the (n + 1)-symbol feasible code

T2 = ⟨ℓ0, . . . , ℓn−3, ℓn−2, ℓn−1 + 1, ℓn−1 + 1⟩ .

By construction, the extended code T2 has cost C(W2,T2) = C(W1,T1) +wn−1 + x for the (n + 1)-
sequence

W2 = ⟨w0, . . . ,wn−3,wn−2,wn−1, x⟩ .

Suppose next thatT3 is a minimum-redundancy code forW2. IfT2 is not also a minimum-redundancy
code, then

C(W2,T3) < C(W2,T2) = C(W1,T1) +wn−1 + x .

But this leads to a contradiction, because the sibling property requires that there be an internal node
of weightwn−1 + x in the code tree defined by T3, sincewn−1 and x are the two smallest weights in
W2. And once identified, that internal node could be replaced by a leaf of weightwn−1 + x without
altering any other part of the tree, and hence would give rise to an n-element code T4 of cost

C(W1,T4) = C(W2,T2) −wn−1 − x < C(W1,T1) ,

and that would mean in turn that T1 could not be a minimum-redundancy code forW1.
In combination, these two arguments demonstrate that the codes developed by Huffman are

indeed minimum-redundancy – and that he fully deserved his subject pass in 1951.

2.7 Compression Effectiveness
The previous subsection demonstrated that Huffman’s algorithm computes minimum-redundancy
codes. The next question to ask is, how good are they?
In a foundational definition provided by information theory pioneer Claude Shannon [70], the

entropy of a set of n weightsW = ⟨wi ⟩ is given by

H(W ) = −
n−1∑
i=0

wi · log2
wi

m
, (3)

wherem =
∑n−1

i=0 wi is the sum of the weights, and where − log2(wi/m) = log2(m/wi ) is the entropic
cost (in bits) of one instance of a symbol that is expected to occur with probability given bywi/m.

Ifm = 1, and thewi ’s are interpreted as symbol probabilities, then the quantityH(W ) has units
of bits per symbol, and represents the expected number of output symbols generated per source
symbol. If thewi ’s are integral occurrence counts, andm is the length of the message that is to be
coded, thenH(W ) has units of bits, and represents the minimum possible length of the compressed
message when coded relative to its own statistics.
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WeightsW = ⟨wi ⟩ Code T = ⟨ℓi ⟩ H(W )/m C(W ,T )/m E(W ,T )

⟨10, 6, 2, 1, 1, 1⟩ ⟨1, 2, 4, 4, 4, 4⟩ 1.977 2.000 1.2%
⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩ ⟨1, 2, 4, 5, 5, 5, 5, 5, 6, 6⟩ 2.469 2.545 3.1%
⟨99, 99, 99, 1, 1, 1⟩ ⟨2, 2, 2, 3, 4, 4⟩ 1.666 2.017 21.1%
⟨8, 7, 6, 5, 4, 3⟩ ⟨2, 2, 3, 3, 3, 3⟩ 2.513 2.545 1.3%

Table 2. Entropy, cost, and relative effectiveness loss of example Huffman codes. To allow comparison,
both entropy and cost are normalized to “average bits-per-symbol” values; and relative effectiveness loss is
expressed as a percentage, with big values worse than small values.

Given such a sequenceW of n weights, the relative effectiveness loss E(W ,T ) of a feasible code
T = ⟨ℓi ⟩ is the fractional difference between the cost C(W ,T ) of that code and the entropy ofW :

E(W ,T ) =
C(W ,T ) − H(W )

H(W )
. (4)

A relative effectiveness loss of zero indicates that symbols are being coded in their entropic costs;
values larger than zero indicate that the coder is admitting some degree of compression leakage.

Table 2 shows the result of these calculations for some of the sets of weights that have been used
as examples elsewhere in this article. In many situations, including three of the four illustrated
examples, Huffman codes provide compression effectiveness that is within a few percent of the
entropy-based lower bound. The most egregious exceptions occur when the weight of the most
frequent symbol, w0, is large relative to the sum of the remaining weights, that is, when w0/m
becomes large. Indeed, it is possible to make the relative effectiveness loss arbitrarily high by having
w0/m → 1. For example, the 5-sequenceW = ⟨96, 1, 1, 1, 1⟩ has an entropy ofH(W ) = 32.2 bits,
a minimum redundancy code T = ⟨1, 3, 3, 3, 3⟩ with cost C(W ,T ) = 108 bits, and hence a relative
effectiveness loss of E(W ,T ) = 235%. While T is certainly “minimum-redundancy”, it is a long
way from being good. Even theW = ⟨99, 99, 99, 1, 1, 1⟩ example suffers from non-trivial loss of
effectiveness. Other coding approaches that have smaller relative effectiveness loss in this kind of
highly skewed situation are discussed in Section 5.

A number of bounds on the effectiveness of Huffman codes have been developed. For example, in
an important followup to Huffman’s work, Gallager [25] shows that for a set of n weightsW = ⟨wi ⟩

summing tom =
∑n−1

i=0 wi , and with corresponding minimum-redundancy code T = ⟨ℓi ⟩:

C(W ,T ) − H(W ) ≤

{
w0 + 0.086 ·m whenw0 < m/2
w0 whenw0 ≥ m/2 .

This relationship can then be used to compute an upper limit on the relative effectiveness loss.
Capocelli and De Santis [9] and Manstetten [47] have also studied code redundancy.

2.8 Non-Binary Output Alphabets
The examples thus far have assumed that the channel alphabet is binary, and consists of “0” and “1”.
Huffman [33] also considered the more general case of an r -ary output alphabet, where r ≥ 2 is
specified as part of the problem instance, and the channel alphabet is the symbols {0, 1, . . . , r − 1}.

Huffman noted that if each internal node has r children, then the final tree must have k(r − 1)+ 1
leaves, for some integral k . Hence, if an input of n weightsW = ⟨wi ⟩ is provided, an augmented
inputW ′ of length n′ = (r − 1)⌈(n − 1)/(r − 1)⌉ + 1 is created, extended by the insertion of n′ − n
dummy symbols of weightw ′n = w ′n+1 = · · · = w

′
n′−1 = 0, with symbol weights of zero permitted

in this scenario. Huffman’s algorithm (Algorithm 1 or Algorithm 2) is then applied, but joining
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Fig. 5. Radix-5 minimum-redundancy canonical code tree for the weightsW = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩.
Three dummy nodes are required as children of the rightmost leaf, to create an extended sequenceW ′

containing n′ = 13 leaves. Leaves are labeled with an alphabetic letter corresponding to their integer source
symbol identifier.

least-cost groups of r nodes at a time, rather than groups of two. That is, between 0 and r − 2
dummy symbols are appended, each of weight zero, before starting the code construction process.
For example, consider the sequenceW = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩ already used as an example

in Figure 3. It has n = 10 weights, so if an r = 5 code is to be generated, then the augmented
sequenceW ′ = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0⟩ is formed, with three additional symbols to make
a total size of n′ = 13. Three combining steps are then sufficient to create the set of codeword
lengths T ′ = ⟨1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3⟩. From these, a canonical code can be constructed over
the channel alphabet {0, 1, 2, 3, 4}, yielding the ten codewords ⟨0, 1, 2, 3, 40, 41, 42, 43, 440, 441⟩,
with three further codewords (442, 443 and 444) nominally assigned to the three added “dummy”
symbols, and hence unused. Figure 5 shows the resultant code tree.

The equivalent of the Kraft inequality (Equation 1) is now given by

K(T ) =
n−1∑
i=0

r−ℓi ≤ 1 , (5)

with equality only possible if n = n′, and n is already one greater than a multiple of r − 1. Similarly,
in the definition of entropy in Equation 3, the base of the logarithm changes from 2 to r when
calculating the minimum possible cost in terms of expected r -ary output symbols per input symbol.
One interesting option is to take r = 28 = 256, in which case what is generated is a Huffman

code in which each output symbol is a byte. For large alphabet applications in which even the most
frequent symbol is relatively rare – for example, when the input tokens are indices into a dictionary
of natural language words – the relative effectiveness loss of such a code might be small, and the
ability to focus on whole bytes at decode-time can lead to a distinct throughput advantage [21].

2.9 Other Resources
Two previous surveys provide summaries of the origins of Huffman coding, and data compression
in general, those of Lelewer and Hirschberg [42] and Bell et al. [6]. A range of textbooks cover the
general area of compression and coding, including work by Bell et al. [5], by Storer [74], by Sayood
[67], by Witten et al. [84], and by Moffat and Turpin [63].

3 ENCODING AND DECODING MINIMUM-REDUNDANCY CODES
We now consider the practical use of binary minimum-redundancy codes in data compression
systems. The first subsection considers the encoding task; the second the decoding task; and then
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ℓ first_symbol[ℓ] first_code_r[ℓ] first_code_l[ℓ]

0 0 0 0
1 0 0 0
2 1 2 32
3 2 6 48
4 2 12 48
5 3 26 52
6 8 62 62
7 – 64 64

Table 3. Tables first_symbol[], first_code_r[], and first_code_l[] for the canonical code shown in Table 1. The
last row is a sentinel to aid with loop control.

the third considers the question of how the codeT = ⟨ℓi ⟩ can be economically communicated from
encoder to decoder. Throughout this section it is assumed that the code being applied is a canonical
one in which the set of codewords is lexicographically sorted.

3.1 Encoding Canonical Codes
The “textbook” description of Huffman coding as being a process of tracing edges in a binary tree
is costly, in a number of ways: explicit manipulation of a tree requires non-trivial memory space;
traversing a pointer in a large data structure for each generated bit may involve cache misses;
and writing bits one at a time to an output file is slow. Table 1 in Section 2.5 suggests how these
difficulties can be resolved. In particular, suppose that the column in that table headed “ℓi ” is
available in an array code_len[], indexed by symbol identifier, and that the column headed “ℓi -bit
integer” is stored in a parallel array code_word[]. To encode a particular symbol 0 ≤ s < n, all that
is then required is to extract the code_len[s] low-order bits of the integer in code_word[s]:

set ℓ ← code_len[s];
putbits(code_word[s], ℓ);

where putbits(val, count) writes the count low-order bits from integer val to the output stream,
and is typically implemented using low-level mask and shift operators. This simple process both
eliminates the need for an explicit tree, and means that each output cycle generates a whole
codeword, rather than just a single bit.
Storage of the array code_len[] is relatively cheap – one byte per value allows codewords of

up to L = 255 bits and is almost certainly sufficient. Other options are also possible [24]. But the
array code_word[] still has the potential to be expensive, because even 32-bits per value might not
be adequate for the codewords associated with a large or highly skewed alphabet. Fortunately,
code_word[] can also be eliminated, and replaced by two compact arrays of just L + 1 entries each,
where (as before) L is the length of a longest codeword.

Table 3 provides an example of these two arrays: first_symbol[], indexed by a codeword length ℓ,
storing the source alphabet identifier of the first codeword of length ℓ; and the right-aligned first
codeword of that length, first_code_r[], taken from the column in Table 1 headed “ℓi -bit integer”.
For example, in Table 1, the first codeword of length ℓ = 5 is for symbol 3, and its 5-bit codeword is
given by the five low-order bits of the integer 26, or “11010”.

With these two arrays, encoding symbol s is achieved using:

set ℓ ← code_len[s];
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set offset ← s − first_symbol[ℓ];
putbits(first_code_r[ℓ] + offset, ℓ).

Looking at Tables 1 and 3 together, to encode (say) symbol s = 6, the value code_len[6] is accessed,
yielding ℓ = 5; the subtraction 6 − first_symbol[5] = 3 indicates that symbol 6 is the third of the
5-bit codewords; and then the 5 low-order bits of first_code_r[5]+ 3 = 26+ 3 = 29 are output. Those
five bits (“11101”) are the correct codeword for symbol 6.

If encode-time memory space is at a premium, the n bytes consumed by the code_len[] array can
also be eliminated, but at the expense of encoding speed. One of the many beneficial consequences of
focusing on canonical codes is that the first_symbol[] array is a sorted list of symbol numbers. Hence,
given a symbol number s , the corresponding codeword length can be determined by linear or binary
search in first_symbol[], identifying the value ℓ such that first_symbol[ℓ] ≤ s < first_symbol[ℓ + 1].
The search need not be over the full range, and can be constrained to valid codeword lengths.
The shortest codeword length ℓmin is given by mini ℓi = ℓ0, and the searched range can thus be
restricted to ℓmin . . . L. When that range is small, linear search may be just as efficient as binary
search; moreover, the values being searched may be biased (because the weights are sorted, and
small values of ℓ correspond to frequently-occurring symbols) in favor of small values of ℓ, a further
reason why linear search might be appropriate.

Note that the encoding techniques described in this section only apply if the source alphabet is
sorted, the symbol weights are non-increasing, and the canonical minimum-redundancy codewords
are thus also lexicographically sorted (as shown in Table 1). In some applications those relatively
strong assumptions may not be valid, in which case a further n words of space must be allocated
for a permutation vector that maps source identifiers to sorted symbol numbers, with the latter
then used for the purposes of the canonical code. If a permutation vector is required, it dominates
the cost of storing code_len[i] by a factor of perhaps four, and the savings achieved by removing
code_len[i] may not be warranted.
A range of authors have contributed to the techniques described in this section, with the early

foundations laid by Schwartz and Kallick [69] and Connell [15]. Hirschberg and Lelewer [30] and
Zobel and Moffat [86] also discuss the practical aspects of implementing Huffman coding. The
approach described here is as presented by Moffat and Turpin [61], who also describe the decoding
process that is explained in the next subsection, and, in a separate paper, the prelude representations
that are discussed in Section 3.3.

3.2 Decoding Canonical Codes
The constrained structures of canonical codes mean that it is also possible to avoid the inefficiencies
associated with tree-based bit-by-bit processing during decoding. Now it is the “left-justified in L
bits” form of the codewords that are manipulated as integers, starting with the column in Table 1
headed “L-bit integer”, and extracted into the array first_code_l[] that is shown in Table 3. The
first_symbol[] array is also used during decoding.
Making use of the knowledge that no codeword is longer than L bits, a variable called buffer

is employed which always contains the next L undecoded bits from the compressed bit-stream.
The decoder uses buffer to determine a value for ℓ, the number of bits in the next codeword;
then identifies the symbol that corresponds to that codeword; and finally replenishes buffer by
shifting/masking out the ℓ bits that have been used, and fetching ℓ more bits from the input. A
suitable sentinel value is provided in first_code_l[L + 1] to ensure that the search process required
by the first step is well-defined:

identify ℓ such that first_code_l[ℓ] ≤ buffer < first_code_l[ℓ + 1];
set offset ← (buffer − first_code_l[ℓ]) >> (L − ℓ);
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v search_start2[v] search_start3[v]

0 1 1
1 1 1
2 2 1
3 4* 1
4 – 2
5 – 2
6 – 4*
7 – 5*

Table 4. Partial decode tables search_startt [] for a t-bit prefix of the buffer buffer , for two different values of
t . Asterisks indicate entries that may require loop iterations following the initial assignment.

set s ← first_symbol[ℓ] + offset;
set buffer ← ((buffer << ℓ) & maskL) + getbits(ℓ);
output s;

where >> is a right-shift operator; << is a left-shift operator; & is a bitwise logical “and” operator;
maskL is the bitstring (1 << L) − 1 containing L bits, all “1”; and where getbits(ℓ) extracts the
next ℓ bits from the input stream and returns them as an ℓ-bit integer. For example, if the six
bits in buffer are 110010, or integer 50, then the code fragment first identifies ℓ = 4, since 48 =
first_code_l[4] ≤ 50 < first_code_l[5] = 52; then computes offset as (50 − 48) >> 2 = 0; sets s to be
first_symbol[4] + 0 = 2; and finally shifts buffer left by 4 bits, zeros all but the final 6 bits, and adds
in four new bits from the compressed bit-stream.

The first step of the process – “identify ℓ such that” – is the most costly one. As with encoding, a
linear or binary search over the range ℓmin . . . L can be used, both of which takeO(ℓ) time, where ℓ
is the number of bits being processed. That is, even if linear search is used, the cost of decoding is
proportional to the size of the compressed file being decoded.

If more memory can be allocated, other “identify ℓ” options are available, including direct table
lookup. In particular, if 2L bytes of memory can be allowed, an array indexed by buffer can be used
to store the length of the first codeword contained in buffer . Looking again at the code shown in
Tables 1 and 3, such an array would require a 64-element table, of which the first 32 entries would
be 1, the next 16 would be 2, the next 4 would be 4, and so on. One byte per entry is sufficient in this
table, because the codewords can be assumed to be limited to 255 bits. Even so, 2L could be much
larger than n, and the table might be expensive. Moreover, in a big table the cost of cache misses
alone could mean that a linear or binary search in first_code_l[] might be preferable in practice.
Moffat and Turpin [61] noted that the search and table lookup techniques can be blended, and

demonstrated that a partial table that accelerated the linear search process was an effective hybrid.
In this proposal, a search_start[] table of 2t entries is formed, for some ℓmin ≤ t ≤ L. The first t bits
of buffer are used to index this table, with the stored values indicating either the correct length ℓ, if
t bits are sufficient to unambiguously determine it; or the smallest valid value of ℓ, if not. Either
way, a linear search commencing from the indicated value is used to confirm the correct value of ℓ
relative to the full contents of buffer .
Table 4 continues the example shown in Tables 1 and 3, and shows partial decoding tables

search_startt [] for t = 2 and t = 3. The first few entries in each of the two tables indicate definite
codeword lengths; the later entries are lower bounds and are the starting point for the linear search,
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indicated by the “*” annotations. With a t-bit partial decode table search_start[] available, and again
presuming a suitable sentinel value in first_code_l[L + 1], the first “identify ℓ” step then becomes:

set ℓ ← search_start[buffer >> (L − t)];
while buffer ≥ first_code_l[ℓ + 1] do

set ℓ ← ℓ + 1.

Because the short codewords are by definition the frequently-used ones, a surprisingly high fraction
of the coded symbols can be handled “exactly” using a truncated lookup table. In the example, even
when a t = 2 table of just four values is used, (20 + 17 + 6)/55 = 78% of the symbol occurrences
get their correct length assigned via the table, and the average number of times the loop guard
is tested when t = 2 is just 1.25. That is, even a quite small truncated decoding table can allow
canonical Huffman codes to be decoded using near-constant time per output symbol. Note also
that neither putbits() nor getbits() should be implemented using loops over bits. Both operations
can be achieved through the use of constant-time masks and shifts guarded by if-statements, with
the underlying writing and reading (respectively) steps based on 32- or 64-bit integers.

If relatively large tracts of memory space can be employed, or if L and n can both be restricted to
relatively small values, decoding can be completely-table based, an observation made by a number
of authors [2, 10–13, 28, 29, 34, 37, 50, 64, 71, 75, 77, 83]. The idea common to all of these approaches
is that each of the n − 1 internal nodes of an explicit code tree can be regarded as being a state in
a decoding automaton, with each such state corresponding to a recent history of unresolved bits.
For example, the right-most internal node in the right-hand tree in Figure 4 (labeled with a weight
of “7”) represents the condition in which “11” has been observed, but not yet “consumed”. If the
next k bits from the input stream are then processed as a single entity – where k = 8 might be a
convenient choice, for example – they drive the automaton to a new state, and might also give rise
to the output of source symbols. Starting at that internal node labeled “7” in the right-hand tree
in Figure 4, the k = 8 input block “01010101” would lead to the output of four symbols, “e, d, b, b”
(that is, original symbols “4, 3, 1, 1”), and would leave the automaton at the internal node labeled
with a weight of “33”, the root of the tree. Each other k-bit input block would give rise to a different
set of transitions and/or outputs.
Across the n − 1 internal nodes the complete set of (n − 1)2k transitions can be computed in

advance, and stored in a two dimensional array, with (at most) k symbols to be emitted as each k-bit
input block is processed. Decoding is then simply a matter of starting in the state corresponding
to the code tree root, and then repeatedly taking k-bit units from the input, accessing the table,
writing the corresponding list of source symbols (possibly none) associated with the transition,
and then shifting to the next state indicated in the table.

Each element in the decoding table consists of a destination state, a count of output symbols (an
integer between 0 and k), and a list of up to k output symbols; and the table requires 2k (n − 1) such
elements. Hence, even quite moderate values of n and k require non-trivial amounts of memory.
For example, n = 212 and k = 8 gives rise to a table containing (8 + 2) × 256 × (212 − 1) values, and
if each is stored as (say) a 16-bit integer, will consume in total around 20 MiB. While not a huge
amount of memory, it is certainly enough that cache misses might have a marked impact on actual
execution throughput. To reduce the memory cost, yet still capture some of the benefits of working
with k-bit units, hybrid methods that blend the “search for ℓ” technique described earlier in this
section with the automaton-based approach are also possible [44].

3.3 Housekeeping
Unless the minimum-redundancy code that will be employed in some application is developed in
advance and then compiled into the encoder and decoder programs (as was the case, for example,
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for some facsimile coding standards in the early 1980s), a prelude component must also be associated
with each message transmitted, describing the details of the code that will be used for the body
of the message. Elements required in the prelude include the lengthm of the message, so that the
decoder knows when to stop decoding; a description of the size n and composition of the source
alphabet, if it cannot be assumed by default or is only a subset of some larger universe; and the
length ℓi of the codeword associated with each of the n source symbols that appears in the message.

The two scalars,m and n, have little cost. But if the source alphabet is a subset of a larger universe,
then a subalphabet selection vector is required, and might be a rather larger overhead. For example,
if the source universe is regarded as being the set of all 32-bit integers, then any particular message
will contain a much smaller number of distinct symbols, with, typically, n < m ≪ 232. The simplest
selection approach is to provide a list of n four-byte integers, listing the symbols that appear in the
current message. But it is also possible to regard the subalphabet as being defined by a bitvector of
length 232, where a “1” bit at position u indicates that symbol u is part of the subalphabet and has a
code assigned to it. Standard representations for sparse bitvectors (including for cases where it is
dense in localized zones, which is also typical) can then be used, reducing the storage cost. Moffat
and Turpin [63, Chapter 3] describe several suitable methods.
The last component of the prelude is a set of n codeword lengths, T = ⟨ℓi ⟩. These are more

economical to transmit than the weightsW = ⟨wi ⟩ from which they are derived, and also more
economical than the actual codewords that will be assigned, since the codeword lengths are integers
over a relatively compact range, ℓmin . . . L. The codeword lengths should be provided in subalphabet
order as a sequence of integer values, perhaps using ⌈log2(L − ℓmin + 1)⌉ bits each, or perhaps using
– wait for it – a secondary minimum-redundancy code in which n′ = L − ℓmin + 1.

Once the decoder knows the subalphabet and the length of each of the codewords, it generates
the canonical symbol ordering, sorting by non-decreasing codeword length, and breaking ties
by symbol identifier, so that its canonical code assignment matches the one that gets formed by
the encoder. That is, the symbol weights must be ignored during the canonical reordering, since
they are never known to the decoder. Encoding (and later on, when required, decoding) using the
techniques described earlier in this section can then be commenced.
If the message is very long, or is of unknown length, it can be broken into large fixed-length

blocks, and a prelude constructed for each block. The cost of multiple preludes must then be
accepted, but the use of locally-fitted codes and possibly different subalphabets within each block,
means that overall compression might actually be better than if a single global whole-of-message
code was developed, and a single prelude constructed.
Turpin and Moffat [78] provide a detailed description of preludes, and the processes employed

in encoder and decoder that allow them to remain synchronized.

4 SPECIALIZED MINIMUM-REDUNDANCY CODES
We now consider variants of the core minimum-redundancy coding problem, in which additional
constraints and operating modes are introduced.

4.1 Length-Limited Codes
Suppose that an upper limit L is provided, and a codemust be constructed for which ℓn−1 ≤ L < LHuff,
where LHuff is the length of the longest codeword in a Huffman code. Moreover, the code should
have the least possible cost, subject to that added constraint. This is the length-limited coding
problem. Note that, as in the previous section, L is the length of a longest codeword in the code that
is being constructed and deployed, and that LHuff is a potentially larger value that is not necessarily
known nor computed.
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Algorithm 3 – Package-Merge process for length-limited codes [41].
0: function CalcCodeLens (W , n, L)
1: // Create a least-cost code for the weightsW [0 . . .n − 1] in which no codeword
2: // is longer than L
3: set packages[1] ←W
4: for level ← 2 to L do
5: set packages[level] ← the empty set
6: form all pairs of elements from packages[level − 1],
7: taking them in increasing weight order
8: join each such pair to make a new subtree in packages[level],
9: with weight given by the sum of the two component weights
10: merge another copy ofW into the set packages[level]
11: set solution[L] ← the smallest 2n − 2 items in packages[L]
12: for level ← L − 1 downto 1 do
13: set count ← the number of multi-item packages amongst the items in solution[level+ 1]
14: set solution[level] ← the smallest 2 · count items in packages[level]
15: set ⟨ℓi ⟩ ← ⟨0, 0, . . . , 0⟩
16: for level ← L downto 1 do
17: for each leaf node s in solution[level] do
18: set ℓs ← ℓs + 1
19: return ⟨ℓi ⟩

Hu and Tan [32] and Van Voorhis [80] provided early algorithms that solved this problem; the
one we focus on here is the more efficient package-merge paradigm proposed in 1990 by Larmore
and Hirschberg [41]. The key idea is that of building packages of symbols, in much the same way
as Huffman’s algorithm does, but taking care that no item can take part in more than L combining
steps. That restriction is enforced by creating all least-cost subtrees of different maximum depths,
and retaining information for each of the possible node depths in a separate structure. Algorithm 3
provides pseudo-code for this approach.

The first list of packages – referred to as packages[1] in Algorithm 3 – is taken directly from the
set of original symbols and their corresponding weights,W []. These are the only subtrees that are
possible if their depth is limited to one. Another way of interpreting this list is that it represents
all of the different ways in which a reduction in the Kraft sum K(·) of 2−L can be achieved, by
“demoting” a subtree (node) from having its root at depth L − 1 to having its root at depth L.

A list of subtrees of depth up to two is then generated, representing ways in which the Kraft
sum might be decreased by 2−L+1, corresponding to moving a subtree or element from depth L − 2
to depth L − 1. To do this, the items in packages[1] are formed into pairs, starting with the two
smallest ones, and working up to the largest ones. That process generates ⌊n/2⌋ packages, each
with a weight computed as the sum of the two item weights, representing a possible internal node
in a code tree. That list of packages is extended by merging it with another copy ofW [], generating
the full list packages[2] of n + ⌊n/2⌋ subtrees of depths up to two, again ordered by cost.

Figure 6 illustrates the computation involved. Items in brown are drawn fromW [], and all n = 10
of them appear in every one of the packages[] rows. Interspersed are the composite nodes, marked
in blue, each constructed by pairing two elements from the row above. In the diagram the pairs
are indicated by underbars, and some (not all) are also traced by arrows to show their locations in
the next row. Because an L = 5 code is being sought, the fifth row marks the end of the packaging
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Fig. 6. Package-merge algorithm applied to the weightsW = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩ with L = 5. Packages
are shown in blue, and leaf nodes in brown. The shaded region shows the five solution[] sets, starting with the
least-cost 2n − 2 items in the fifth row, and then enclosing the necessary packets to construct it in the rows
above, each as a subset of the corresponding packages[] set. The final code isT = ⟨2, 2, 3, 4, 4, 4, 4, 4, 5, 5⟩ with
cost 142, two greater than the minimum-redundancy code ⟨1, 2, 4, 5, 5, 5, 5, 5, 6, 6⟩. If the final 2n−2 elements in
the fourth row are expanded, an L = 4 length-limited minimum-redundancy code T = ⟨2, 2, 4, 4, 4, 4, 4, 4, 4, 4⟩
is identified, with cost 146. It is not possible to form an L = 3 code for n = 10 symbols.

process – none of the subtrees represented in that row can have a depth that is greater than five.
That fifth row is a collection of elements and subtrees that when demoted from a nominal level of
zero in the tree – that is, occurring at the level of the root of the desired code tree – to a nominal
level of one, each decrease the Kraft sum by 2−L+(L−1) = 0.5.

If every element (leaf or subtree) is assumed to be initially at level zero, then the Kraft sum K(·)
has the value

∑n−1
i=0 2−0 = n, and exceeds the limit of 1 that indicates a feasible code. Indeed, to

arrive at a feasible code, the Kraft sum must be reduced by n − 1 compared to this nominal starting
situation. Therefore, selecting the least-weight 2n − 2 of the items in packages[L] forms a set of
items – called solution[L] in Algorithm 3 – that when each is demoted by one level, leads to the
required code. But to achieve those demotions, each of the composite items in solution[L] need to
have their demotions propagated to the next level down, to form the set solution[L − 1]. In turn,
the composite items in solution[L − 1] drive further demotions in solution[L − 2], continuing until
solution[1] is determined, which, by construction, contains no packages. The process of identifying
the L solution[] sets is described by the loop at steps 12 to 14 in Algorithm 3.

The shaded zone in Figure 6 shows the complete collection of solution[] sets, one per level, that
collectively include all of the required leaf demotions. For example, symbol 0 with weightw0 = 20
appears twice across the five solution[] sets, and hence needs to be demoted twice from its nominal
ℓ0 = 0 starting point, meaning that it is assigned ℓ0 = 2. At the other end of the alphabet, symbol 9
with weightw9 = 1 appears in all five solution[] sets, and is assigned a codeword length of ℓ9 = 5.
Steps 16 to 18 in Algorithm 3 check the L solution sets, counting the number of times each original
symbol needs to be demoted, and in doing so, computing the required code T = ⟨ℓi ⟩. The complete
code generated by this process is T = ⟨2, 2, 3, 4, 4, 4, 4, 4, 5, 5⟩, and has a cost of 142 bits, two more
than the Huffman code’s 140 bits.
The package-merge implementation described in Algorithm 3 and illustrated in Figure 6 corre-

sponds to the description of Huffman’s algorithm that is provided in Algorithm 1 – it captures the
overall paradigm that solves the problem, but leaves plenty of room for implementation details to be
addressed. When implemented as described, it is clear thatO(nL) time and space might be required.
In their original presentation, Larmore and Hirschberg [41] also provided a more complex version
that reduced the space requirement to O(n), but added (by a constant factor) to the execution time;
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and a range of other researchers have also described package-merge implementations. For example,
Turpin and Moffat [76] noted that it is more efficient to compute the complement of the solution[],
and present a reverse package merge that requires O(n(L − log2 n + 1)) time; Katajainen et al. [36]
describe an implementation that executes in O(nL) time and requires only O(L2) space; and Liddell
and Moffat [45] describe an implementation that starts with a Huffman code and then optimally
rearranges it without computing all the packages, executing in timeO(n(LHuff − L + 1)) time, where
LHuff is the length of the Huffman code for the same set of input weights.
Other authors have considered approximate solutions that limit the codeword lengths and in

practice appear to give codes of cost close to or equal to the minimum cost [23, 27, 43, 52]. Milidiú
and Laber [49] analyze the relative effectiveness of length-limited codes, and show that for all but
extremely constrained situations the compression loss relative to a Huffman code is small.

4.2 Dynamic Huffman Coding
Suppose that the alphabet that will be used for some message is known, but not the symbol
frequencies. One clear option is to scan the message in question, determine the symbol frequencies,
and then proceed to construct a code. In this semi-static approach, assumed through all of the
preceding discussion, the prelude is what informs the decoder of the codewords in use, and decoding
is carried out using the constant code that is so defined.

But there is also another option, and that is to make use of adaptive probability estimates. Instead
of scanning the whole message and constructing a prelude, some default starting configuration
is assumed – perhaps that every symbol in the alphabet has been seen “once” prior to the start
of encoding, and hence is equally likely – and the first message symbol is coded relative to that
distribution, with no prelude required. Then, once that symbol has been processed, both encoder
and decoder adjust their symbol estimates to take into account that first symbol, and, always staying
in step, proceed to the second symbol, then the third, and so on. In this approach, just after the last
symbol is coded and transmitted, both processes will know the final set of message occurrence
counts, and could potentially be used to construct the code that would have been used had an
initial scan been used, and a prelude sent.
Several authors have contributed techniques that allow dynamic Huffman coding, and demon-

strated that it is possible to maintain an evolving code tree in time that is linear in the number of bits
required to adaptively communicate the message, commencing in 1973 with work by Faller [20], and
with enhancements and further developments added subsequently by Gallager [25], Cormack and
Horspool [16], Knuth [39], Vitter [81, 82], Lu and Gough [46], Milidiú et al. [51], and Novoselsky and
Kagan [65]. The common theme across these mechanisms is that a list of all leaf nodes and internal
tree nodes and their weights is maintained in sorted non-increasing order, and each time the weight
of a leaf is increased because of a further occurrence of it in the message, the list is updated by (if
required) shifting that leaf to a new position, and then considering what effect that change has on
the pairing sequence that led to the Huffman tree. In particular, if a leaf swaps in the ordering with
another node, they should exchange positions in the Huffman tree, altering the weights associated
with their parents, and potentially triggering further updates. When appropriate auxiliary linking
information is maintained, incrementing the weight associated with a leaf currently at depth b in
the tree (and hence, presumably just coded using a b-bit codeword) can be accomplished in O(b)
time, that is, in O(1) time per tree level affected. Overall, these arrangements can thus be regarded
as taking time linear in the number inputs and outputs.
Dynamic Huffman coding approaches make use of linked data structures, and cannot benefit

from the canonical code arrangements described in Section 3. That means that they tend to be slow
in operation. In addition, they require several values to be stored for each of the n alphabet symbols,
so space can also become an issue. In combination, these drawbacks mean that dynamic Huffman
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coding is of only limited practical use. There are no general-purpose compression systems that
make use of dynamic Huffman coding, hence our relatively brief treatment of them here.

4.3 Adaptive Algorithms
An adaptive algorithm is one that is sensitive in some way to the particular level of difficulty
represented by the given problem instance. For example, in the field of sorting, a wide range of
adaptive algorithms are known that embed and seek to exploit some notion of “pre-existing order”,
such as the number of inversions; and in doing so provide faster execution when the input sequence
has low complexity according to that secondary measure [66].

Adaptive algorithms for computing minimum-redundancy codes have also been described. These
should not be confused with adaptive coding, another name for the dynamic coding problem
described in Section 4.2. In these adaptive algorithms, it is again usual for a second “quantity”
to be used to specify the complexity of each problem instance, in addition to n, the instance
size. As a first variant of this type of algorithm, Moffat and Turpin [62] introduce a concept they
refer to as runs, noting that in many typical large-alphabet coding problems the observed symbol
frequency distribution has a long tail, and that many symbols have the same low frequencies. The
distributionW = ⟨20, 17, 6, 3, 2, 2, 2, 1, 1, 1⟩ used as an example previously has a few repetitions;
and in the run-length framework of Moffat and Turpin could equally well have been represented as
W = ⟨1(20), 1(17), 1(6), 1(3), 3(2), 3(1)⟩, where the notation “r j (w j )” means “r j repetitions of weight
w j ”. If the coding instance is presented as the usual sorted list of frequencies, then it requires O(n)
time to convert it into this run-based format, and there is little to be gained compared to the use of
Algorithm 2. But if the coding instance is provided as input in this (typically) more compact format,
then Huffman’s algorithm can be modified so that it operates on a data structure that similarly
maintains runs of symbols, and the output T = ⟨1(1), 1(2), 1(4), 5(5), 2(6)⟩ can be generated. If the
input consists of n symbols with r different symbol weights, that code calculation process requires
O(r (1 + log(n/r ))) time, which is never worse than O(n). A runlength-based implementation of the
package-merge process that was described in Algorithm 3 is also possible [36].
Milidiú et al. [53] have also considered techniques for efficiently implementing Huffman’s

algorithm. They consider themaximum codeword length L generated by an application of Huffman’s
algorithm to be the secondary indicator of the complexity of a problem instance; and describe
methods that compute Huffman codes for sorted inputs in O(n) time and O(L) additional space.
Note that the computational model employed by Milidiú et al. requires that the input weightsW
not be overwritten; in this more restrictive framework, Algorithm 2 requires n additional words of
memory and is no longer “in place”. Kärkkäinen and Tischler [35] have also considered the question
of memory space required during code construction.
Belal and Elmasry [3, 4] have considered adaptivity using a similar framework, and show that

Huffman codes for unsorted sequences of weights can be computed inO((16Ldiff )n) time, where Ldiff
is the number of distinct codeword lengths, Ldiff ≤ L. But note that Ldiff ≥ 2 for all interesting cases,
and hence that n > 2256 is required before (16Ldiff )n < n log2 n. Belal and Elmasry also demonstrate
that if the weights are presented in sorted order, then O((9Ldiff ) log2k n) time is sufficient, which is
o(n) under the same conditions – if Ldiff is very small and n is astronomically large. Implementations
of these complex algorithms have not yet been measured, and it seems likely that if they do get
implemented they will be impractical for all plausible combinations of Ldiff and n.
Barbay [1] has also developed an adaptive algorithm for computing Huffman codes. In his

work the secondary measure of instance complexity is the number of alternations induced by the
sequence of input weights, where each alternation is a switch (in terms of Algorithms 1 and 2)
from consumption of original leaf nodes to the consumption of internal nodes during the tree
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formation process. When the number of alternations inW , denoted α(W ), is high, the resultant
tree has many distinct levels and the instance cost is high; when α(W ) is low the tree is likely to be
relatively shallow and easier to construct. Based on this approach, Barbay describes a mechanism
for computing a Huffman code from a non-sorted input sequence W of n symbol weights in
O(n(1 + logα(W ))) time; Barbay also demonstrates that when there are α(W ) alternations, it is
not possible to compute a minimum-redundancy code in less than this much time, and hence that
relative to the alternations measure, his approach is optimally adaptive. Note also that Ldiff ≤ α(W )
for all sequencesW , and that it may thus be possible to further refine Barbay’s approach, and
develop an adaptive algorithm that requires only O(n(1 + logLdiff)) time.

4.4 Coding with Infinite Alphabets
Finally, it is worth mentioning the work of Solomon Golomb [26], who developed minimum-
redundancy codes for certain types of infinite probability distributions, notably the geometric
distribution. Discussion of these approaches is outside the scope of this article.

5 OTHER ENTROPY-CODING TECHNIQUES
In this section we provide an introduction to two other entropy coding techniques. Section 6 then
compares them to the Huffman coding mechanism described in Sections 2 and 3. Both of these
two techniques are able to obtain compression closer to the entropic bound (Equation 3) than is
Huffman coding, because of their use of state variables that carry information – fractional bits, so
to speak – forward from one coded symbol to the next. Where these two methods differ is in terms
of what their respective state variables represent, and how channel symbols are extracted from
the state variables and committed to the output stream in an incremental manner. In particular, in
an arithmetic coder, a fractional state value becomes increasingly precise as symbols are encoded,
with more and more leading bits being bound to their final values; whereas in an ANS coder a
integer state value is allowed to grow larger and larger as the symbols are coded. The next two
sections provide examples that illustrate these two methods and the differences between them.

5.1 Arithmetic Coding
The basic principles of arithmetic coding are described by a number of authors [5, 63, 67, 84], with
the presentation here largely built on the description of multi-symbol alphabet adaptive coding first
given in 1987 by Witten et al. [85] and later extended by Moffat et al. [57]. Prior to 1987, activity
had largely focused on binary alphabets and binary arithmetic coding for messages over biased
two-symbol arrangements (whenW = ⟨w0,w1⟩ withw0 ≫ w1) using less than one bit per symbol.

The key idea that underpins all arithmetic coding implementations is that of a current coding state,
described by a pair of values ⟨lower, range⟩, both of which (in simple terms) should be thought of as
being arbitrary-precision values between 0 and 1. Together they constrain a value that represents
the input message, and which must also be in the range [0, 1):

lower ≤ value < lower + range .

At the commencement of encoding, before any symbols have been processed, lower = 0 and
range = 1, with value free to take on any number between zero and one.

As each message symbol s is processed the interval corresponding to the current state is replaced
by a narrower interval [next_lower, next_lower + next_range) that further constrains value,

lower ≤ next_lower ≤ value < next_lower + next_range ≤ lower + range .

The narrowing is carried out in strict numeric proportion to the probability range within the
interval [0, 1) that is associated with symbol s , based on the relative symbol weights expressed
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Algorithm 4 Computing the state transitions required by arithmetic coding [57, 85].
1: function arith_encode (lower, range, s)
2: // Compute the arithmetic coding state change, assuming that
3: // base[s] =

∑s−1
i=0W [i] for 0 ≤ s ≤ n has been precomputed, with base[n] =m

4: set scale← range/m
5: set next_lower ← lower + scale · base[s]
6: set next_range← scale ·W [s]
7: return ⟨next_lower, next_range⟩

8: function arith_decode (lower, range, value)
9: // Compute symbol identifier by partitioning the range so that it straddles value
10: set scale← range/m
11: set target ← ⌊(value − lower)/scale⌋
12: find s such that base[s] ≤ target < base[s + 1]
13: set next_lower ← lower + scale · base[s]
14: set next_range← scale ·W [s]
15: return ⟨next_lower, next_range, s⟩

inW . The first part of Algorithm 4 provides details of this process, making use of a pre-computed
array base[s] that stores the cumulative weight of all symbols prior to s in the source alphabet. The
half-open interval [base[s]/m, base[s + 1]/m) is the fraction assigned to s in the unit interval [0, 1)
(recall thatm is the sum of the symbol frequency counts, that is, the length of the sequence being
compressed), and that means that each interval narrowing step results in

next_range = range · (ws/m) .

Once all of the message symbols have been processed, a shortest-possible unambiguous binary
value that lies fully within the final interval is identified, and transmitted to the decoder. As already
noted, prior to any symbols being coded, range = 1. Hence, once the sequence ofm symbols making
up the message have all been processed, and assuming that exact arbitrary-precision arithmetic
is available, the final interval [lower, lower + range) completely captures the message, and can be
represented by any single number value that satisfies lower < value < lower + range. Such a value
cannot require more than (− log2 range) + 2 bits to describe, meaning that them symbols in the
source message can be coded in at most 2 +

∑
s log2(m/ws ) bits, that is, in at most two more bits

than the summed entropic cost of the symbols making up the message.
To decode themessage embodied in value, the decoder uses base[] to determine a symbol identifier

s whose probability assignment in the range [0, 1) straddles (in proportion) the relationship that
value has to the current interval [lower, lower + range). The second part of Algorithm 4 describes
this computation, with lower and range being initialized to 0 and 1 again, and then faithfully tracing
the same sequence of values in the decoder as they did in the encoder, with the interval narrowing
around the message value, which remains constant.
Table 5 gives an example of this exact form of arithmetic coding, rendering an eleven symbol

message “0, 0, 1, 0, 2, 0, 1, 5, 0, 3, 1” into a 24-bit compressed message. Relative to the probabilities
established byW , the entropic cost of this message would be 22.95 bits. The Huffman code de-
picted in Figure 2 also requires 23 bits. In this short example the ability of arithmetic coding
to faithfully match the entropic costs does not show through particularly well. But in more ex-
treme cases, the advantage becomes clear. For the weightsW = ⟨99, 1⟩, the 24-symbol message
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Symbol Current code interval

lower range lower + range

initial 0.000000000000000 1.000000000000000 1.000000000000000
0 [ 0/21, 10/21) 0.000000000000000 0.476190476190476 0.476190476190476
0 [ 0/21, 10/21) 0.000000000000000 0.226757369614512 0.226757369614512
1 [10/21, 16/21) 0.107979699816435 0.064787819889861 0.172767519706295
0 [ 0/21, 10/21) 0.107979699816435 0.030851342804696 0.138831042621130
2 [16/21, 18/21) 0.131485484810488 0.002938223124257 0.134423707934745
0 [ 0/21, 10/21) 0.131485484810488 0.001399153868694 0.132884638679182
1 [10/21, 16/21) 0.132151748557485 0.000399758248198 0.132551506805683
5 [20/21, 21/21) 0.132532470698626 0.000019036107057 0.132551506805683
0 [ 0/21, 10/21) 0.132532470698626 0.000009064812884 0.132541535511511
3 [18/21, 19/21) 0.132540240538242 0.000000431657756 0.132540672195998
1 [10/21, 16/21) 0.132540446089554 0.000000123330788 0.132540569420342

final values (binary)
lower 0.00100001 11101110 00101011 10110001 01011010 · · ·
lower + range 0.00100001 11101110 00101101 11000011 00001101 · · ·

Table 5. Encoding the sequence 0, 0, 1, 0, 2, 0, 1, 5, 0, 3, 1 relative to the weightsW = ⟨10, 6, 2, 1, 1, 1⟩, assum-
ing an alphabet of n = 6 symbols. The encoded message can be represented in decimal by the number
value = 0.13254050, or in binary by the 24-bit string (with the leading zero and binary point suppressed)
“00100001 11101110 00101100”.

“0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0” is coded as “11110010” and takes just eight
bits, a substantial reduction on the 24 that would be required by a minimum-redundancy code.

Practical implementations of arithmetic coding avoid arbitrary-precision arithmetic, and instead
include a renormalization process that emits a bit (or byte, see Schindler [68]), and doubles range (or
multiplies it by 256), whenever a leading bit (or byte) of lower can be unambiguously determined.
That ability means that lower and range can be manipulated as 32-bit integers [57, 85], and hence
that coding one symbol involves a small number of integer multiplication and integer division
operations to compute next_lower and next_range from lower , range, base[s], and ws ; possibly
followed by one or more renormalization cycles. The fact that the calculations are limited to at
most 32 bits of precision and are not exact means that some slight compression effectiveness loss
emerges, but in practical systems it is very small.
Compared to Huffman coding, arithmetic coding offers two significant advantages: it handles

skewed probability distributions accurately; and it readily supports adaptive models, in which the
probability estimates are adjusted as the message is processed, and in which there might be multiple
contexts, with the choice as to which one gets used for any particular symbol determined by the
sequence of previous symbols. These are both enormously useful attributes, and have been used to
good advantage in multi-state multi-context compression schemes such as prediction by partial
matching (PPM) compression systems [14, 22, 31, 54, 72]. On the other hand, the multiplications
and divisions required mean that arithmetic coding decodes more slowly than does canonical
minimum-redundancy coding, even when the symbol frequencies are fixed and the compression
system is static or semi-static. A wide range of methods have also been introduced that make use
of approximate arithmetic in some way, where decreased compression effectiveness is accepted
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Symbol Mapping from state→ next_state

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·

0 10/21 1 2 3 4 5 6 7 8 9 10 22 23 24 25 26 27 · · ·

1 6/21 11 12 13 14 15 16 32 33 34 35 36 37 53 54 55 56 · · ·

2 2/21 17 18 38 39 59 60 80 81 · · ·

3 1/21 19 40 61 82 · · ·

4 1/21 20 41 62 83 · · ·

5 1/21 21 42 63 84 · · ·

Table 6. Nominal ANS transition table A[·, ·] for weightsW = ⟨10, 6, 2, 1, 1, 1⟩. The second cycle in the state
transition sequence is picked out in blue/bold to illustrate the numbering regime that is followed, covering
the transitions into states 22 to 42 inclusive. The vertical lines in each row denote the boundaries between
the cycles.

in return for faster execution, but these still do not offer the decoding speed that is possible with
canonical Huffman decoding.

When carrying out arithmetic encoding based on fixed symbol probabilities, the required calcu-
lations are all based on values that can be pre-computed and stored in n-element arrays. But when
decoding, even with static probabilities, the set of cumulative weights base[] must be searched, to
identify the symbol s for which base[s] ≤ target < base[s + 1]. One option is to spendO(logn) time
per symbol to binary-search the array base[]; another is to allocate a further array ofm elements,
symbol[], to map directly from the set of possible target numbers to the corresponding symbol
identifiers. It is also possible to carry out the search step using n-element arrays in O(1 + logb)
time, where b is the number of bits associated with the code for the symbol in question [55]. Moffat
and Turpin [63, Chapter 5] describe these structures, and a range of other details required in a full
arithmetic coding implementation.
Semi-static arithmetic coding requires that the set of n symbol weightsW = ⟨wi ⟩ be commu-

nicated to the decoder via a prelude, a more onerous requirement than the codeword lengths
associated with Huffman coding, because of the increased precision in the numbers involved. That
increased precision is what allows more precise probability estimates to be employed, and is what
takes arithmetic coding closer to the entropic information bound

∑
log2(m/ws ), usually, but not

always, recouping the additional prelude cost.

5.2 Asymmetric Numeral Systems
The last ten years have seen the emergence of a third mechanism for entropy coding, the asymmetric
numeral systems (ANS) technique originally developed by Jarek Duda [17, 18], and explored in
practical terms by Yann Collet3. Like arithmetic coding, the message is treated as a whole, and a
single “number” emerges at the end of the input, and is regarded as representing the entire input
message; and, also like arithmetic coding, a state is also maintained, in the case of ANS coding,
as a single integer. The initial value of state is zero, representing the empty string ϵ . From that
starting point, each input symbol s is used to shift from the current state to a new state via an
update next_state← A[state, s], where A[·, ·] is a pre-computed transition table.
Table 6 shows part of the table A[·, ·] for the weights used in several of the previous examples,

W = ⟨10, 6, 2, 1, 1, 1⟩, with n = 6. To create the table, the integers from 1 tom are allocated across
the rows, distributed so that the i th row containswi of them. The integers fromm + 1 to 2m are

3For example, https://github.com/Cyan4973/FiniteStateEntropy
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then likewise allocated in a second cycle; then the integers from 2m + 1 to 3m; and so on. The
second cycle of values (incomplete for symbol 0) is picked out in blue in Table 6, with the vertical
bars indicating the end of each cycle.

Now consider the sample message “0,0,1,0,2,0,1,5,0,3,1’. The final value of state will be

A[A[A[A[A[A[A[A[A[A[A[0, 0], 0], 1], 0], 2], 0], 1], 5], 0], 3], 1] ,

of which the first four steps can be traced in Table 6, and with the remainder easily calculated
(because of the regular nature of the table, see Algorithm 5). The total sequence of states associated
with this example is

0→ 1→ 2→ 13→ 25→ 270→ 568→ 1989→ 41,790→ 87,760→ 1,842,979→ 6,450,435 ,

and the final value – which is a 23-bit binary integer – completely encapsulates the 11 symbols in
the input message. As already noted, the minimum-redundancy codes shown in Figure 2 would
also require 23 bits for this sample message.

Decoding works in reverse: the final value for state is located in the tableA[·, ·], with the row num-
ber indicating the symbol to be stacked (symbols are determined in reverse order during decoding),
and the column number indicating the prev_state to revert to. For example, the integer 6,450,434
(one less than the example given above) gives rise to the output sequence “1, 0, 2, 0, 2, 1, 0, 0, 0, 2, 1”;
and the integer 6,450,436 (one larger) leads to the decoded sequence “0, 0, 1, 0, 2, 0, 1, 5, 0, 4, 1”.

What is quite remarkable in this technique is that – despite the seeming unpredictability of the
values involved – it provides a deterministic one-to-one mapping from strings to integers in which
the final state value associated with each string is very close to being the reciprocal of the products
of the probabilities of the symbols comprising the string. This happens because the sequence of
state values at each step increases by the required ratio. For example, in the sequence of states
shown above as being associated with the string “0, 0, 1, 0, 2, 0, 1, 5, 0, 3, 1”, the final three ratios
are 87760/41790 = 2.100 = 21/10 (symbol 0); 1842979/87760 = 21.000 = 21/1 (symbol 3); and
6450435/1842979 = 3.500 = 21/6 (symbol 1). Hence, it is unsurprising that ⌈log2 state⌉ is close to
the entropy cost.

Like arithmetic coding, ANS can obtain compression effectiveness of less than one bit per symbol.
ForW = ⟨99, 1⟩ and the message “0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0” that was
used as an earlier example, the range ANS approach described in Algorithm 5 generates a final
state of 730, and hence can represent the 24 symbols in 10 bits.

Use of an infinite table is, of course, impossible. But the highly regular nature of the cycles means
that simple computations suffice to calculate the encoding and decoding transformation, given
only an n-element array of integral symbol weightsW [], and a pre-computed cumulative sum
array base[] of the same size. Algorithm 5 provides details, with the encoder mapping returning
a next_state; and the inverse decoder mapping returning a tuple containing a prev_state and the
corresponding decoded symbol s .
In the decoder, one additional array is assumed, them-element inverse of base[]. In this array,

symbol[r ] is the source symbol associated with the r th offset in each of the ANS cycles. In the
example, the first 10 elements of symbol[], from subscript 1 to subscript 10, would indicate “0”;
then the next 6 elements would indicate “1”, and so on; with symbol[21], at the end of the cycle,
storing “5”. If space is at a premium the symbol[] array can be replaced by a linear or binary search
in base[], as was already discussed in connection with arithmetic coding.

A very important factor of ANS that allows fast decoding is the ability to adjustm, by scaling the
countsW = ⟨wi ⟩ to new valuesW ′ = ⟨w ′i ⟩ so that their summ′ is a power of two. If that is done,
then the inverse mapping function’s key computations at steps 10 and 11 can be implemented as
shift/mask operations. Slight compression effectiveness loss may be introduced as a result of the
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Algorithm 5 Computing the mappings A[·, ·] and A−1[·] for range ANS coding [18].
1: function ans_encode (state, s)
2: // Compute the ANS forward mapping, assuming that
3: // base[s] = 1 +

∑s−1
i=0W [i] for 0 ≤ s ≤ n has been precomputed, with base[n] =m + 1

4: set f ← state divW [s]
5: set r ← state modW [s]
6: set next_state← f ·m + base[s] + r
7: return next_state

8: function ans_decode (state)
9: // Compute the ANS inverse mapping, again assuming base[s]
10: set r ← 1 + (state − 1)modm
11: set f ← (state − r ) divm
12: set s ← symbol[r ]
13: set prev_state← f ·W [s] − base[s] + r
14: return ⟨prev_state, s⟩

adjusted weights, but the overhead is likely to be very small, providedm′, the new value, is several
multiples larger than n, the size of the source alphabet. For example, a character-based coder for
the n = 256 byte values might be designed so that the observed character frequencies are scaled to
yieldm′ = 4096 orm′ = 65536. The latter will allow more precise probability estimates, but also
involve a larger symbol[] array, potentially slowing decoding throughput because of cache misses.
In the special case in whichm′ is an integer power of two, and all of theW [i] values that sum tom′
are also rounded to integer powers of two, then each coding operation adds an integral number of
bits of precision to the value of state. That is, a Huffman code can be thought of as being a special
case of an ANS code.

Omitted from the description in Algorithm 5 is the mechanism used to periodically renormalize
state, necessary in an implementation so that integer overflow does not arise. Renormalization
occurs in the encoder by removing some number k of bits from the low-order end of state and
writing them to the output stream, and shifting the remaining bits to the right, where k = 8 or
k = 16might be attractive units. In the decoder, renormalization shifts state to the left by k bits, and
brings in the next k bits from the coded message. Careful attention to detail is required to ensure
that encoder and decoder remain in step, and that the sequence of states traversed backwards
by the decoder is exactly faithful to the sequence traversed forwards by the encoder. As part of
this mechanism, state is maintained within a range determined bym, the sum of the occurrence
counts, and by r = 2k , the radix of the code. One way of doing this is to require that (after an initial
ramp-up stage during which the first of the two inequalities is not enforced)C ·m ≤ state < C ·m · r
after every encoding step, and prior to every decoding step, for some integer multiplier C ≥ 1.

Bounding the range of state in the encoder is achieved by anticipating what will happen at each
upcoming encoding step, and if the putative next_state is greater than the upper bound on the range,
reducing state ahead of the encoding operation. That is, prior to step 6 in Algorithm 5, intervention
may be necessary to ensure that the upper and lower bounds on state are complied with when that
step does get performed. In the decoder, the corresponding update takes place following a decoding
operation at step 13, and is indicated by the computed prev_state falling below the lower bound on
the range (except during the wind-down phase at the end of the message as the first few symbols
to have been encoded are regenerated).
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The constantC provides a tradeoff between the fidelity of the arithmetic to the entropic cost, and
the number of bits used in the computation, and hence the size of the arrays used in a table-based
implementation. When C = 1, compression effectiveness is compromised by round-off issues as
state gets scaled, but is likely to still be better than a Huffman code; compression close to the
entropic cost occurs when C is larger.

There is a clear difference between ANS renormalization and arithmetic coding renormalization
– in the case of arithmetic coding, the encoder renormalization process takes bits (or bytes) from the
most-significant end of the state variables lower and range, whereas in ANS they are taken from
the least-significant end of state. Nevertheless, there are also many aspects of the renormalization
process that are shared between the two methods.

Because the decoder of necessity must consume code digits in reverse order to their generation
by the encoder, and regenerates the output string from right to left, it is usual in an ANS coder for
the input sequence to be reversed at the encoder, then the encoding to be performed with the output
digits stored into a buffer, and finally the buffer to be written as the coded message, also in reverse
order. Applying both of the “reversing” steps within the encoder allows the decoder to consume the
code digits (starting with the encoder’s final state) sequentially, at the same time writing alphabet
symbols directly to the output to regenerate the original input, thereby minimizing the cost of the
decoding process.

Like arithmetic coding, ANS achieves its best compression if it has precise symbol counts available,
in which case the prelude cost for ANS is the same as the prelude cost for an arithmetic coder,
and greater than the prelude cost for a Huffman coder. If “approximated” power-of-two frequency
counts as represented by a code T = ⟨ℓi ⟩ are used with an ANS coder, then compression equal to
that of a Huffman coder will result.

6 CONCLUSION: IS HUFFMAN CODING DEAD?
In an article written not long after multi-symbol arithmetic coding was popularized, Bookstein and
Klein [8] asked the question, “is Huffman coding dead?” Their investigation was prompted by the
claims being made for arithmetic coding: that it provided compression close to the entropic cost;
that it was easy to implement it adaptively; and that it was possible to not just use it adaptively with
changing symbol probabilities, but also possible to use it with multiple probability distributions, so
that each symbol was coded in a context established by the symbols that preceded it in the input.
Bookstein and Klein considered a number of factors, including compression effectiveness on typical
zero-order character-based alphabets, applicability to short messages, operational performance in
the face of inaccurate symbol probability estimates, robustness in the face of channel errors that
corrupted message bits, and encoding and decoding speed. Their conclusion was that:

. . . for a substantial portion of compression applications, Huffman coding, because of its
speed, simplicity, and effectiveness, is likely to be the preferred choice . . . for adaptive
coding, or when dealing with highly-skewed alphabets that cannot be redefined, arithmetic
coding may well be the better of the two.

Moffat et al. [60] also compare Huffman and arithmetic coding using a range of criteria, and
comment positively on the decoding speed of static Huffman coding, and negatively on the speed
of dynamic Huffman techniques.

Table 7 considers the same question, twenty-five years on from the evaluation of Bookstein and
Klein, and now with ANS coding added. The “speed” values provided are deliberately qualitative,
but in broad terms for a pure coding application (and with no modeling stage required; for example,
taking an input file of 32-bit binary integers and representing it as an output file of coded bytes),
“very fast” can be interpreted to mean something in the vicinity of 1–5 nanoseconds per decoded
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Attribute Minimum-redundancy Arithmetic ANS

Relative
effectiveness

Close to entropy limit
whenw0/m → 0;
arbitrarily bad as
w0/m → 1.

Close to entropy limit for
all inputs.

Close to entropy limit for
all inputs.

Static encoding
speed

Very fast. Moderately fast. Very fast.

Static decoding
speed

Very fast. Moderately fast. Very fast.

Prelude cost for
semi-static
coding

Small. Slightly higher. Same as for arithmetic.

Adaptive
encoding speed

Slow, and with significant
space overheads.

Only marginally changed
from static encoding.

n/a

Adaptive
decoding speed

Slow, and with significant
space overheads.

Only marginally changed
from static decoding.

n/a

Multi-context
operation

Likely to have inferior
relative effectiveness
because of skewed and/or
small-alphabet coding
situations.

Straightforward, little
overhead.

n/a

Table 7. Comparison of Huffman, arithmetic, and ANS entropy coding techniques.

integer when executed on commodity hardware; “moderately fast” as meaning 10–50 nanoseconds
per decoded integer; and “slow” as meaning 100 or more nanoseconds per integer.
Considering the table’s rows in turn, the big weakness of Huffman coding is its inability to

approach the entropic cost when the probability distribution is dominated by the most common
symbol. In terms of speed, arithmetic coding requires more computation than either Huffman
or ANS coding, and if implemented adaptively (one of its key application areas), speed further
drops because of the updates that take place to the statistics data structure. The question of ANS
decoding speed relative to Huffman decoding speed is one that has received detailed exploration
by practitioners; see, for example, the results collected by Yann Collet4, who suggests that Huffman
decoding is still faster than ANS decoding. Indeed, since Huffman coding can be regarded as being
a special case of ANS coding, any implementation technique or performance gain made in regard to
ANS will likely be transferable to Huffman coding. Moreover, the techniques described in Section 3.2
mean that minimum-redundancy coding can be very fast indeed, particularly if a length-limit is
applied so as to control the size of the decoding tables. Huffman coding is used in the well-known
ZLib library, for example5; and in the bzip2 general purpose compressor6.

4https://github.com/Cyan4973/FiniteStateEntropy, accessed 6 September 2018.
5http://zlib.net
6http://www.bzip.org/
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On the other hand, arithmetic decoding is not as fast. In particular, in the decoder (Algorithm 4),
two state variables are maintained, and only one of the two divisions (the one bym) is “controllable”,
in the sense of it being possible in a semi-static coder to adjust the symbol frequencies so thatm is
a fixed power of two. The second division cannot be dealt with in this way. In the ANS decoder
(Algorithm 5), only a single state variable is maintained, and the division that is required at each
decoding step is controllable, and can always be implemented using a single shift/mask.
The ANS approach cannot be used where adaptive probability estimates and multi-context

models are in operation, because the symbols are regenerated by the decoder in the reverse order
that they are processed by the encoder. The high cost of dynamic Huffman coding thus means that
complex multi-context models must still be coupled with arithmetic coding.
Table-based implementations of ANS that are similar to the table-based Huffman approaches

result in further speed gains. Because of its near-entropy compression effectiveness and its fast
decoding speed, ANS coding has been incorporated in a range of general-purpose compression
tools in which block-based operation means that static codes are appropriate, and that the two
reversing steps can be accommodated. These include the ZStd library7 and software by Apple
and Google. Interest in ANS has been in part sparked by several blogs including those of Charles
Bloom8, Yann Collet9, and Franz Giesen10. Applications that have incorporated ANS include image
compression [19]; compressed indexes for document retrieval systems [58, 59]; and compression of
time-series data [7].

To obtain their compression advantage, arithmetic and ANS coders require more detailed prelude
statistics, which adds a small overhead and might discourage their use for short messages. Note,
however, that the implicit approximation of symbol occurrence counts that is an inevitable part
of a minimum-redundancy coding prelude (Section 3.3) could also be explicitly employed with
the arithmetic and ANS coding mechanisms, and so the “short messages” differential noted by
Bookstein and Klein [8] is not a fundamental one in any way.
Taking all of the facets listed in Table 7 into account, it is clear that arithmetic coding remains

the preferred choice for adaptive and multi-context modeling situations, but also that ANS is an
important new technique that should be used in preference to minimum-redundancy (Huffman)
coding in many of the latter’s traditional application areas. However it is also clear that when
comparing ANS and minimum-redundancy coding, a trade-off between decoding speed and com-
pression effectiveness still exists, and if the symbol probability distribution is not skewed, then
canonical minimum-redundancy decoding continues to be the appropriate choice.
More than sixty years since it was first invented, Huffman’s famous algorithm is no longer the

irresistible force that it once was. But even so, Huffman coding remains alive and well, and plays
an important role in practical data compression systems.

Software
An implementation of minimum-redundancy coding that includes many of the techniques de-
scribed in this paper and operates on general integer sequences is available at https://github.com/
turpinandrew/shuff. Yann Collet’s highly-tuned implementation of table-based ANS (called Finite
State Entropy coding, or FSE) is available at https://github.com/Cyan4973/FiniteStateEntropy and
is accompanied by a corresponding carefully-engineered implementation of Huffman coding, both

7https://github.com/facebook/zstd
8For example, http://cbloomrants.blogspot.com/2014/02/02-01-14-understanding-ans-3.html, accessed 6 September 2018.
9For example, http://fastcompression.blogspot.com/2014/01/fse-decoding-how-it-works.html, accessed 6 September 2018.
10For example, https://fgiesen.wordpress.com/2014/02/02/rans-notes/, accessed 6 September 2018; and software at https:
//github.com/Cyan4973/FiniteStateEntropy.
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operating over character-based input rather than general integer input. An implementation of arith-
metic coding that is relatively untuned is available at http://people.eng.unimelb.edu.au/ammoffat/
arith_coder; it also has a mode that processes general integer sequences.
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