
41

Boosting Search Performance UsingQuery Variations

RODGER BENHAM, RMIT University

JOEL MACKENZIE, RMIT University

ALISTAIR MOFFAT, The University of Melbourne

J. SHANE CULPEPPER, RMIT University

Rank fusion is a powerful technique that allows multiple sources of information to be combined into a single

result set. Query variations covering the same information need represent one way in which different sources

of information might arise. However, when implemented in the obvious manner, fusion over query variations is

not cost-effective, at odds with the usual web-search requirement for strict per-query efficiency guarantees. In

this work we propose a novel solution to query fusion, by splitting the computation into two parts – one phase

that is carried out offline, to generate pre-computed centroid answers for queries addressing broadly similar

information needs; and then a second online phase that uses the corresponding topic centroid to compute a

result page for each query. To achieve this, we make use of score-based fusion algorithms whose costs can

be amortized via the pre-processing step, and which can then be efficiently combined during subsequent

per-query re-ranking operations. Experimental results using the ClueWeb12B collection and the UQV100 query

variations demonstrate that centroid-based approaches allow improved retrieval effectiveness at little or no

loss in query throughput or latency, and within reasonable pre-processing requirements. We additionally show

that queries that do not match any of the pre-computed clusters can be accurately identified and efficiently

processed in our proposed ranking pipeline.

CCS Concepts: • Information systems→ Retrieval efficiency; Search engine architectures and scala-

bility; Information retrieval query processing; Combination, fusion and federated search.

Additional Key Words and Phrases: Rank fusion, Dynamic Pruning, Efficiency, Effectiveness, Experimentation

ACM Reference Format:

Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper. 2019. Boosting Search Performance

Using Query Variations. ACM Transactions on Information Systems 37, 3, Article 41 (August 2019), 25 pages.
https://doi.org/10.1145/3345001

1 INTRODUCTION
Rank fusion is used to combine knowledge from different result sets into a single, highly-effective,

answer page. The fusion can be score-based, in which the retrieval scores of documents are aggre-

gated; or rank-based, in which documents are assigned a weighting based solely on their positions

in the separate lists. In both cases, the new top-k result set is derived by re-sorting the documents

after aggregate weightings are computed. Vogt and Cottrell [86] describe several effects that allow

fusion to produce an effective response: taking advantage of diversity in document representation

(skimming); building consensus among ranked lists (chorus); and catering for differences in quality

of rankers (dark horse). Vogt [84] makes a case for fusion in web search based on parallelizing

Authors’ addresses: Rodger Benham, RMIT University, Melbourne, Australia; Joel Mackenzie, RMIT University, Melbourne,

Australia; Alistair Moffat, The University of Melbourne, Melbourne, Australia; J. Shane Culpepper, RMIT University,

Melbourne, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1046-8188/2019/08-ART41 $15.00

https://doi.org/10.1145/3345001

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://doi.org/10.1145/3345001
https://doi.org/10.1145/3345001

41:2 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

“benefits of
eating dark
chocolate”

“dark chocolate
health”

“dark chocolate
benefits”

Rank Fusion
d9: 15.9
d2: 7.6
d5: 7.1

“Dark chocolate health
benefits”

A magazine article mentioned
dark chocolate as a “healthy”

food. !is has got you
wondering what the benefits

of dark chocolate might
actually be.

d9: 6.4
d1: 2.3
d3: 1.3

d5: 7.1
d9: 5.4
d8: 3.9

d2: 7.6
d9: 4.1
d4: 3.4

Fig. 1. The query cluster for the information need “dark chocolate health benefits”, relating to the query

UQV100.034 [5]. Starting at the left, the cloud represents the user’s information need, with possible query

variants shown by dashed lines. A ranked list is then generated for each of those queries; those lists are

combined (solid lines) to form a fused ranking (green box) for that set of queries, with that ranking referred to

here as the cluster centroid. In this figure the CombSUM approach to fusion is assumed.

“fast but inaccurate IR systems”, and then combining the lists to obtain results commensurate

with a single high-performance system. Fusing the output of a one-shot query issued to many IR

systems has also received attention – for example, Vogt [85] empirically shows that there is an

implicit upper-bound of systems that should be fused before diminishing returns on effectiveness

are experienced.

Query fusion is a source of information independent of systems, and has known to be effective

for several decades. For example, in one early study, Belkin et al. [8] show that unsupervised fusion

of related queries on the same system yields greater effectiveness than fusing one query issued to

many better-performing systems. More recently, Moffat et al. [70] found that varying the queries of

an information need retrieves at least the same diversity of relevant documents as does varying the

systems carrying out the retrieval. Here we develop those ideas, and investigate the CPU time and

wall-clock time of query-based fusion in a web search environment. Processing query variations

typically involves maintaining a heap data structure, with previous fusion techniques requiring

one heap for each query variation. To efficiently fuse query variations, in Section 4 we introduce a

fusion technique that only requires one heap, assuming that certain pre-conditions can be met.

In Section 5 we further reduce the cost of query-based fusion, and introduce a second new

approach, this one based on re-ranking. The key idea is to amortize the cost of fusion, and use

a pre-processing phase that computes query centroids, as illustrated in Figure 1, where a group

of related queries are found using manual or automatic methods [11], and then their runs fused

together into a single list [67, 78, 88]. Those centroid rankings are then held in a searchable cache.

When a new query arrives, an association process identifies a matching cluster; at the same time,

the query is processed to produce a top-k ranking. The centroid ranking and the query ranking

are then fused, and a combined top-k ranking is computed. The goal is for the fused ranking be a

consensus derived from all of the queries in the pre-processed cluster, together with the documents

specifically identified by the query being handled.

As part of Section 5, we present several methods for combining the centroid ranking and the

original query ranking. These include balanced interleaving between the query ranking and the

centroid ranking, as occurs in online retrieval experiments [75]; carrying out a weighted CombSUM

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:3

[35] between the two rankings; and employing a re-ranking approach in which the common-to-both

documents are placed at the head of the result page, ordered by their position in the centroid.

Contributions. In particular, we:

• Investigate the wall-clock time of single-pass rank fusion and the parallel method described

by Vogt [84];

• Propose a novel score-safe cost-effective single-pass rank fusion technique;

• Describe a novel query fusion architecture that efficiently re-ranks queries in an online

setting; and

• Validate our results using the ClueWeb12B corpus and the publicly available query variations

provided by the UQV100 test collection [5].

In what follows, Section 2 introduces related work; Section 3 describes the experimental setup;

Section 4 explores a number of techniques for fusing multiple query variations online; Section 5

shows how the fusion can be computed offline and proposes various rankers that can utilize such

pre-computed data; and Section 6 outlines some of the shortcomings of our investigation and

describes possible future work.

2 BACKGROUND
2.1 Rank Fusion
It is well-known that combining the ranked retrieval outputs of query variations representing the

same information need can improve retrieval effectiveness. For example, Belkin et al. [8] showed

a representative sample of topic descriptions to ten experienced searchers, generating a pool of

five Boolean queries for each topic. The outputs of the query variations were combined using an

unweighted sum of retrieval scores. Those scores were computed using the INQUERY framework

[82], which factors term weightings and the resulting list is not strictly Boolean. This aggregation of

ranked-retrieval scores was later named CombSUM by Fox and Shaw [35], who investigated a range

of rank fusion techniques. Bailey et al. [6] studied these phenomena further in their exploration of

fusion and query variation consistency. Follow-on studies of query variation and rank fusion have

shown that combining multiple individual rankings consistently boosts effectiveness [10–13].

Kozorovitsky and Kurland [48] showed that inter-document similarities can be used in a fusion

framework to reward documents similar to those at the head of the result list. Other work has

explored the role of fusion in diversification [53]; automatic generation of query perturbations [92];

the relationship between fusion and clustering [48]; and boosting tail query performance using

supervised rank fusion [42]. No previous studies have explored the resource implications of these

techniques in a large-scale search environment.

The use of supervised rank fusion with query variations has also been examined. Sheldon et al.

[79] describe a supervised data fusion method named LambdaMerge, which optimizes a retrieval

effectiveness metric based on fusion over user query reformulations and a wide range of document

features. Lee et al. [52] extend the LambdaMerge framework from data fusion to collection fusion,

where query-list features in a collection are averaged and used as query-vertical features. These

approaches, as well as those of Huo et al. [42], are closely aligned with the work we present shortly.

Other fusion techniques are also possible [3, 49].

The relationship between supervised fusion and learning-to-rank is an important issue in its own

right, but one which is orthogonal to this work. Our approach here does not require supervised

learning to achieve competitive results against strong baselines that were selected based on their

well-established ability to efficiently and effectively rank documents in a web search environment.

We will explore supervised approaches in future work.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:4 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

2.2 Pseudo-Relevance Feedback
Documents. It has been known for a half century that appending terms from external sources to

the user query can improve search effectiveness. Rocchio [77] suggests that users could submit

queries using the vector space model, receive an initial list of documents in response to their query;

then in a second step, examine those documents and run another query extended by the use of

terms drawn from any documents identified as relevant. Additionally, the documents found by the

user to not be relevant would have high-importance terms extracted and appended to the original

query with a negative weighting, to lower the chances of non-relevant documents appearing in the

ranked list.

To avoid the relevance assessment step, the top-R documents in the original query might be

assumed to be relevant, with the top-E terms extracted from them appended to the original user

query. Buckley et al. [18] note that this pseudo-relevance feedback approach was widely used in

class projects at Cornell University in the 1980s, but that the origins of the approach were unknown.

Pseudo-relevance feedback was also explored as an element of the third TREC conference [40]. In

those experiments, large-scale relevance feedback, in which the top-30 documents of the initial

retrieval had 500 terms extracted and appended to the user query, was shown to lead to an average

20% effectiveness improvement.

Language models [51, 74] can also be extended by pseudo-relevance feedback – referred to as

relevance modeling. Working with TREC collections, Lavrenko and Allan [50] consider efficiency-

related issues, finding that relevance modeling can be accomplished within acceptable real-time

constraints if a pre-computed document similarity matrix is utilized. However, even on small

collections, the required pre-computation is costly, and the technique is not suitable for web-scale

operation. A range of other approaches to improve the efficiency of the longer second iteration of

pseudo-relevance feedback have also been considered [11, 22, 90].

Queries. Relevance feedback approaches use documents as a source to add terms to the original

query. As an alternative, in experiments using the TREC WT10g collection, Billerbeck et al. [14]

show that forming query associations using the method described by Scholer and Williams [78]

is more effective than using documents. Scholer and Williams [78] had found that a group of

related queries can be formed by finding the set of top scoring queries for a document. This type of

association has parallels in the initial stage of pseudo-relevance, and assumes that the high-scoring

queries for a document are related, and hence can act as a surrogate for forming query associations

when click-logs are not available. Terms are then selected from the associated queries to be added

to the original query, using a selection formula due to Robertson and Walker [76]. Billerbeck and

Zobel [15] explore the efficiency-effectiveness trade-offs compared to standard query expansion,

and found that their approach is three-times faster than document-based query expansion on

TREC 8 and TREC 10. There is a duality between this pseudo-relevance based approach and the

single pass CombSUM approach that is described shortly in Section 4.1.

Even with these gains, the overhead of appending additional terms to a query can be high,

and finding the right balance between efficiency and effectiveness remains an important practical

challenge [50], especially on web-scale tasks. We revisit the cost of query expansion in on-line

environments in Section 4, and then Section 5 shows how a pre-computed result list can improve

effectiveness with negligible online processing overheads.

2.3 Efficient Index Traversal
The most commonly used structure for top-k document retrieval is the inverted index. Each unique

term t is represented by a postings list, a sequence of document identifier/term-frequency (dt,i , ft,i)
pairs, one for every document in which term t appears, where dt,i is the docid (document identifier)

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:5

of the i th document containing t , and ft,i is the corresponding within-document term frequency.

Inverted indexes provide efficient and scalable access to the necessary statistics for document

ranking [94]. When a query is received, the postings lists associated with the query terms are

fetched, and combined to rank and return the top-k documents.

The index traversal strategy – the way in which the postings lists are iterated – has a large

impact on efficiency, with different postings layouts amenable to different traversal strategies. Here

we employ a standard document-ordered index layout, and the corresponding document-at-a-time
(DaaT) query processing strategies, plus dynamic pruning heuristics such as WAND [17] and more

recent block-based variants (BMW) [23, 31, 32, 63]. These approaches tend to be more efficient

than the DaaT MaxScore and term-at-a-time (TaaT) approaches [81, 83], particularly for short

queries, the most common scenario in web search. However, for long queries or large candidate

sets, the case is less clear-cut [26, 34, 61]; moreover, fusion over query variations often leads to very

long queries. That is, both WAND and MaxScore may have disadvantages as well as advantages,

depending on the length of the query, the number of postings to process, the term selectivity, and a

range of other factors.

2.4 Caching for Large-Scale Search
In order to meet service level agreements (SLAs), search engines must minimize unnecessary compu-

tation, with caching a common approach that increases query throughput at the cost of additional

space consumption. Caches can be deployed at many levels of storage, including in-memory or

on-disk [4, 87]. In IR there are two major approaches to caching. List caching involves storing

commonly accessed postings lists in fast-access memory [21, 87]. For example, if the postings lists

making up the index are stored on a SSD, a list caching strategy may opt to keep some subset of

frequently-accessed postings in main-memory. Alternatively, result caching involves storing a query
along with the relevant results (or some proxy thereof) that were returned for the query [33, 38].

In practice, both list and result caching are useful, and are deployed in tandem [4, 87]. Most caches

utilize historical data such as static query logs or sliding windows of recent queries to build models

of what to cache, and when to cache it, and can also be personalized on a per-user basis [57].

3 METHODOLOGY
Before providing details of the new techniques in Section 4 and 5, we first describe the experimental

framework that is employed.

3.1 Hardware and Software
Our experiments are conducted on an idle Red Hat Enterprise Linux Server with 512 GiB of RAM and

two Intel Xeon E5-2690 v4 CPUs, each with 14 physical cores. All algorithms were implemented with

C++11 and compiled with GCC 7.3.1 using the highest optimization settings. Where multi-threading

was used, up to 56 threads were spawned using the C++ STL threading libraries. All algorithms

were implemented as components within the state-of-the-art VBMW code-base described by Mallia

et al. [63]
1
, with our extensions also made publicly available (see Section 7).

3.2 Collections and Indexes
We conduct our experiments across the 52 million document ClueWeb12B corpus using the UQV100

query collection [5] and its 100 single-faceted topics derived from the multi-faceted TREC 2013

and 2014 Web Track topic descriptions. The UQV100 collection contains 10,835 query variations,

sourced from crowd-workers who were presented with a narrative “backstory” for each topic, and

1
https://github.com/rossanoventurini/Variable-BMW

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://github.com/rossanoventurini/Variable-BMW

41:6 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

Table 1. The ClueWeb12B and UQV100 resources used. Note that the queries were stopped and Krovetz

stemmed, reducing the number of distinct queries compared to that reported by Bailey et al. [5].

Documents 52,343,021
Topics 100

Total queries 10,835
Unique queries 4,175
Mean unique queries per topic 41.75
Hold-out queries 500

asked to formulate a query in response. Bailey et al. [5] give details of the collection process and the

queries that were collected. Moffat [68] explores further properties of this collection, and Moffat

et al. [69] discuss the wider implications of query variations. Other ways in which query variations

can be identified are discussed in Section 6.

To support the required experiments, we split the 10,835 UQV100 queries into two sets: a training
set, used to build the query variation clusters, and a testing, or hold-out set, used to measure the final

performance of the proposed approaches. The hold-out set was created by selecting five unique

query variants per topic (that is, queries appearing only a single time in the UQV100 set), yielding

a set of 500 queries across the 100 topics. Each hold-out query was drawn randomly from the

corresponding topic’s single-instance variations, without replacement. This hold-out approach

differs from the simple hold-out method described by Fuhr [36], as all baselines and new techniques

are evaluated against the total universe of topics, with at least five query impressions per-topic.

The arrangement also avoids the limitations observed in other train-test splits in a single-query-

per-topic evaluation scenario, where results are biased by the topic-effect of the generated split.

The training set here represents the most commonly seen query variations for each topic, and

hence can be regarded as being representative of what could be mined from logs in a production

system. Table 1 summarizes the situation. Note that the number of distinct queries is less than in

the underlying UQV collection because of our use of a Krovetz stemmer and a stop list.

We used Indri 5.11
2
to index the collection, and then converted the inverted index into the format

expected by the VBMW code-base. Before building the VBMW index, we reordered the document

identifier space using an open-source implementation [62, 64]
3
of the recursive graph bisection

approach of Dhulipala et al. [30], as it has been shown to substantially improve index compression.

The average block size of our VBMW index is approximately 40 integers per block, a result of binary

searching for the parameter λ as discussed by Mallia et al. [63]. The final index was compressed

using the Partitioned Elias-Fano mechanism [73].

3.3 Evaluation Metrics
Two different metrics are used to measure retrieval effectiveness: the recall-based NDCG approach

[43] at a fixed cutoff depth of 10; and the utility-based RBP method [71] applied to full rankings

(of length 1,000 documents), using a persistence of ϕ = 0.8 and hence an expected viewing depth

of five. All of the NDCG values were computed using gdeval4. These metrics and cutoffs were

selected based on the judgment depth of the UQV100 collection [55], and result in relatively low

RBP residuals arising.

2
https://www.lemurproject.org/indri.php

3
https://github.com/pisa-engine/pisa

4
http://trec.nist.gov/data/web/10/gdeval.pl

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://www.lemurproject.org/indri.php
https://github.com/pisa-engine/pisa
http://trec.nist.gov/data/web/10/gdeval.pl

Boosting Search Performance UsingQuery Variations 41:7

!ery
Association

!ery q Top-k
Documents

Candidate
Generation

Q Rank FusionD

Fig. 2. Topology of an IR system implementing on-line query fusion. A query q is submitted by a user, and is

associated with its related queries, the set Q . A set D of ranked document lists is formed from those queries,

and passed to the rank fusion stage. Finally, a top-k document list representing the topic centroid is prepared

and presented to the user.

Significance is computed using the Bonferroni-corrected paired t-test, and is denoted by † for

p < 0.05, and by ‡ for p < 0.001. Significance was always tested with respect to the strongest

available baseline.

4 REAL-TIME FUSION OF QUERY VARIANTS
This section considers whether the cost of computing query fusion immediately after queries are

issued to an IR system is acceptable in a web-search scenario. Figure 2 introduces the components

making up the query processing pipeline if no query clusters have been cached and the centroid

cluster must be formed in real-time.

4.1 Efficiently Processing Variations
Given a set of queries, including the one just entered by the user, the goal is to process them all,

fuse their results, and return a single SERP (search engine result page), all the while noting that

web-search systems typically impose strict per-query resource budgets [29, 44, 93].

Parallel Fusion (PF). The simplest approach is to spawn a process for each unique query variation

in the cluster, and execute all of the queries in parallel. Once all threads have returned their top-k
results, a rank-fusion algorithm is applied, to assemble the final SERP. This approach is viable

provided there are sufficient CPU cores available, and requires that each thread operate to the same

response-time requirement as the original query. If latency bounds are imposed by an SLA, queries

running longer than a suitable time threshold can be terminated prematurely, and whatever partial

results are available can be included during the fusion stage [44]. We measured three variants of

the parallel fusion approach, denoted “PF-a”, where a is a query processing strategy, one of VBMW,

WAND, and MaxScore.

Single Pass DaaT. A drawback of the parallel approach is that many similar queries are processed

concurrently, and hence that some of the corresponding postings lists are processed many times,

without any commonality being exploited. An alternative is to perform all scoring operations in a

single DaaT pass across the inverted index, concurrently building a top-k heap for each unique

query variant. That is, an empty top-k heap is constructed for each unique query variant, and the

postings lists for all terms are iterated in parallel, selecting as the pivot the minimum document

ID across all of the cursors. At each processing step, all postings lists are advanced to align with

the pivot, with variables tracking the current set of scores of the pivot document with respect to

the terms appearing in each query. Once all aligned postings have been processed, the document

scores are checked against the corresponding heaps, each of which is updated if necessary. Finally,

when all postings cursors are exhausted, the set of heaps containing the top-k results for the

query variations are be fused to create the required single SERP. We refer to this approach as

“SP-Exhaustive”.

Single Pass CombSUM. We now describe an efficient single-pass approach for computing the

CombSUM [35] rank fusion score for a set of query variations, allowing improved efficiency through

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:8 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

dynamic pruning. Given a set of ranked lists of documents, and a positive numeric score for each

document in each list, the CombSUM score for a document d is the sum of the scores of d , computed

over its appearances in the ranked lists. If there are ℓ lists, L1 to Lℓ , and the score of some document

d in the i th of the lists is given by si,d (with si,d ≡ 0 if d < Li), then

CombSUM(d) =
ℓ∑
i=1

si,d .

Now consider each of the component scores si,d , and the query qi that led to it. If the scoring

computation is an additive one, then

si,d =
∑
t ∈qi

F (t ,d) ,

where F (t ,d) is the term-document score contribution associated with the term t in the document

d according to the chosen retrieval model. Taking these together gives

CombSUM(d) =
ℓ∑
i=1

*.
,

∑
t ∈qi

F (t ,d)+/
-
. (1)

Now define nt ≡ |{qi | 1 ≤ i ≤ ℓ ∧ t ∈ qi }|, the number of input queries containing term t ; and
Q ≡ ∪1≤i≤ℓ qi , the union of the queries. Equation 1 can then be rewritten as

CombSUM(d) =
∑
t ∈Q

nt · F (t ,d) , (2)

making it clear that for additive similarity scoring mechanisms, the CombSUM score for a set of

query variations can be computed by forming the unionQ of the queries, counting term frequencies

nt across the variations, and then evaluating a single super query against the index of the collection

by taking a linear sum of the individual contributions of F (t ,d). This requires that all of the scores
are positive. Similarity models that are not additive, or that yield negative scores, may not be used

in this way. Note that scores can be added without requiring any normalization step [35], since

the component rankings were formed using a consistent weighting scheme. Indeed, normalization

would require evaluating each query variation independently, defeating the benefit achieved via

Equations 1 and 2. That is, one pass fusion would not be possible as shown here as the entire result

lists for each query to a depth k would be required before normalization can be applied. Hence, in

the following experiments, we use the BM25 similarity model, and do not normalize the individual

ranking scores. In practice, normalization generally benefits fusion of different ranking algorithms

more than the case explored here, where BM25 scores are term-wise independently distributed.

Any other additive similarity models can be applied in a similar manner, such as PL2 divergence

from randomness (DFR) [2]. We focus on BM25 as one well-known and widely-used exemplar.

Computing CombSUM in a single-pass, rather than by fusing runs of length k generated inde-

pendently, brings a rather unexpected benefit – it allows the generation of a more precise score-safe

ranking. This occurs because when a traditional fusion scenario is applied to separate lists, each

truncated at k documents, there is no contribution made from the documents at positions k + 1 and
deeper – they are ignored (and inferred to have zero scores) when computing CombSUM. But those

documents might still appear in the top-k of the fused list, in which case the ignored contributions

might perturb the final ranking. In contrast, the one-pass method computes a correct top-k fused

list as if the component lists had all been scored to an arbitrary depth.

In order to employ Equation 2, and apply dynamic pruning to the super query, the index traversal

process must be slightly modified, with the upper-bound scores, Ut , also multiplied by nt . For the
block-based VBMW approach, the nt multiplier to each block-max score,Ub,t , must also be applied

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:9

Real Time [Seconds]

CPU Cycles [Billions] Postings Scored [Millions]

0.1

1

10

100

0.1

1

10

0.1

1

10

System

PF-VBMW

PF-WAND

PF-MaxScore

SP-Exhaustive

SP-CS-VBMW

SP-CS-WAND

SP-CS-MaxScore

Fig. 3. Efficiency of rank-fusion algorithms, assuming that the starting point is a set of query variations. The

panes show total cost in CPU cycles; total cost in terms of postings processed; and query latency.

as each block is encountered. Query processing does not differ in any other way. This approach

is generalizable to all safe-to-k dynamic pruning traversal strategies; and hence we again test

three variations, denoted “SP-CS-a”, with a one of VBMW, WAND, and MaxScore. Computing

CombSUM over query variations draws an interesting parallel with the Assoc-Assoc approach of

Billerbeck et al. [14]. Instead of weighting terms by the Robertson and Walker [76] term-selection

value formula, the term weightings are linearly scaled by the frequency of their occurrences in the

related query set.

4.2 Experiment: Real-Time Fusion
To test these approaches, we take all query variations for each UQV100 topic, and measure the cost

of computing a fused top-100 result list, covering an average of 42 query variations per topic, each

computed to depth k = 1,000, and then (except in the case of the SP-CS approaches) fusing the

results. Three indicators are reported: the number of CPU cycles consumed; the number of postings

scored; and response latency. In the case of the parallel approaches, the first two are summed over

all threads. Note that the CPU measurements ignore the slight processing overhead generated by

the forking and locking activities inherent in parallel execution.

Figure 3 shows the results. The first (top left) pane shows the total CPU time required. The

three SP-CS methods are the most efficient in terms of processing cost, with the SP-CS-MaxScore

approach slightly better than the other two. In the second pane (top right), the SP-CS-MaxScore im-

plementation processes more postings on average than either the SP-CS-WAND and SP-CS-VBMW

approaches – the latter two reduce the number of postings, at the cost of more non-posting process-

ing. Finally, the third pane (bottom left) shows elapsed wall-clock time. The three PF approaches are

the fastest, due to their extensive use of parallelism. Even though each query’s latency is dictated

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:10 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

Table 2. Fusion effectiveness as the number of query variants is increased. Variants are selected from the

query clusters at random, with replacement; measured as averages over a set of ten such sequences. The

values in parentheses are RBP residuals, recording the maximum extent of the RBP score uncertainty. Values

with a shaded background represent the most effective configuration over that metric.

Num. variants NDCG@10 RBP ϕ = 0.8

1 0.182 0.426 (+0.067)
2 0.210 0.469 (+0.081)
5 0.236 0.514 (+0.043)
10 0.254 0.537 (+0.028)
20 0.256 0.540 (+0.021)
50 0.261 0.542 (+0.018)
100 0.262 0.550 (+0.017)

by the slowest-running variation, execution on average is fast; and the use of suitable aggregation

policies [93] can improve the tail-latency [60] of such approaches. Note, however, that this speed

comes at a resource cost, as shown in the first pane.

All of the methods could have their latency (but not their aggregate workload) reduced by

splitting the collection across a greater number of processors, and if the goal is to produce fused

query result lists in real-time, then highly parallel implementations of any of the approaches are

necessary. On the other hand, if the goal is to reduce CPU cycles, the SP-CS methods are clearly

superior, with SP-CS-MaxScore having the least cost. Mallia et al. [63] concluded that the VBMW

method is the best choice for disjunctive query processing; however the results in Figure 3 confirm

that the MaxScore mechanism outperforms both WAND and VBMW when the result size is large,

and when queries are long [65].

4.3 How ManyQueries Should Be Fused?
Another way of reducing processing costs is to fuse fewer queries. To determine the impact that

the number of variants has on processing costs, the set of all variations for a topic, including

duplicates, were sampled with replacement to generate a stream of queries of the required length,

thereby creating a plausible query stream for all topics, including those in which fewer than 100

crowd-workers generated a query. Those samples were then executed and fused, recording the

cost in CPU cycles and the effectiveness of the final SERP. The selection process was carried out

incrementally, with one variation drawn and measured, then a second added to it and measured,

and so on; with that entire sequence repeated ten times, and the values recorded being the averages

over those ten runs. Table 2 and Figure 4 show the results.

Table 2 makes it clear that adding variants increases effectiveness, but that the gains diminish as

more variants are added. This outcome is at least partially a consequence of the methodology used,

since “with replacement” means that there is an increasing probability of a previously-selected

query being drawn again. Bailey et al. [6] also observe that, in general, adding more distinct variants

improve the effectiveness of rank fusion, irrespective of metric or fusion mechanism.

Figure 4 shows that SP-CS-MaxScore retains its computational advantage across the range of

variation set sizes, and that all of the SP-CS approaches are cheaper than the SP-Exhaustive and

PF methods. In particular, the cost of the SP-CS approaches is largely determined by the number of

unique terms that are required for processing, whereas the other methods are more closely tied

to the number of unique queries. Since query variations often contain similar terms, the SP-CS

approaches scale better.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:11

1

3

10

0 25 50 75 100

No. Variations Processed

C
P
U
C
y
c
l
e
s
[
B
i
l
l
i
o
n
s
]

System
PF-MaxScore

PF-VBMW

PF-WAND

SP-CS-MaxScore

SP-CS-VBMW

SP-CS-WAND

SP-Exhaustive

Fig. 4. Average per-topic cost in CPU cycles of approaches for generating fused rankings, as a function of the

number of query variations being fused. Sampling is random from each cluster, with replacement, averaged

over ten independent sequences. All of these methods obtain the same effectiveness, as listed in Table 2. Note

the logarithmic vertical scale.

4.4 Discussion
Three approaches for efficiently fusing a set of query variations have been described and measured.

The SP-Exhaustive and PF approaches can be used with any rank-fusion algorithm, but are more

costly than the SP-CS approaches, which are based on CombSUM and additive functions such as

BM25. The PF approaches use nearly an order of magnitude more resources than the SP-CS methods,

a notable disadvantage that more than offsets the ease with which they can be implemented across

a cluster of processors. Also worth noting is that all of the methods might gain benefit from a

selective search framework [39, 45, 46], an option outside the scope of our investigation here. That

is, rank fusion across query variations can be computed such that latency is small enough for

online use, but only if substantial total computational resources are available. Better techniques are

required if the overall resource cost must also be managed carefully.

This section has focused on fusion using the CombSUMmethod. There are other fusion techniques

that can also be applied, some of which are easier than others to transform into single-pass

implementations. Benham and Culpepper [10] compare the effectiveness of CombSUM with six

other unsupervised fusion techniques on the ClueWeb12B corpus using the UQV100 query set,

and demonstrate that CombSUM is competitive with the CombMNZ [35], RBC [6], and RRF [25]

approaches.

5 USING PRE-COMPUTED CENTROIDS
The previous section supposed that the query fusion was to be carried out on-the-fly, and introduced

a reduced-cost query fusion technique that in essence formed a super query that was evaluated. The

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:12 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

risk of that approach is that if service level agreements governing response time and throughput

must be complied with, on-the-fly query fusion may not be a viable approach. The key issue then

becomes: is it possible to compute fused lists in an offline manner, and use those cached intermediate

results to boost online query performance? To address this, we now consider the pros and cons of

pre-computing centroid rankings offline, and then, when a query requires processing, efficiently

folding the pre-computed results list and the query’s result list into a single ranking. An important

consideration that then arises is the quality of the query-cluster matching process, and our results

include measuring effectiveness assuming both perfect and imperfect cluster identification.

5.1 Query Centroids
Fused centroid lists can be pre-computed using the methods described in Section 4, based on pseudo-

documents formed from the union of the terms in each cluster. Since this is a pre-computation,

total resource requirement is the appropriate cost measure, and not latency; with the cost equation

further moderated by the expectation that the pre-processing time can be amortized over multiple

subsequent queries that refer to that cluster. Hence, any desired fusion technique can be used, with

no restriction to BM25 and/or CombSUM.

If query centroid data in the form of indexed pseudo-documents and consensus fused rankings

are stored in main memory or on SSD, it can be searched and retrieved quickly as queries are

processed. In the experiments described shortly, the fused query consensus rankings (the cluster

ranking centroids) are stored in main memory, using an array that preserves the ranked order of

the fused set; with document identifiers also maintained in an O (1) average access time hash table.

With these structures, around 15.6 kiB per topic was required on average to store a ranked list

containing k = 1,000 documents (centroid lists were always computed and stored to a length of

1,000 documents). That space requirement can be reduced to 7.8 kiB per topic if the subsequent

fusion is restricted to methods that are rank-based, where knowledge of document identifiers and

ranks alone is sufficient without document scores.

For all experiments described in this section, query centroids were constructed by fusing the

“held-in” training queries for that topic, again using CombSUM. This measurement of retrieval

effectiveness changes on the held-out queries for each topic. Again, note that any desired fusion

technique can be used in this stage of the computation.

To establish an upper-bound of the effectiveness of centroid rankings, we suppose first that the

cluster association stage in the retrieval pipeline provides perfect matching between the held-out

queries and the corresponding clusters. Assuming that perfect matching is possible, the simplest

way to use pre-computed centroids to provide effective search results is to return the centroid

without even running the query that triggered the association. We call this oracle approach RCC,

for “return cluster centroid”.

For effectiveness scores to be meaningfully compared, they must be considered relative to a

sample of systems known to work well for the application domain – here being real-time web search.

The baselines used in this section include two proximity-based algorithms and one learning-to-rank

model. The first is the L2p approach proposed by Lu et al. [56], a bigram ranking model that linearly

combines the BM25 score of a document with sequential bigrams. Unlike other term dependency

models, L2p does not require global statistics for term dependencies, greatly improving overall

efficiency. We also use a field-weighted variation of the sequential dependency model (SDM) [66]

that operates across the document body, document title, and inlink text. The ClueWeb09B collection

was employed in conjunction with the TREC 2009–2012 Web Track topics to tune parameters in

both of these approaches. As a learning-to-rank baseline, denoted “LtR”, the LightGBM
5
framework

5
https://github.com/Microsoft/LightGBM

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://github.com/Microsoft/LightGBM

Boosting Search Performance UsingQuery Variations 41:13

Table 3. Effectiveness of online fusion measured using two effectiveness metrics, and compared to three

baselines. Significance is measured with respect to LtR, the strongest of those baselines. The scores listed

in the “Mean” column are averages across the 500 held-out query variations, five for each of the 100 topics;

the “W/T/L” numbers are the respective counts of those 500 queries for which the method exceeds the BM25
baseline by more than 10%, is within 10% of the baseline, and is less than 10% of the baseline. Values with

a shaded background represent the most effective configuration over the specified measure in the column

header, for each metric.

Method NDCG@10 W/T/L RBP ϕ = 0.8 W/T/L

User Query (BM25) 0.170
‡

— 0.401
†
(+0.088) —

L2p 0.169
‡

160/236/104 0.400
†
(+0.089) 136/264/100

SDM+Fields 0.180
†

247/76/177 0.417 (+0.153) 215/117/168

LtR 0.200 281/53/166 0.435 (+0.205) 258/71/171

RCC 0.263
‡

354/54/92 0.553
‡
(+0.011) 311/101/88

was used to build a LambdaRank model [19]. Instead of training on just the hold-out set, we train

our model on both the topics in the hold-out set as well as the most common five variants from each

topic. This additional exposure leads to a more robust model. We used ten-fold cross-validation to

train and test the LtR model across a large set of features. The features were generated using the

publicly available system described by Chen et al. [24], Gallagher et al. [37]
6
and a description of

the features can be found within that codebase. We refer the interested reader to Liu [54] and to

Macdonald et al. [58, 59] for further information on building a competitive LtR system.

Table 3 lists the effectiveness of the baseline systems across the held-out queries. The effectiveness

of the Return Cluster Centroid (RCC) method is substantially better than any of the baselines, but

it is based on unrealistic assumptions that are considered in detail below. The RCC approach also

performs better than BM25 on the greatest number of the 500 test queries, and loses to BM25 the

least. Of the non-centroid baselines considered, LtR is the most effective.

Table 3 provides the motivation for the question considered in this section: given that correctly-

identified cluster centroids perform well even in connection with queries not included at the time

the cluster centroid was formed, can they be employed in a practical search system in which cluster

association may not be 100%? In particular, if an incorrect centroid ranking is returned, the likely

result will be significant user dissatisfaction. To mitigate that risk, the user query and centroid

ranking should instead be combined in some way, to ensure that documents responsive to the

actual user query appear in the ranking.

5.2 Query Boosting Using Centroids
Figure 5, which can be compared with Figure 2, shows the proposed processing pipeline. Each

incoming query is both executed against the collection (the step “candidate generation”) and

also checked against the set of pre-computed centroids. If an association is identified, the query

boosting step combines the centroid ranking with the query’s SERP to create a fused top-k list. If

no association is found, the query’s SERP is returned without further modification.

Three approaches to joining the centroid ranking and a query ranking were considered. While

not an exhaustive list of possibilities, these methods demonstrate that improvements in retrieval

effectiveness are achievable using relatively simple and inexpensive techniques.

6
https://github.com/rmit-ir/tesserae

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://github.com/rmit-ir/tesserae

41:14 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

!ery
Association

Candidate
Generation

!ery Boosting

Centroids

!ery q
D

c

Top-k
Documents

Fig. 5. Modifying the processing pipeline described in Figure 2, to leverage pre-computed query centroids.

The user enters a query q, which is both evaluated against the document collection to create a top-k list D,
and also used to search the set of pre-computed query centroids. If a match is found in the cache, centroid c
and the top-k document list D are combined by the query boosting method, yielding a fused top-k result page.

Plain Interleaving. The first boosting approach is inspired by online retrieval experiments in

which results from two different systems are presented as a single list. In a balanced interleave,

elements are chosen in alternating fashion from two results, with the first chosen randomly. Here

we start from the query SERP D, to ensure that the highest ranked document for the query is

displayed first. At each stage thereafter the next highest ranked document not already included in

the output list is taken in an alternating manner from one of the two lists, and added to the fused

run. We denote this approach as “Interleave”. A possible benefit of the interleaving model is its

connection to A/B testing, where click logs may be helpful in deciding whether to preference the

user query or the fused result centroid.

Linear Combination. A second option is to adopt the approach proposed by Vogt and Cottrell

[86], and compute a per-document weighted sum of the min-max re-scaled centroid set and the

re-scaled user query answer set, then use those scores as a descending-order sort key to form the

SERP. To implement this approach we applied a weight of δ to the query centroid and (1 − δ) to
the user query, and set δ to 0.5 as a starting point. When δ > 0.5, the method approaches the bias

exhibited in the Interleave method. Unlike the Interleave method, a linear combination does

not guarantee an equal contribution from either the cluster centroid or the documents retrieved in

response to the actual query. This is because inclusion in the final results list is sensitive to both

the union of the two sets of documents, and also to the scores of those documents. We denote this

approach as “LC”.

Reference List Re-Ranking. The third approach intersects the query’s ranking and the centroid

ranking, adopting the ordering supplied by the centroid run c . Any remaining documents from the

query’s run D are placed after the intersection set, in the same order as they appear in D. Both the

centroid ranking order and the query’s selection of documents are respected, with the documents

in the intersection listed first. We denote this approach as “Ref-Reorder”. Figure 6 provides an

example in which two runs of length k = 10 are joined, favoring the documents that appear in

both, and accepting the ordering of the consensus ranking. (In the experiments described shortly

the centroid list was always 1,000 documents long, and only the length of c was varied as part of

the experiment.)

Boosting Time. Table 4 provides boosting times for BM25 queries using the proposed methods, as

well as the end-to-end time and the percentage overhead relative the original BM25 query. All three

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:15

24
16
28
53
22
38
91
66
54
13

31

58
24
91

16
53

13

28
38
66

c D

24
16
28
53
38
91
66
13
58
31

Dߴ

Fig. 6. Reference list re-ranking, where c is the k-document pre-computed centroid ranking, D is the k-
document SERP generated for the user query, and D ′ is their k-document fused result, in this example with

k = 10 for both. Documents in green are from the centroid list, documents in blue are common to it and the

query list, and the documents in red are the ones from D that were not in c .

Table 4. Mean query boosting time, total query execution time (milliseconds per query), and percentage

overhead attributable to boosting when retrieving the top k documents for user queries computed with BM25.

The query centroid rankings were always 1,000 documents long. Values with a shaded background represent

the fastest boosting method for that value of k .

Length Method Boosting Total Overhead

k = 10 Interleave 0.072 15.061 +0.5%

LC 0.158 15.146 +1.0%

Ref-Reorder 0.027 15.015 +0.2%

k = 100 Interleave 0.072 23.729 +0.3%

LC 0.164 23.821 +0.7%

Ref-Reorder 0.041 23.698 +0.2%

k = 1,000 Interleave 0.129 44.358 +0.3%

LC 0.258 44.487 +0.6%

Ref-Reorder 0.179 44.408 +0.4%

approaches have sub-millisecond performance. For the two smaller values of k the Ref-Reorder

approach is the fastest; for k = 1,000 the Interleave approach is better. But in all cases the end-

to-end latency from query submission to final top-k is dominated by the query’s BM25 stage, and

none of the boosting approaches add more than 1% overhead to the cost of generating the final

SERP.

5.3 Query Boosting Effectiveness With Perfect Cluster Association
Having demonstrated that the computational cost of query boosting is very small, we now exam-

ine effectiveness, first considering the (almost certainly unattainable) situation in which cluster

association is assumed to be infallible.

Table 5 lists effectiveness scores for the three centroid-based fusion methods, and compares their

performance to the baseline approaches listed in Table 3, averaging across the 500 single-instance

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:16 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

Table 5. Effectiveness of centroid boosting measured using two effectiveness metrics. Significance is measured

with respect to LtR, the strongest of the non-centroid baselines listed in Table 3. The scores listed in the

“Mean” column are averages across the 500 held-out query variations, five for each of the 100 topics; the

“W/T/L” numbers are the respective counts of those 500 queries for which the method exceeds the BM25
baseline by more than 10%, is within 10% of the baseline, and is less than 10% of the baseline. Values with

a shaded background represent the most effective configuration over the specified measure in the column

header, for each metric.

Method NDCG@10 W/T/L RBP ϕ = 0.8 W/T/L

Interleave 0.223
†

305/108/87 0.486
‡
(+0.037) 287/150/63

LC 0.231
‡

322/94/84 0.504
‡
(+0.033) 290/130/80

Ref-Reorder 0.243
‡

345/62/93 0.527
‡
(+0.053) 304/95/101

held-out queries. The number of wins, ties, and losses compared to the BM25 evaluation of the

same 500 queries is also reported. The LC approach listed in Table 5 employed a parameter δ of 0.5,
placing equal weight on the two rankings being combined. All boosting approaches significantly

outperform the LtR baseline for both metrics; of the three, the Ref-Reorder mechanism is the

most effective. The Interleave approach results in only 87 score degradations compared to NDCG,

and 63 relative to RBP. The LC approach also demonstrates a good effectiveness profile, with 84

and 80 queries performing worse than the user query for NDCG and RBP, respectively. Note also

that the RBP residuals are relatively small, indicating that the judgments are a good fit for the runs

being scored.

To provide another perspective, Figure 7 shows the extent towhich the query-by-queryNDCG@10

scores shift up and down compared to the baseline BM25 ranking. The four panels represent effec-

tiveness profiles for the three boosting techniques, plus the RCCmethod. The same decreasing-score

ordering of queries is used in each of the panes, with the BM25 scores shown as a black line, and the

paired scores for the corresponding boosting method shown as colored dots. The Interleave and

LC methods have smaller dispersions than the RCC and Ref-Reorder methods; they sometimes

improve substantially on the baseline score, but are also vulnerable to notable score degradations.

A similar pattern of performance was observed when the same plots were generated for RBP.

If the cluster association process is infallible, the three query boosting methods are less effective

than simply returning the centroid list. They are, however, still significantly more effective than

LtR. We now turn to the more plausible case in which query cluster association is imperfect, and

ask if the same relativities continue to hold.

5.4 Query Boosting Effectiveness With Fallible Cluster Association
Pre-computed centroid methods work well if queries can be correctly categorized against a

previously-identified information need. But in a real system a reasonable percentage of incoming

queries can be expected to differ from all known clusters, or worse, to be matched against the

wrong cluster. How should queries that do not match any cluster be handled? And how can the

impact of failed query matchings be minimized?

Centroid Identification. We first ask whether incoming queries can be reliably mapped to an

existing query cluster. Wen et al. [89] show that combining query keywords and cross-reference

similarity using document hierarchies from click-through data can give a precision and recall of

approximately 95% in an experiment involving 20,000 query clusters. A 5% error rate is encouraging,

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:17

Ref-Reorder RCC

Interleave LC

0 250 500 0 250 500

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Query

N
D
CG

@
10

Fig. 7. Difference between NDCG@10 effectiveness score for the baseline BM25 query and the four query

boosting approaches. The 500 held-out queries are ordered by their BM25 scores (the black line in each graph)

and the corresponding scores from each of the different evaluation approaches are shown, one set in each

pane.

given that precision can be traded against recall, to guard against the potential impact of incorrect

cluster matches.

To replicate that evaluation, we built an index of pseudo-documents, each containing the union

of the terms in the queries of one of the 100 UQV100 topics. Another 10,000 synthetic query

clusters were formed from the anchor text of inlinks to Wikipedia articles in the ClueWeb09 corpus,

adopting the approach of Dang and Croft [28], who showed that anchor text can be used as a

reliable substitute for user queries. Each pseudo-document contained the union of the query terms

(rather than allowing duplicates) so as to not bias cluster selection. Upon receiving a query, an

index of the pseudo-documents was searched using BM25 to find the top-scoring pseudo-document.

A range of policies for forming synthetic centroids from inlink data were employed to aid with

pre-processing, sanitization, and diversity; code for these steps and a manually curated stop-list are

available in our code-base (see Section 7). Across the 10,000 Wikipedia clusters, 221,989 queries
were used (41,624 unique); with the largest and smallest clusters containing 442 and 11 queries

respectively. Finally, 0, 100, 1,000, 5,000 and 10,000 “distractor” clusters were added to the 100

UQV100 clusters, to measure query association success rates using the 500 held-out UQV queries,

where success consisted of selecting the correct UQV100 cluster in the presence of the distractors.

These success rates were 97%, 97%, 94%, 91%, and 89% respectively across the range of distractor

sizes, broadly in line with the results of Wen et al. [89].

Incorrect Centroid Association. The results in Table 5 assumed perfect cluster identification. To

quantify the effect of incorrect matchings, we ran experiments in which each query was assigned to

the wrong cluster with varying probabilities, so that the failure profiles of the proposed approaches

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:18 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

Table 6. Effectiveness of online fusion approaches, where ϵ represents the rate in which incorrect clusters are

selected. Significance is measured with respect to LtR, the strongest of the four baselines that were employed.

Return Cluster Centroid (RCC) is tabulated with a perfect cluster matching rate of ϵ = 0.0 as an initial reference

point. For each effectiveness value listed for each ϵ , ten trials of randomly assigning an erroneous cluster at

the respective error rate were computed, where the mean score was found for each query. The scores listed

in the “Mean” column are averages across the 500 held-out query variations, five for each of the 100 topics;

the “W/T/L” numbers are the respective counts of those 500 queries for which the method exceeds the BM25
baseline by more than 10%, is within 10% of the baseline, and is less than 10% of the baseline. Values with a

shaded background represent the most effective boosting technique over the specified measure in that column,

for each error rate considered.

Error Rate Method NDCG@10 W/T/L RBP ϕ = 0.8 W/T/L

ϵ = 0.0 RCC 0.263 354/54/92 0.553 (+0.011) 311/101/88

ϵ = 0.05 RCC 0.249
‡

334/63/103 0.523
‡
(+0.063) 289/101/110

Interleave 0.217
†

298/108/94 0.472
‡
(+0.061) 269/163/68

LC 0.225
†

309/103/88 0.489
‡
(+0.059) 271/141/88

Ref-Reorder 0.240
‡

343/66/91 0.519
‡
(+0.056) 301/100/99

ϵ = 0.2 RCC 0.209 278/63/159 0.441 (+0.215) 235/78/187

Interleave 0.199 277/94/129 0.435 (+0.128) 222/170/108

LC 0.203 275/95/130 0.444 (+0.137) 218/144/138

Ref-Reorder 0.212 339/75/86 0.498
‡
(+0.061) 290/119/91

can be compared in the presence of more realistic centroid matching. We denote the error rate

as ϵ , and explore values of ϵ = 0.05 (that is, with 5% of queries assigned to the wrong cluster, the

rate attained by Wen et al. [89]) and a rather pessimistic ϵ = 0.2. The latter is worse than the rate

observed in the experiments with 10,000 distractor centroids reported above.

Table 6 shows the NDCG and RBP effectiveness scores attained in this evaluation scenario, as

well as their respective wins and losses relative to the BM25 baseline. When ϵ = 0.0, the perfect
matching scenario, RCC (repeated from Table 3) provides the best effectiveness. But that advantage

is eroded when errors are introduced, showing that RCC is fragile when faced with erroneous

cluster matching. All of the approaches degrade as ϵ increases, but RCC decreases the most. Indeed,

if a search engine receives an exact match well-known query, it can simply return a cached result,

which is what is commonly done in practice [4, 21, 33, 38, 57, 87]; what we are exploring here is

the consequence of also allowing approximate matches to be exploited.

Overall, Ref-Reorder is the most robust technique, and remains significantly more effective

than LtR, even when 5% of incoming queries are assigned to the wrong cluster. In the two lower

sections of the table, with the error rate increased to ϵ = 0.2, Ref-Reorder remains statistically

significantly better than the LtR baseline. In contrast to the results of Table 5, this method now has

the most wins and the least number of losses of any of the online fusion approaches considered on

both evaluation metrics. Observe also that the higher error rate leads to increased RBP residuals,

but with the Ref-Reorder average residual increasing by least.

Figure 8 extends Table 6 and shows the shape of the effectiveness decay as a function of error rate.

Even with an unrealistically large error rate of ϵ = 0.5 the NDCG score for Ref-Reorder is 0.205,
and RBP is 0.462. That is, even with a very high error rate in terms of cluster identification, retrieval

effectiveness remains close to the original BM25 run prior to the application of Ref-Reorder

boosting (Table 3), making this an appealing approach for robust retrieval. Figure 8 also shows

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:19

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00

Error Rate

N
D
C
G
@
1
0

System Ref-Reorder RCC LC Interleave

Fig. 8. The effectiveness of each query boosting technique listed in Section 5.2 as a function of clustering

error. Like Table 6, the values reported are an average of ten trials for the respective error rate. All query

boosting methods are more resilient to query association error than RCC which returns the centroid list. The

thick-black horizontal line indicates the LtR score, and the gray line represents the User Query (BM25) score;

both baselines correspond to Table 3.

that our goal of safely boosting query performance has been met using all approaches outlined

in Section 5.2, since the slope of the decay curve is steeper for RCC than any other approach.

Returning the centroid list is at face value an attractive option, but is not resilient in the presence

of errors.

6 DISCUSSION
We have presented three novel query effectiveness boosting techniques, built around the idea

(Figure 5) of pre-computed query cluster centroids. We now consider some of the issues associated

with this proposal, and a range of avenues for possible extension.

Improving Real-Time Rank Fusion. Although the real-time rank fusion approaches outlined

in Section 4 can be implemented in a low-latency manner, they nevertheless require substantial

amounts of computation. For this reason, we opted to build query centroids offline using a cost-

effective rank-fusion approach based on CombSUM (Section 5), and then deploy online boosting

approaches that make use of those centroids. It would be interesting to further develop these

approaches to make them more scalable and less resource intensive. One possibility would be

to employ large-scale distributed architectures, with parallel fusion conducted across multiple

index server nodes and multiple (perhaps even all) clusters at a time. As a motivation, recent work

has shown that cost-effective supervised rank fusion techniques can outperform state-of-the-art

learning-to-rank models [72].

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

41:20 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

Caching and Centroids. There has been a large volume of previous work on improving efficiency

through caching in large-scale search engines [4, 21, 33, 87]. While the approach proposed here is

essentially an alternative form of caching, it would be interesting to further examine the relationship

between traditional caching techniques such as result caching, and fusion-based centroids. For

example, deciding when to build new centroids, drop stale centroids, or update the results within a

centroid, might all be interesting questions. Centroid-based approaches could also be applied in

situations where the search engine is under a high load [16]. Given that they are computationally

cheap, they would likely be suitable as fallback query processing approaches, especially when more

expensive methods would violate latency SLAs.

Rank-Based Fusion. While score-based rank fusion techniques are effective, rank based fusion

approaches such as RBC [6] and RRF [25] might also be of interest. Knowledge of the final rank

order of documents seems like a key requirement for these methods; nevertheless, there may be

efficient techniques possible for computing a final fused ranking in a single pass through the index.

Nor is it obvious how rank-based fusion might be used to dynamically prune queries processed in

parallel.

Simulating Query Intent and Data Privacy. To demonstrate our results in a laboratory setting,

we used the UQV100 test collection, in which the query clustering is a direct consequence of the

data collection process. In order to measure the impact of incorrect cluster identification, we then

also carried out a failure analysis (Section 5.4). Future experimentation might verify the reliability

and robustness of the approaches we propose, including whether it is helpful to form centroids

with respect to the current step in a user information foraging activity; and how effective the new

techniques are outside of test-collection settings.

To validate our observation against a full-scale search engine, query logs and click-graphs would

be required to form these clusters using automatic methods. That data is not currently publicly

available, and perhaps never will be after the concerns raised in connection with Cambridge

Analytica [20] and the earlier AOL log release [7]. Without such data, academics are constrained

to exploring performance improvements using data that is publicly available, as we have done

here. The upside of using public resources such as the UQV100 queries – no matter how limited

they may be in scope – is that the experiments are reproducible, and do not rely on access to

private information that may have been gathered from users without adequate consent being given.

Fortunately, previous research from industry research labs has shown that query clustering by

intent is not only possible, but that it is being used in several different contexts, which we discuss

now.

Forming Query Centroids Automatically. A range of authors have carried out experiments in

connection with grouping queries by intent (that is, by information need). Relevant applications

include query rewriting [9, 11, 41], and forming query clusters using query logs and click-graphs

[27, 47, 80]. For example, web document click-graphs can be used to generate “virtual” queries by

associating documents that are semantically close on the click-graph [91]. This technique was used

to create gating features for query variations in LambdaMerge [79]. Craswell and Szummer [27]

further demonstrated that random walks on a click graph can form effective query clusters in the

domain of image search, noting that this is perhaps not unsurprising, given the prior work of Xue

et al. [91].

Similarly, Kong et al. [47] note that:

Weighted bi-graph clustering capitalizes on organic search results to construct a bipartite
graph with a set of queries and a set of URLs as nodes. Edge weights of the graph are
computed with the impression and click data of (query, URL) pairs from a Bayesian

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:21

“benefits of eating dark chocolate” q1

“what are the health benefits of dark chocolate” q2

“dark chocolate health” q3

“health benefits of dark chocolate” q4

“dark chocolate benefits” q5

“the health benefits of dark chocolate” q6

“healthy food” q7

d1

d2

d3

d4

d5

d6

d7

d8

Fig. 9. A bipartite click-graph, showing the associations of document clicks from queries. The thickness of

each line represents the frequency of clicks for that query and document pair.

perspective and are used to induce query (URL) pairwise similarities. Due to information
embedded in Google search results, this method is superb in grouping semantically close
queries together.

Figure 9 shows an illustrative click-graph which can be combined with random walks to induce

query variations directly from large query logs; using such a structure, an at-scale exploration of

the ideas we have introduced here would be a useful further step in terms of validating the new

approach.

Beyond Single-Faceted Information Needs. The UQV100 test collection is, by design, com-

posed of topics for 100 single-facet information needs. Multi-faceted search would invariably

provide additional challenges. If a suitable threshold in cluster association scores cannot be met

to confidently associate a query with a single centroid, a fusion of many faceted query centroids

may be required to resolve the user’s information need. An alternative approach could involve

building diversified query centroids for information needs that are typically diverse, allowing

diversification to be implicitly included via the mechanisms we have introduced here. Search result

diversification [1] is an important problem in its own right, and fusion techniques have already

been shown to be highly effective for this problem [53].

7 CONCLUSIONS
We first showed that on-the-fly rank fusion over query variations is viable, and can be reasonably

efficient using current state-of-the-art dynamic pruning techniques; but that if SLAs on query

performance are being enforced, carrying out fusion at run-time remains costly.

We then demonstrated that query level fusion can instead be used to combine similar queries

offline, making it a practical alternative. To validate that approach, we explored how query clusters

can be used to improve the effectiveness of incoming queries using three different approaches,

namely re-ranking, interleaving, and a linear combination of the cluster and the user query. In

general, centroid-based re-ranking techniques are an attractive option, requiring on average only 200

microseconds to reorder 1,000 documents, while significantly improving effectiveness. Experiments

using the ClueWeb12B UQV100 collection showed that the new approaches provide competitive

efficiency, and, at the same time, effectiveness improvements over strong baselines in a performance-

focused query processing framework.

Software. In the interests of reproducibility, our codebase is available at https://github.com/rmit-

ir/centroid-boost.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://github.com/rmit-ir/centroid-boost
https://github.com/rmit-ir/centroid-boost

41:22 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

Acknowledgements. This work was supported by the Australian Research Council’s Discovery
Projects Scheme (DP170102231), a Google Faculty Research Award, and an Amazon Research Award.

We thank Xiaolu Lu and Luke Gallagher for their assistance with the L2p and LtR baselines.

REFERENCES
1 R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. 2009. Diversifying search results. In Proc. ACM Int. Conf. on Web

Search and Data Mining (WSDM). 5–14.
2 G. Amati and C. J. van Rijsbergen. 2002. Probabilistic models of information retrieval based on measuring the divergence

from randomness. ACM Trans. on Information Systems 20, 4 (2002), 357–389.
3 Y. Anava, A. Shtok, O. Kurland, and E. Rabinovich. 2016. A probabilistic fusion framework. In Proc. Int. Conf. on Theory

of Information Retrieval (ICTIR). 1463–1472.
4 R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri. 2008. Design trade-offs for search

engine caching. ACM Trans. on the Web 2, 4 (2008), 1–28.
5 P. Bailey, A. Moffat, F. Scholer, and P. Thomas. 2016. UQV100: A test collection with query variability. In Proc. ACM Int.

Conf. on Research and Development in Information Retrieval (SIGIR). 725–728.
6 P. Bailey, A. Moffat, F. Scholer, and P. Thomas. 2017. Retrieval consistency in the presence of query variations. In Proc.

ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR). 395–404.
7 M. Barbaro and T. Zeller. 2006. A face is exposed for AOL searcher No. 4417749. https://nytimes.com/2006/08/09/

technology/09aol.html. (Aug. 2006). Accessed: 2018-11-08.

8 N. J. Belkin, C. Cool, W. B. Croft, and J. P. Callan. 1993. The effect of multiple query variations on information retrieval

system performance. In Proc. ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR). 339–346.
9 M. Bendersky, D. Metzler, and W. B. Croft. 2012. Effective query formulation with multiple information sources. In Proc.

ACM Int. Conf. on Web Search and Data Mining (WSDM). 443–452.
10 R. Benham and J. S. Culpepper. 2017. Risk-reward trade-offs in rank fusion. In Proc. Australasian Document Computing

Symp. (ADCS). 1:1–1:8.
11 R. Benham, J. S. Culpepper, L. Gallagher, X. Lu, and J. Mackenzie. 2018. Towards efficient and effective query variant

generation. In Proc. Conf. on Design of Experimental Search & Information Retrieval Systems (DESIRES). 62–67.
12 R. Benham, L. Gallagher, J. Mackenzie, T. T. Damessie, R.-C. Chen, F. Scholer, A. Moffat, and J. S. Culpepper. 2017. RMIT

at the 2017 TREC CORE track. In Proc. Text Retrieval Conf. (TREC).
13 R. Benham, L. Gallagher, J. Mackenzie, B. Liu, X. Lu, F. Scholer, A. Moffat, and J. S. Culpepper. 2018. RMIT at the 2018

TREC CORE track. In Proc. Text Retrieval Conf. (TREC).
14 B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel. 2003. Query expansion using associated queries. In Proc. ACM Int.

Conf. on Information and Knowledge Management (CIKM). 2–9.
15 B. Billerbeck and J. Zobel. 2004. Techniques for efficient query expansion. In Proc. Symp. on String Processing and

Information Retrieval (SPIRE). 30–42.
16 D. Broccolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, and N. Tonellotto. 2013. Load-sensitive selective

pruning for distributed search. In Proc. ACM Int. Conf. on Information and Knowledge Management (CIKM). 379–388.
17 A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien. 2003. Efficient query evaluation using a two-level

retrieval process. In Proc. ACM Int. Conf. on Information and Knowledge Management (CIKM). 426–434.
18 C. Buckley, G. Salton, J. Allan, and A. Singhal. 1995. Automatic query expansion using SMART: TREC 3. In Proc. Text

Retrieval Conf. (TREC).
19 C. Burges, R. Ragno, and Q. V. Le. 2006. Learning to rank with nonsmooth cost functions. In Proc. Conf. on Neural

Information Processing Systems (NIPS). 193–200.
20 C. Cadwalladr and E. Graham-Harrison. 2018. Revealed: 50 million Facebook profiles harvested for Cambridge Analytica

in major data breach. https://theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election.

(March 2018). Accessed: 2018-11-08.

21 B. B. Cambazoglu, F. P. Junqueira, V. Plachouras, S. Banachowski, B. Cui, S. Lim, and B. Bridge. 2010. A refreshing

perspective of search engine caching. In Proc. Int. Conf. on the World Wide Web (WWW). 181–190.
22 M.-A. Cartright, J. Allan, V. Lavrenko, and A. McGregor. 2010. Fast query expansion using approximations of relevance

models. In Proc. ACM Int. Conf. on Information and Knowledge Management (CIKM). 1573–1576.
23 K. Chakrabarti, S. Chaudhuri, and V. Ganti. 2011. Interval-based pruning for top-k processing over compressed lists. In

Proc. Int. Conf. on Data Engineering (ICDE). 709–720.
24 R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. 2017. Efficient cost-aware cascade ranking in multi-stage

retrieval. In Proc. ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR). 445–454.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://nytimes.com/2006/08/09/technology/09aol.html
https://nytimes.com/2006/08/09/technology/09aol.html
https://theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election

Boosting Search Performance UsingQuery Variations 41:23

25 G. V. Cormack, C. L. A. Clarke, and S. Büttcher. 2009. Reciprocal rank fusion outperforms Condorcet and individual

rank learning methods. In Proc. ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR). 758–759.
26 M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. 2017. A comparison of document-at-a-time and

score-at-a-time query evaluation. In Proc. ACM Int. Conf. on Web Search and Data Mining (WSDM). 201–210.
27 N. Craswell andM. Szummer. 2007. Randomwalks on the click graph. In Proc. ACM Int. Conf. on Research and Development

in Information Retrieval (SIGIR). 239–246.
28 V. Dang and W. B. Croft. 2010. Query reformulation using anchor text. In Proc. ACM Int. Conf. on Web Search and Data

Mining (WSDM). 41–50.
29 J. Dean and L. A. Barroso. 2013. The tail at scale. Comm. ACM 56, 2 (2013), 74–80.

30 L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. 2016. Compressing graphs and indexes with

recursive graph bisection. In Proc. Conf. on Knowledge Discovery and Data Mining (KDD). 1535–1544.
31 C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. Optimizing top-k document retrieval strategies for block-max

indexes. In Proc. ACM Int. Conf. on Web Search and Data Mining (WSDM). 113–122.
32 S. Ding and T. Suel. 2011. Faster top-k document retrieval using Block-Max indexes. In Proc. ACM Int. Conf. on Research

and Development in Information Retrieval (SIGIR). 993–1002.
33 T. Fagni, R. Perego, F. Silvestri, and S. Orlando. 2006. Boosting the performance of web search engines: Caching and

prefetching query results by exploiting historical usage data. ACM Trans. on Information Systems 24, 1 (2006), 51–78.
34 M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. 2011. Evaluation strategies for top-k queries over

memory-resident inverted indexes. Proc. Conf. on Very Large Databases (VLDB) 4, 12 (2011), 1213–1224.
35 E. A. Fox and J. A. Shaw. 1993. Combination of multiple searches. In Proc. Text Retrieval Conf. (TREC). 243–252.
36 N. Fuhr. 2018. Some common mistakes in IR evaluation, and how they can be avoided. SIGIR Forum 51, 3 (2018), 32–41.

37 L. Gallagher, R.-C. Chen, R. Blanco, and J. S. Culpepper. 2019. Joint optimization of cascade ranking models. In Proc.
ACM Int. Conf. on Web Search and Data Mining (WSDM). 15–23.

38 Q. Gan and T. Suel. 2009. Improved techniques for result caching in web search engines. In Proc. Int. Conf. on the World
Wide Web (WWW). 431–440.

39 F. Hafizoglu, E. C. Kucukoglu, and I. S. Altingovde. 2017. On the efficiency of selective search. In Proc. European Conf. on
Information Retrieval (ECIR). 705–712.

40 D. K. Harman. 1995. Overview of the third text retrieval conference (TREC-3). In Proc. Text Retrieval Conf. (TREC).
41 Y. He, J. Tang, H. Ouyang, C. Kang, D. Yin, and Y. Chang. 2016. Learning to rewrite queries. In Proc. ACM Int. Conf. on

Information and Knowledge Management (CIKM). 1443–1452.
42 S. Huo, M. Zhang, Y. Liu, and S. Ma. 2014. Improving tail query performance by fusion model. In Proc. ACM Int. Conf. on

Information and Knowledge Management (CIKM). 559–658.
43 K. Järvelin and J. Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. on Information

Systems 20, 4 (2002), 422–446.
44 S. Kim, Y. He, S.-W. Hwang, S. Elnikety, and S. Choi. 2015. Delayed-dynamic-selective (DDS) prediction for reducing

extreme tail latency in web search. In Proc. ACM Int. Conf. on Web Search and Data Mining (WSDM). 7–16.
45 Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. 2016. Does selective search benefit from WAND optimization?. In Proc.

European Conf. on Information Retrieval (ECIR). 145–158.
46 Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. 2017. Efficient distributed selective search. Information Retrieval 20, 3

(2017), 221–252.

47 J. Kong, A. Scott, and G. M. Goerg. 2016. Improving semantic topic clustering for search queries with word co-occurrence

and bigraph co-clustering. Google Inc (2016). https://ai.google/research/pubs/pub45569.pdf
48 A. K. Kozorovitsky and O. Kurland. 2011. Cluster-based fusion of retrieved lists. In Proc. ACM Int. Conf. on Research and

Development in Information Retrieval (SIGIR). 893–902.
49 O. Kurland and J. S. Culpepper. 2018. Tutorial: Fusion in information retrieval. In Proc. ACM Int. Conf. on Research and

Development in Information Retrieval (SIGIR). 1383–1386.
50 V. Lavrenko and J. Allan. 2006. Real-time query expansion in relevance models. IR 473, University of Massachusetts

Amherst (2006).
51 V. Lavrenko andW. B. Croft. 2001. Relevance-based language models. In Proc. ACM Int. Conf. on Research and Development

in Information Retrieval (SIGIR). 120–127.
52 C.-J. Lee, Q. Ai, W. B. Croft, and D. Sheldon. 2015. An optimization framework for merging multiple result lists. In Proc.

ACM Int. Conf. on Information and Knowledge Management (CIKM). 303–312.
53 S. Liang, Z. Ren, and M. de Rijke. 2014. Fusion helps diversification. In Proc. ACM Int. Conf. on Research and Development

in Information Retrieval (SIGIR). 303–312.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

https://ai.google/research/pubs/pub45569.pdf

41:24 Rodger Benham, Joel Mackenzie, Alistair Moffat, and J. Shane Culpepper

54 T.-Y. Liu. 2009. Learning to rank for information retrieval. Foundations & Trends in Information Retrieval 3, 3 (2009),
225–331.

55 X. Lu, A. Moffat, and J. S. Culpepper. 2016. The effect of pooling and evaluation depth on IR metrics. Information
Retrieval 19, 4 (2016), 416–445.

56 X. Lu, A. Moffat, and J. S. Culpepper. 2016. Efficient and effective higher order proximity modeling. In Proc. Int. Conf. on
Theory of Information Retrieval (ICTIR). 21–30.

57 H. Ma and B. Wang. 2012. User-aware caching and prefetching query results in web search engines. In Proc. ACM Int.
Conf. on Research and Development in Information Retrieval (SIGIR). 1163–1164.

58 C. Macdonald, R. L. T. Santos, and I. Ounis. 2013. The whens and hows of learning to rank for web search. Information
Retrieval 16, 5 (2013), 584–628.

59 C. Macdonald, R. L. T. Santos, I. Ounis, and B. He. 2013. About learning models with multiple query-dependent features.

ACM Trans. on Information Systems 31, 3 (2013), 11:1–11:39.
60 J. Mackenzie. 2017. Managing tail latencies in large scale IR systems. In Proc. ACM Int. Conf. on Research and Development

in Information Retrieval (SIGIR). 1369.
61 J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, and J. Lin. 2018. Query driven algorithm selection in early stage

retrieval. In Proc. ACM Int. Conf. on Web Search and Data Mining (WSDM). 396–404.
62 J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper, and T. Suel. 2019. Compressing inverted indexes with recursive graph

bisection: A reproducibility study. In Proc. European Conf. on Information Retrieval (ECIR). 339–352.
63 A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. 2017. Faster blockmax WAND with variable-sized

blocks. In Proc. ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR). 625–634.
64 A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. 2019. PISA: Performant Indexes and Search for Academia. In Proc. of

the Open-Source IR Replicability Challenge (OSIRRC) at SIGIR 2019. 50–56.
65 A. Mallia, M. Siedlaczek, and T. Suel. 2019. An experimental study of index compression and DAAT query processing

methods. In Proc. European Conf. on Information Retrieval (ECIR). 353–368.
66 D. Metzler and W. B. Croft. 2005. A Markov random field model for term dependencies. In Proc. ACM Int. Conf. on

Research and Development in Information Retrieval (SIGIR). 472–479.
67 D. Metzler, S. Dumais, and C. Meek. 2007. Similarity measures for short segments of text. In Proc. European Conf. on

Information Retrieval (ECIR). 16–27.
68 A. Moffat. 2016. Judgment pool effects caused by query variations. In Proc. Australasian Document Computing Symp.

(ADCS). 65–68.
69 A. Moffat, P. Bailey, F. Scholer, and P. Thomas. 2017. Incorporating user expectations and behavior into the measurement

of search effectiveness. ACM Trans. on Information Systems 35, 3 (2017), 24:1–24:38.
70 A. Moffat, F. Scholer, P. Thomas, and P. Bailey. 2015. Pooled evaluation over query variations: Users are as diverse as

systems. In Proc. ACM Int. Conf. on Information and Knowledge Management (CIKM). 1759–1762.
71 A. Moffat and J. Zobel. 2008. Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. on Information

Systems 27, 1 (2008), 2.1–2.27.
72 A. Mourão and J. Magalhães. 2018. Low-complexity supervised rank fusion models. In Proc. ACM Int. Conf. on Information

and Knowledge Management (CIKM). 1691–1694.
73 G. Ottaviano and R. Venturini. 2014. Partitioned Elias-Fano indexes. In Proc. ACM Int. Conf. on Research and Development

in Information Retrieval (SIGIR). 273–282.
74 J. Ponte and W. B. Croft. 1998. A language modeling approach to information retrieval. In Proc. ACM Int. Conf. on

Research and Development in Information Retrieval (SIGIR). 275–281.
75 F. Radlinski, M. Kurup, and T. Joachims. 2008. How does clickthrough data reflect retrieval quality?. In Proc. ACM Int.

Conf. on Information and Knowledge Management (CIKM). 43–52.
76 S. E. Robertson and S. Walker. 2000. Microsoft Cambridge at TREC-9: Filtering track. In Proc. Text Retrieval Conf. (TREC).
77 J. J. Rocchio. 1971. Relevance feedback in information retrieval. The SMART retrieval system: Experiments in automatic

document processing (1971), 313–323.

78 F. Scholer and H. E. Williams. 2002. Query association for effective retrieval. In Proc. ACM Int. Conf. on Information and
Knowledge Management (CIKM). 324–331.

79 D. Sheldon, M. Shokouhi, M. Szummer, and N. Craswell. 2011. LambdaMerge: Merging the results of query reformulations.

In Proc. ACM Int. Conf. on Web Search and Data Mining (WSDM). 795–804.
80 J. Shen, M. Karimzadehgan, M. Bendersky, Z. Qin, and D. Metzler. 2018. Multi-task learning for email search ranking

with auxiliary query clustering. In Proc. ACM Int. Conf. on Information and Knowledge Management (CIKM). 2127–2135.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

Boosting Search Performance UsingQuery Variations 41:25

81 T. Strohman, H. Turtle, and W. B. Croft. 2005. Optimization strategies for complex queries. In Proc. ACM Int. Conf. on
Research and Development in Information Retrieval (SIGIR). 219–225.

82 H. Turtle and W. B. Croft. 1991. Evaluation of an inference network-based retrieval model. 9, 3 (1991), 187–222.

83 H. R. Turtle and J. Flood. 1995. Query evaluation: Strategies and optimizations. Information Processing & Management
31, 6 (1995), 831–850.

84 C. C. Vogt. 1999. Adaptive combination of evidence for information retrieval. Ph.D. Dissertation. http://cseweb.ucsd.edu/
groups/guru/docs/theses/vogt-thesis.pdf

85 C. C. Vogt. 2000. How much more is better? Characterizing the effects of adding more IR systems to a combination. In

Proc. Recherche d’Information etses Applications (RIAO). 457–475.
86 C. C. Vogt and G. W. Cottrell. 1999. Fusion via a linear combination of scores. Information Retrieval 1, 3 (1999), 151–173.
87 J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu. 2014. Cache design of SSD-based search engine architectures: An

experimental study. ACM Trans. on Information Systems 32, 4 (2014), 1–26.
88 J. R. Wen, J. Y. Nie, and H. J. Zhang. 2001. Clustering user queries of a search engine. In Proc. Int. Conf. on the World

Wide Web (WWW). 162–168.
89 J. R. Wen, J. Y. Nie, and H. J. Zhang. 2002. Query clustering using user logs. ACM Trans. on Information Systems 20, 1

(2002), 59–81.

90 H. Wu and H. Fang. 2013. An incremental approach to efficient pseudo-relevance feedback. In Proc. ACM Int. Conf. on
Research and Development in Information Retrieval (SIGIR). 553–562.

91 G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan. 2004. Optimizing web search using web click-through

data. In Proc. ACM Int. Conf. on Information and Knowledge Management (CIKM). 118–126.
92 X. Xue and W. B. Croft. 2013. Modeling reformulation using query distributions. ACM Trans. on Information Systems 31,

2 (2013), 6:1–6:34.

93 J.-M. Yun, Y. He, S. Elnikety, and S. Ren. 2015. Optimal aggregation policy for reducing tail latency of web search. In

Proc. ACM Int. Conf. on Research and Development in Information Retrieval (SIGIR). 63–72.
94 J. Zobel and A. Moffat. 2006. Inverted files for text search engines. Comput. Surveys 38, 2 (2006), 6.1–6.56.

Received November 2018; revised May 2019; accepted July 2019

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 41. Publication date: August 2019.

http://cseweb.ucsd.edu/groups/guru/docs/theses/vogt-thesis.pdf
http://cseweb.ucsd.edu/groups/guru/docs/theses/vogt-thesis.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Rank Fusion
	2.2 Pseudo-Relevance Feedback
	2.3 Efficient Index Traversal
	2.4 Caching for Large-Scale Search

	3 Methodology
	3.1 Hardware and Software
	3.2 Collections and Indexes
	3.3 Evaluation Metrics

	4 Real-Time Fusion of Query Variants
	4.1 Efficiently Processing Variations
	4.2 Experiment: Real-Time Fusion
	4.3 How Many Queries Should Be Fused?
	4.4 Discussion

	5 Using Pre-Computed Centroids
	5.1 Query Centroids
	5.2 Query Boosting Using Centroids
	5.3 Query Boosting Effectiveness With Perfect Cluster Association
	5.4 Query Boosting Effectiveness With Fallible Cluster Association

	6 Discussion
	7 Conclusions
	References

