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Abstract 

Logistics planning is vital in the military, involving the provision of supplies and 

transport to support military operations. Operations research, artificial intelligence and 

(intelligent) agents have been used to address logistics, and thus transportation 

scheduling. Most of these approaches are applied to traditional (military) logistics. 

Organisations that perform logistics typically own the assets required in logistics plans, 

and thus can control their behaviour and have visibility of information that governs their 

actions. Some logistics domains are relatively constrained as tasks required to achieve 

logistics goals, and who will perform them, is known a priori. Additionally, 

transportation scheduling usually considers local transportation, where a single 

transportation asset can perform the complete route of a transportation task. 

The military are changing the way they do business, primarily due to deregulation, 

outsourcing and a push towards Network Centric Warfare (or Ubiquitous Command and 

Control). This results in a complex open market environment in which organisations must 

cooperate and obtain services from other self-interested organisations in order to form 

flexible and agile enterprises (or coalitions) to achieve their logistics (or business) goals. 

Therefore, modern military logistics planning is performed in a decentralised, dynamic 

and open environment. It involves the exchange of services, via contracting, among many 

service providing organisations and many service acquiring organisations, i.e. many-to-

many interaction. The domain becomes unconstrained, as tasks required to achieve 

logistics goals, and who will perform them, depends on the indeterminate organisations 

(and their services) that are available at the time. In addition, the military transportation 

requirements are global. Transportation assets may be able to transport only part of the 

route and quantity of a transportation task, which must be planned in the complex 

environment described above. 

The aim of this thesis is to investigate the suitability of (BDI) agents for modern logistics 

planning, and the development of a protocol, the Provisional Agreement Protocol (PAP), 

to facilitate the complex agent interaction required for planning and task allocation. PAP 

is used to implement an agent system that can address our global transportation 

scheduling problem. 
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Multi-Agent Logistics Tool (MALT) is an agent system that we propose to automate 

aspects of military logistics planning. BDI agents in MALT model organisations’ 

logistics processes, interactions (protocols) and expertise. Agents were found to be 

suitable for modern logistics planning, for a variety of reasons. Agents provide a suitable 

conceptual model to easily map organisations’ processes, interaction and expertise into 

agents. Both use similar ideas and concepts, e.g. thought of in terms of goals and beliefs, 

and are both decentralised. Agents can be easily developed to respond and recover from 

failure, and respond and react to changes that may occur in the environment. This 

increases the software system’s robustness. BDI agents are suited to highly constrained 

domains, e.g. organisational processes and protocols are known a priori. This was the 

case within individual organisations in our logistics domain, although social processes 

(distributed plans) to achieve an organisation’s goals are unconstrained. PAP, a 

constrained protocol, was developed to find these unconstrained distributed plans. We 

present a methodology for modelling organisations’ processes, interactions and expertise, 

and allowing agents to recover from failure and react to changes, using BDI agents 

(implemented in ATTITUDE agent architecture). Agents are also able to automate, and 

perform quickly, tasks such as calculations, information gathering and checking of 

constraints. Agents’ modular design and decoupling from other agents (due to 

decentralisation) makes MALT easy to maintain. Therefore, agents provide a practical 

approach to address the modern logistics planning domain. Components of MALT were 

successfully applied to DARPA’s international CoAX demonstration, performing the 

logistics planning of a medical evacuation from a ship. 

PAP is an extension of Fischer et al.’s Extended Contract Net Protocol, overcoming 

shortfalls with previous contract net approaches when applied to our domain. PAP 

facilitates planning and task allocation in decentralised, dynamic and open environments, 

with agents involved in a many-to-many interaction through contracting. Agents using 

PAP are able to form flexible and agile enterprises (or coalitions) to achieve their 

business goals. PAP requires less communication (under certain circumstances) and has 

greater planning flexibility than previous contract net approaches. It is able to perform a 

decentralised depth-first search (with a dynamic search tree), which from our knowledge, 

has not been previously done. PAP is relatively consistent with commercial contracting 
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undertaken in business. Since it allows deliberation before forming full contracts, it may 

reduce the number of broken contracts. It does not fall into livelock (i.e. will converge to 

either a solution or no solution) or deadlock, and by forcing distributed processing it has 

beneficial scalability properties. 

PAP was applied to the combinatorial auctions and global transportation scheduling 

domains. PAP was able to facilitate the common static single auction case, as well as the 

novel single dynamic and multiple (dynamic) auction cases. PAP is shown to have 

benefits over current (centralised) one-shot approaches, including: bidders not required to 

submit all their bids and dependencies to a single bidder; reduced communication if 

bidders possess many bids; and an improved solution through PAP’s ability to interact 

with a changing environment during the auction (planning) process. In the multiple 

auction case, PAP performed better when resources (bids per auction) were plentiful 

since competition, and thus the tragedy of the commons phenomena, was reduced. PAP’s 

backtracking facility was shown to be able to find a better solution than the first greedy 

solution with single static auctions, but was detrimental with multiple auctions, primarily 

due to environment dynamics. This seems counterintuitive as one would always expect 

backtracking to provide a better solution.  

Our global transportation scheduling implementation overcomes shortfalls with Fischer et 

al.’s transportation implementation when applied in our domain because it allows partial 

routes, in addition to partial quantity, bids. This allows our implementation to address a 

greater range of transportation problems than current approaches. Our implementation 

allows a more informed bid pricing than previous approaches, and uses a bid evaluation 

function that reduces communication. Experimental results show that our implementation 

worked well with the scenarios used – producing similar plans quicker (ideally) than 

doing it manually, which is how it is currently done in practice (in military training). 

Even if our implementation did not perform much better, planners would still benefit 

from automating this tedious and complex task, freeing their time for other important 

tasks. Issues of commitment, communication, time and partial observability complicates 

planning, which are a result of decentralisation (types of domains that PAP was 

developed for). This causes difficulty in deliberating and making informed decisions. 
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Chapter 1 

1 Introduction 

Australian military logistics planning1 is primarily concerned with the supply and 

transport of resources to support a military operation. For example, in order to deploy a 

force element (e.g. army unit) for a military operation, logistics planners must determine 

the supply requirements to sustain them throughout the operation, such as food and fuel. 

Logisticians must then plan the transportation of the force element and the supplies from 

their origin to their required destination. Most of the planning is currently performed 

manually in logistics training exercises2, which is a complex, tedious and time consuming 

process. It involves many calculations, satisfying many constraints, and having to deal 

with many combinations of possible options (plans) to achieve logistics goals. Logistics 

could make or break a military operation. If, for example, logistics constraints are not 

satisfied (e.g. a runway is too short for a cargo plane to land on), this could result in the 

logistics plan, and hence the military operation, to become infeasible. Therefore, military 

logistics planning is a vital part of military operations. A software support system that 

could automate aspects of logistics planning could potentially lead to the improvement of 

the logistics planning process (e.g. time to find a plan) and resulting logistics plans. 

Additionally, a support system could benefit the logistics planners by automating some of 

these demanding logistics processes. 

One of the most demanding components of military logistics planning is transportation 

scheduling. We refer to the military transportation scheduling domain as global 

transportation scheduling because a large quantity of resources must be transported large 

distances – on a global scale. A single transport asset may only be able to transport part 

of the quantity of a resource, only part of the distance (or route). Therefore, the domain 

allows transhipment (or drop and swap), enabling resources to be transferred between 

                                                    

1 This thesis is concerned with planning at the operational level of command in the Australian Defence Force (ADF). 

2 The author was involved in military logistics training in 2000 in which these observations were discovered – see next 

chapter. 



 2 

transportation assets during its journey from its source to its destination. Additionally, the 

resources to be transported are divisible and the transportation assets may transport a 

portion of the resources. The transportation domain is multi-modal, as any mode of 

transport (i.e. air, sea or land transportation assets) may be used to transport the 

resources. The global transportation scheduling problem is computationally complex, and 

is not regularly addressed in the literature. 

To add to the complexity of military logistics planning, and hence global transportation 

scheduling domains, the environment is decentralised, dynamic and open. Traditionally, 

the military primarily used their own assets to achieve their logistics goals. The military 

typically had full control over, and had visibility of information regarding their asset’s 

behaviour. Solutions to these logistics problems are typically centralised, for example, 

using Operations Research approaches (Cohen 1985; Ahuja, Magnanti et al. 1993; 

Bramel and Simchi-Levi 1997; Carter and Price 2000; Kozan and Ohuchi 2002; Kress 

2002). All information regarding the assets is gathered and processed by a single decision 

making entity (that may contain distributed, or multiple, processors). The resulting plan is 

then imposed onto the assets (or their operators) to be carried out. The military have now 

changed the way they conduct military operations – or do business. Due to increasing 

deregulation, outsourcing and coalition operations3, the military must acquire services 

from other organisations in order to achieve their logistics (or business) goals. As a result, 

the military may no longer have control over assets that are used to achieve their logistics 

goals, nor access to information that governs their behaviour (how they do things), 

information regarding the organisations’ local plans (what they intend to do) and all the 

services that they can provide (what they can do). Organisations may want to keep this 

information private because, for example: it is proprietary, commercial in confidence or 

classified; to protect others privacy, they may not want to release information regarding 

services that they intend to provide for certain organisations; or they may not want to 

provide a particular service that is available because it is not in their best interest. 

Additionally, the concept of Network Centric Warfare (NCW) (DoD-US 2006), or what 

                                                    

3 Military operations involving military organisations from more than one nation 
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we refer to as Ubiquitous Command and Control (UC2) (Lambert 1999; Lambert and 

Scholz 2005), pushes for the military to move from a rigid hierarchical organisational 

structure to a flexible decentralised structure. Organisations and sensors are connected via 

networks, and allocate tasks and gather information in a decentralised manner. 

Modern logistics must therefore be performed in a decentralised open market. 

Organisations must cooperate with other self-interested service providing organisations in 

order to obtain the required services to achieve their logistics goals. Service providing 

organisations make their own (self-interested) decisions on how their assets and resources 

are utilised, and hence provide only those services that they wish to provide. 

Organisational cooperation involves the exchange of services, where many service 

providing organisations4 may be cooperating with many service acquiring organisations, 

resulting in a many-to-many setting as shown in Figure 1. Issues such as contracting 

(legal agreements) for the exchange of services are present. Centralised approaches are 

not well suited to this decentralised domain. 

Services
Requested

Services
Offered

Service Acquiring
Organisations

Services Providing
Organisations  

Figure 1. Many-to-many setting (open market) in our decentralised, dynamic and open 

logistics domain. Nodes represent organisations and arrows represent their interaction. 

The logistics environment is dynamic and open because organisations may enter or leave 

the system at anytime, and their goals and capabilities (services that they can provide) 

may change during the planning process. Services may be dynamic because, for example, 

an organisation may be negotiating to provide the same service(s) to multiple 

                                                    

4 Service providing organisations in our domain have fixed prices/valuations for their services, and aim to 

have their services allocated by service acquiring organisations. 
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organisations concurrently. Therefore, if one organisation aquires the service, it may no 

longer be available for other organisations, or may conflict with other services that can be 

provided. Logistics goals may change because, for example, the military operation that 

the logistics plan is for may change, or a logistics goal may become unachievable. 

Therefore, the old goal needs to be retracted and a new goal created. 

Logistics in the commercial sector can have similar characteristics to our military 

logistics domain. Rather than supply and transport resources to support a military 

operation, the commercial sector supplies and transports resources to support their 

business goals. Commercial transportation is increasingly becoming global due to 

globalisation. Deregulation and outsourcing in the commercial sector is very common, 

and thus is also decentralised, dynamic and open. Although this thesis uses military 

logistics as the application domain, the same concepts and logistics solutions within the 

thesis, apply to logistics in the commercial sector. 

Agents (or intelligent agents) are distributed intelligent software entities that are defined 

to at least have characteristics such as being (Wooldridge and Jennings 1995; Wooldridge 

2002): autonomous – they may act on their own and have control over their actions and 

internal state, and therefore may act in a self-interested manner; reactive – they perceive 

their environment and respond to changes that occur within it; proactive – they exhibit 

goal-directed behaviour, and take the initiative in order to satisfy their goals; and social – 

they may interact with other agents in the environment. Agents have been applied to 

many application domains that include logistics and e-commerce, such as: supply chain 

logistics; auctions; coalition formation; traditional military logistics planning; 

transportation scheduling; task allocation; and manufacturing (see next chapter). As with 

our logistics domain, these application domains are also inherently distributed, complex 

and/or dynamic in nature, and are usually involved in an e-commerce environment 

(exchanging services between organisations). It is reasonable to assume, therefore, that 

agents may be a suitable candidate for addressing our particular logistics and 

transportation scheduling domains. Agents can represent and model and automate 

organisational processes, expertise and interactions, and perform the required planning. 

But how this may be done at the detailed agent level using the BDI agent paradigm 

(Bratman, Israel et al. 1988; Rao and Georgeff 1991; Rao and Georgeff 1991; Rao and 



 5 

Georgeff 1995), when to use the BDI paradigm, and the suitability of agents for modern 

military logistics, has not been previously addressed. 

In our domain, agents (i.e. organisations) may have a goal to achieve, which they cannot 

achieve alone. The agent must obtain services from other agents (i.e. allocate tasks to 

other agents) in order to achieve the goal. The set of services obtained, where each 

service has an associated agent that performs it, is a distributed plan to achieve the goal. 

The distributed plan required to achieve a goal may not be known a priori (i.e. domain is 

not constrained), primarily because it is dependent on the available services that are 

provided by other agents in the society. These services may not be known due to the 

decentralised, dynamic and open environment. The dynamic and open nature of the 

domain results in an indeterminate number and type of agents (and hence indeterminate 

number and type of services available) to enter or leave the system at anytime. Hence, 

available services continually change, particularly throughout the planning process. The 

decentralised environment may result in the agent not having knowledge of all the other 

agents’ available services, since this information may be kept private. The available 

services may only be revealed when they are asked for, in which case the agents only 

provide services that they are willing to perform, based on their self-interested goals. 

As a related issue, it may not be practicable for all of the agents in the society to send all, 

or many, of their possible services to a centralised planning agent for processing5. In 

addition to the information regarding all possible services being potentially private, there 

may also be a large number of services to communicate (as in our transportation 

scheduling domain, chapter 7). This may result in extensive communication and 

computation for a single agent to consider the large quantity of services. It may also be 

difficult to define the complex dependencies between the large numbers of services. For 

example, using one particular service may result in other services becoming unavailable, 

or result in their price changing. The dependencies between services may also be private 

information. Additionally, due to the domain dynamics, services sent for processing may 

                                                    

5 The term centralised here is slightly different to that above. Distributed agents may act in a decentralised manner, and 

decide for themselves what services that are willing to provide. These services can be submitted to a centralised agent 

for processing. In the term centralised above, a centralised agent determines services others will provide. 
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quickly become outdated, as some services may no longer be available, and new services 

may become available, during the planning process. Finally, in the case of multiple 

service acquiring organisations (or agents), they may be reluctant for a centralised 

mediator to perform the planning for them in order to find the most efficient set of 

services from service providing organisations to achieve all their individual goals. 

Organisations may not be confident that the mediator will make decisions in their best 

interests, and feel they could potentially obtain a better solution on their own. This is why 

organisations often act independently in the real world. 

To enable agents to perform the planning required in our logistics planning and global 

transportation scheduling domains, agents must be able to perform distributed planning 

and task allocation in a decentralised, dynamic and open environment, within a many-to-

many setting, and involve contracting. Agents must undergo a decentralised planning 

process in order to determine a suitable set of services to be assembled (the distributed 

plan) in order to achieve its goal. Services are extracted by asking other agents for them, 

and the services may change during the planning process. Planning is complicated by the 

issue of partial observability, where the agent performing the planning has incomplete 

knowledge regarding services that could achieve its goal. Protocols that allow agents to 

perform the planning and task allocation with these domain complexities have not been 

previously developed. 

 

Aim and Scope of this Study 

The aim is to check the suitability of (BDI) agents for the modern military logistics 

environment, and develope an agent protocol to facilitate organisational planning and 

task allocation, in a decentralised, dynamic and open environment, within a many-to-

many (open market) setting. 

The modern military logistics planning and global transportation scheduling problems 

will be addressed using agent technology, and through the development of a new agent 

protocol. The suitability of using agents in these domains will be investigated. We 

discuss how and when to use the BDI agent approach to model and automate 

organisational logistics (business) processes, expertise and interactions, at the detailed 
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agent level, in order to obtain the required agent characteristics (e.g. reactivity and pro-

activeness). An agent protocol is developed to facilitate required complex agent planning 

and task allocation, which is relatively consistent with current organisational interaction. 

The protocol will be applied to the global transportation scheduling problem, as well as 

combinatorial auction problems. An agent implementation that addresses our complex 

global transportation scheduling problem is presented. 

 

A Guide to this Thesis 

Chapter 2 will provide the relevant background. It includes a discussion on our logistics 

and transportation domains, a brief introduction to agent technology and the BDI-based 

ATTITUDE agent architecture, and literature on agent logistics systems and related agent 

literature related to our problem domain. Chapter 3 discusses the Multi-Agent Logistics 

Tool (MALT), which is an agent-based software support tool for automating aspects of 

Australian military logistics planning. Only a small component of the complete vision of 

MALT has been currently developed (using ATTITUDE), such as agents involved in 

DARPA’s international CoAX demonstration. We investigate the use of the BDI 

paradigm for implementing agents to model organisations’ processes, expertise and 

interactions. In chapter 4 we look at current protocols for decentralised planning or task 

allocation, such as Fischer et al.’s Extended Contract Net Protocol (ECNP) (Fischer and 

Kuhn 1993; Fischer, Muller et al. 1996), and their shortfalls for our domain. Chapter 5 

introduces the Provisional Agreement Protocol (PAP), which was developed to facilitate 

our required distributed agent planning and task allocation. PAP generalises the 

approaches discussed in chapter 4. In chapter 6 we apply PAP to combinatorial auctions, 

in order to evaluate the protocol. We present benefits of the protocol to ECNP and 

traditional approaches to combinatorial auctions, and show that it can address the novel 

dynamic and multiple simultaneous combinatorial auction problems. Chapter 7 discusses 

the implementation of agents for the global transportation scheduling domain using PAP. 

Our implementation can address a greater range of transportation problems, and allows a 

more informed pricing approach, than current approaches. Chapter 8 concludes, in 
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particular discussing the suitability of agents to our modern logistics planning and global 

transportation scheduling domains. 
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Chapter 2 

2 Background 

In this chapter, we will provide a brief overview of our military logistics domain and 

traditional approaches to logistics and transportation scheduling. We then introduce 

agents and discuss current agent research related to the development of a logistics support 

system for our domain – the modern military logistics domain. 

2.1 Modern Military Logistics 

2.1.1 Logistics Definition 

The concept of logistics is applied to both the defence and the commercial sector 

(Blanchard 1992). A general definition is: 

“[Logistics is] the process of planning, implementing, and controlling the efficient, 

effective flow and storage of goods, services, and related information from point of origin 

to point of consumption for the purpose of conforming to customer requirements.” 

(Bramel and Simchi-Levi 1997) 

Basically, logistics is used to get the right thing at the right place at the right time 

(Bramel and Simchi-Levi 1997). Logistics includes transportation, material flow and 

handling, product distribution, purchasing and inventory control, warehousing, 

packaging, manufacturing management and customer service (Blanchard 1992; Bramel 

and Simchi-Levi 1997; 2000).  

The definition of military logistics from U.S. doctrine (DoD-US-Doc 2000) is: 

“Logistics is the science of planning and carrying out the movement and maintenance of 

forces.  In its most comprehensive sense, those aspects of military operations which deal 

with: 

• design and development, acquisition, storage, movement, distribution, 

maintenance, evacuation, and disposition of material; 
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• movement, evacuation, and hospitalization of personnel; 

• acquisition or construction, maintenance, operation, and disposition of facilities;  

• acquisition or furnishing of services.” 

The primary focus of military logistics is to ensure that the continuous and timely flow of 

material, facilities, personnel and ancillary services is maintained throughout an 

operation.  It provides commanders with the correct resources, in the required quantities, 

on time and suitably configured, necessary to complete their operation. 

Kress (Kress 2002) defines military logistics by relating it to a production process, where 

the inputs to the production process are the means (manpower and machines) and 

resources (raw materials and services): 

“Logistics: A discipline that encompasses the resources that are needed to keep the 

means of the military process (operation) going in order to achieve its desired outputs 

(objectives). Logistics includes planning, managing, treating and controlling these 

resources.” (Kress 2002) 

Although definitions and terms vary, the logistics concepts are the same. Logistics 

(military and commercial) is a broad concept involving a wide variety of functions used 

to support a military or business operation by managing its physical resources – i.e. 

managing the space and time issues of the operation. 

There are three levels to logistics (Bramel and Simchi-Levi 1997; Kress 2002) – although 

the commercial sector uses the terms tactical and operational where military uses the 

terms operational and tactical, respectively. To avoid confusion, we will use the military 

terminology: 

• Strategic level – long term logistics planning, i.e. logistics decisions that have a 

long lasting effects.  This includes supply chain design and resource acquisition, 

particularly decisions regarding the number of, location and capacities of 

warehouses and manufacturing plants, or the flow of material through the logistics 

network. 
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• Operational level – medium term logistics planning, i.e. logistics decisions that 

are updated once every month, quarter or year.  Includes production and 

distribution planning, resource allocation, inventory policies and transportation 

strategies. 

• Tactical level – short term logistics planning, i.e. refers to the day-to-day 

decisions.  Includes resource scheduling and routing.  This occurs daily and in 

real-time. 

Our military logistics domain is focussed primarily at the operational level, but there may 

be overlap with the tactical level. 

2.1.2 Military Logsitics 

The author attended a military logistics planning course at the Australian Defence Force 

Warfare Centre (ADFWC) in order to gain an appreciation of the military logistics 

planning process, and to investigate the use of agents to support it. Details of our logistics 

domain discussed in this section, and within the thesis, were obtained at the course. Due 

to the sensitivity of the information, not all details of our logistics domain can be 

discussed in this thesis. However, these details are not necessary to explain the concepts 

within the thesis. 

Military planning commences with operational planners forming a plan, called a 

campaign plan, to achieve a military goal, such as resolving a conflict. It is the role of the 

logistics planners in this process to realise the campaign plan. Logistics planners need to 

ensure that the force elements (military units involved in the operation) can be deployed 

to their required destination, and are supported throughout the campaign by providing 

them with supplies required to achieve the campaign, such as food, water, fuel, 

ammunition, equipment, maintenance and medical assistance. In order to achieve this, the 

logistics planners must determine what resources (e.g. equipment, supplies and services) 

are required to support the operation, which in turn requires many calculations that are 

repeated and prone to error if performed manually. A schedule of supplies and 

transportation is then formed to: acquire the required supplies; and transport the supplies 

and the force elements to their destination. In forming a logistics plan, logistics planners 
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must satisfy many constraints. For example, force elements must be deployed within the 

campaign time constraints, supplies must be delivered periodically before they run out, 

logistics planners must ensure: that transport assets can get to their destination (e.g. can 

the specific aircraft land on the runway, can the ship dock at the port, are the roads 

suitable for trucks to travel on, etc.); that weather will not affect the mode of transport 

selected or the quantity of supplies required (e.g. personnel require more water in hot 

weather); and that the force elements have enough fuel to support their campaign. Only 

one unsatisfied and overlooked constraint could result in an infeasible logistics plan, and 

hence infeasible campaign plan. To assist in checking these constraints and make 

informed decisions in its plans, logistics planners must gather required information from 

distributed sources. Information gathered includes the type of supplies required by force 

elements and their consumption rates (quantity of supplies consumed per day), 

infrastructure information (e.g. length of a runway, facilities at a sea port, type of roads), 

weather at the deployment destinations, and supplies and transportation assets available. 

In chapter 3 we further discuss the logistics planning process. 

We refer to the transportation scheduling problem that the logistics planners must 

undertake as the global transportation scheduling problem (Perugini, Lambert et al. 2003; 

Perugini, Lambert et al. 2004; Perugini, Lambert et al. 2004) (see chapter 7). A large 

amount of resources must be transported on a global scale, and thus a single 

transportation asset can transport only a part of the quantity of resources only part of the 

distance (route). Therefore, during transportation from source to destination, a resource 

may need to be transferred, or drop-and-swap, between two or more transportation assets. 

At the logistics planning training course, the logistics planning process was performed 

manually by the logistics planners, which is a tedious, complex and time consuming 

process. There is a trade off between the quality of a logistics plan 6 and the time to form 

a logistics plan. Due to the complexity of the problem and tight time constraints, the 

quality usually suffers, particularly as it forces the planner to speculate on values, 

satisfaction of constraints and information, rather than rigorously verify them in order to 

                                                    

6 Quality is measured by the accuracy, feasibility and optimality (or efficiency) of the logistics plan. 
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conserve time. To further complicate matters, the large number of constraints and 

planners forming plans for various military organisations (e.g. Army, Air Force and Navy 

force elements) which comprise their own logistics “business” processes and expertise, 

makes it difficult for planners to possess knowledge of all this information. At the 

training course, this information was not always documented and was obtained from 

geographically distributed personnel associated with different organisations using, for 

example, phone calls or email. It was not always easy getting access to the person with 

the required information. 

2.1.3 Modern Logistics Environment 

To add to the complexity of the logistics planning process, the modern logistics 

environment is becoming decentralised, dynamic and open. Traditionally, the military 

primarily used their own assets and resources, which they have control over and visibility 

of information regarding their behaviour, to achieve their logistics requirements. The 

military have now changed the way they conduct military operations – or do business. 

Due to increasing deregulation, outsourcing and coalition operations (military operations 

involving military organisations from more than one nation), the military must acquire 

services from other organisations in order to achieve their logistics (or business) goals. 

As a result, the military may not have control over assets and resources that are used to 

achieve their logistics goals, nor access to information that governs their behaviour (how 

they do things), information regarding the organisations’ local plans (what they intend to 

do) and all the services that they can provide (what they can do). Organisations may want 

to keep this information private because, for example: it is proprietary, commercial in 

confidence or classified. To protect others’ privacy, they may not want to release 

information regarding services that they intend to provide for certain organisations; or 

they may not want to provide a particular service that is available as it is not in their best 

interest. Logistics must therefore be performed in a decentralised, open market, 

cooperating with other organisations that make their own self-interested decisions on how 

their assets and resources are utilised, and hence provide only those services that they 

wish to provide, in order to obtain the required services to achieve the logistics goals. 
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The environment is dynamic and open because organisations may enter or leave the 

system at anytime, and their goals and capabilities (services that they may provide) may 

be continually changing during the planning process. Capabilities may be dynamic 

because, for example, an organisation X may be cooperating and providing services to 

the military and other organisations concurrently. Therefore, X’s capabilities that are 

available for the military may change during their cooperation to exchange services as 

other organisations obtain services from X at the same time. Logistics goals may change 

because, for example, the campaign plan may change, requiring a new logistics plan to 

realise it, or a logistics goal may not be able to be achieved, and hence the old logistics 

goal must be retracted and a new logistics goal created. 

2.1.4 Motivation for a Logistics Support System 

Logistics planners have a difficult task planning in the complex modern logistics 

environment, particularly if performed manually as in the logistics planning course. Great 

benefit can be attained with the development of a military logistics support system that 

can automate aspects of modern logistics planning. The logistics support system can 

potentially improve the current logistics planning process and allow the formation of 

better plans, i.e. high quality plans produced faster than manual plans. Additionally, it can 

remove logistics planners from menial tasks, allowing them to focus their effort on other 

tasks, such as refining a logistics plan, rather than trying to form a single logistics plan on 

time. 

2.2 Traditional Approaches to Logistics and Transportation 

Scheduling 

Logistics and transportation scheduling covers a broad area, and thus there is a plethora 

of literature on the subjects. There are a few issues with much of the current literature in 

relation to our modern military logistics and transportation problem, which generally fall 

under the research area of Operations Research (OR) (Cohen 1985; Ahuja, Magnanti et 

al. 1993; Bramel and Simchi-Levi 1997; Carter and Price 2000; Kozan and Ohuchi 2002; 

Kress 2002) and Artificial Intelligence (e.g. classical planning and constraint satisfaction) 
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(Fikes and Nilsson 1971; Allen, Hendler et al. 1990; Hendler, Tate et al. 1990; Currie and 

Tate 1991; Petrie 1992; Russell and Norvig 1995; McDermott 1996; Weld 1999; 

Refanidis, Bassiliades et al. 2001; Laborie 2003). Solutions to the problems are typically 

centralised and assume a static environment. By centralised we mean the problem is 

solved by a single decision making entity, which may use a distributed approach in 

solving it, with multiple processes where each processor solves a part of the problem, but 

does not have control over its own decisions (it just performs calculations as instructed). 

Centralised approaches to logistics and transportation problems may not be appropriate 

for our decentralised, dynamic and open environment. The distributed organisations (and 

information sources) may be reluctant to release all their information to a centralised 

system for processing. The amount of information that must be communicated could also 

be extensive. Having a centralised system decide on the actions that these organisations 

should perform is a form of “control”, which the organisations may not appreciate. 

Additionally, the decisions made may not be in the interests of the organisations. Due to 

the dynamic nature of our domain, it may be difficult for organisations to keep a 

centralised system up-to-date with changes in their information. Any changes may 

require the centralised system to restart planning. Also, these approaches usually do not 

consider intra-organisational interaction, such as contracting for services, which are 

required while planning. 

Most of the literature on logistics and transportation scheduling focus on specific 

problems. These include inventory management, vehicle routing and pick up and 

delivery, network flow, job scheduling, supply distribution, queuing and forecasting 

(Cohen 1985; Ahuja, Magnanti et al. 1993; Bramel and Simchi-Levi 1997; Carter and 

Price 2000; 2002). Although many of these problems are associated with organisations 

within our logistics system, at the system level most differ to our logistics and 

transportation scheduling problems. 

In the General Pickup and Delivery Problem (GPDP), a set of routes are constructed for a 

fleet of vehicles in order to satisfy transportation requests (Savelsbergh and Sol 1995). 

Each vehicle has a given capacity, a start and an end location. The transportation request 

specifies the load size, the pickup locations and delivery locations. Instances of the GPDP 

are the Pickup and Delivery Problem (PDP) where the transportation request specifies a 
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single pickup and single delivery location, and all vehicles depart and return to a central 

depot. The Dial-a-Ride Problem (DARP) is a PDP where all load sizes are equal to one, 

since the resources to be transported are usually people. The Vehicle Routing Problem is 

a PDP in which all origins or destinations in the transportation request are located at the 

central depot. 

Pasquier el al. investigate dynamic transportation scheduling using a Blackboard-based 

approach (Pasquier, Quek et al. 2001), which is a dynamic version of the GPDP. The 

Blackboard (Erman, Hayes-Roth et al. 1980; Nii 1989; Corkill 1991) centralises problem 

related information and Knowledge Sources access the information to assist in building 

the solution. Knowledge Sources are independent problem solvers, performing roles such 

as route planning, request managing and fleet managing. 

In these transportation problems, only one vehicle (transportation asset) performs the 

complete route of the transportation request. Therefore, there is no drop-and-swap (or 

transhipment) of a resource between transportation assets along the route. Our global 

transportation scheduling problem requires drop-and-swap as transportation assets may 

not be able to perform the complete route due to the large distances. Our global 

transportation scheduling problem is equivalent to the GPDP with a single pickup and 

single delivery location, or the (multiple vehicle) PDP without the requirement of 

departing and returning to a central depot, both with time constraints. As with the 

problem addressed in (Pasquier, Quek et al. 2001), we require planning in a dynamic 

environment. 

The greyhound scheduling problem  allows drop-and-swap between transportation assets 

(Dean and Greenwald 1992; Dean and Greenwald 1992). Transportation assets schedules 

are fixed (which routes and when they travel are predetermined), similar to a commercial 

bus, train and airline. Our global transportation scheduling problem requires that 

transportation assets schedules are flexible. 

Haghani and Oh address the multi-commodity, multi-modal network flow problem with 

time windows, which is equivalent to our global transportation problem (Haghani and Oh 

1996). They consider drop-and-swap between transportation assets, where others that 
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address similar problems do not (Haghani and Oh 1996). They develop suitable heuristics 

to solve the problem, but the solution is centralised and assumes a static environment. 

Montana et al. use genetic algorithms for military transportation scheduling (Montana, 

Brinn et al. 1998; Montana, Bidwell et al. 1999). They investigate the grouping of trucks 

into convoys and the selection of routes for the convoy to travel along. Becker and Smith 

present a scheduler that allocates military aircraft to transportation tasks (Becker and 

Smith 2000). Both the aforementioned approaches are centralised and assume that 

transport assets can perform the complete transportation task or route. 

Moynihan et al. (Moynihan, Raj et al. 1995) and Hameri and Paatela (Hameri and Paatela 

1995) have developed a simulation system for strategic logistics. Our logistics domain is 

at the operational level of logistics and not the strategic level of logistics (see previous 

section). Sandoz (Sandoz 1990) also looks at simulation, but for operational level (U.S.) 

military logistics. We are investigating planning systems rather than simulation systems. 

2.3 Agents and the BDI Architecture 

In this section, we introduce agents and the Belief-Desire-Intention (BDI) agent 

architecture. An overview of ATTITUDE, which is a BDI-based multi-agent programming 

language, will be presented. ATTITUDE was used to develop the agents in this thesis. 

2.3.1 Agents 

Agents should have at least the following properties (characteristics) (Wooldridge and 

Jennings 1995; Wooldridge 2002): 

• Autonomy – operates with little or no assistance from humans and other external 

sources, and has control over its actions and internal state. 

• Social Ability – interacts with other agents (software and human). 

• Reactivity – should be able to perceive the environment that they are in and respond 

in a timely fashion to situations that occur within it. 

• Pro-Activeness – agents should exhibit goal directed behaviour, and therefore plan 

and perform actions to achieve their goals, and responds to failure in a plan/action by 

devising a new plan to achieve the goal, or revise its current goals. 
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Therefore agents are intelligent autonomous programs that can interact and react to their 

environment, and cooperate with other agents, to achieve their tasks. Agents themselves 

decide whether they will assist or provide information to other agents, if it is in their 

interest to do so. Agent systems that have more than one agent are generally referred to as 

Multi-Agent Systems (MAS). Agents may have other characteristics, such as mobility 

and the ability to learn. Other useful introductory references on agents and their 

applications include (Shoham 1993; Russell and Norvig 1995; Nwana 1996; Nwana and 

Ndumu 1996; Nwana and Wooldridge 1996; Jennings, Sycara et al. 1998; Weiss 1999). 

2.3.2 BDI agents and Procedural Approaches to Agent Planning 

The BDI architecture was originally proposed by Bratman et al. (Bratman, Israel et al. 

1988) in order to develop practical software agents. It is based on the philosophical 

model of human practical reasoning (Bratman 1987) where an individual’s (intelligent) 

behaviour can be described by their mental attitudes – their beliefs, desires and 

intentions. If an individual, or agent, believes that it is hungry and there is food on the 

table, and it desires (has a goal) to no longer be hungry, then one would expect the agent 

to act in order to satisfy it desires. It may satisfy its desire, i.e. commit to achieving its 

desire which may be one of its many goals, by forming an intention to eat the food on the 

table, and thus performs actions (a plan) in order to achieve the intention. 

The BDI agent architecture was formalised by Rao and Georgeff (Rao and Georgeff 

1991; Rao and Georgeff 1991; Rao and Georgeff 1995) who implemented one of the first 

BDI systems, called the Procedural Reasoning System (PRS), and its successor dMARS 

(Rao and Georgeff 1995; Rao and Georgeff 1995). Agents have an architecture that 

contains components which are similar to belief, desire and intention mental attitudes. 

Agents have beliefs about the world and desires, which are goals that they would like to 

achieve. In order to achieve these desires, agents form intentions which are a 

commitment to achieving a desire. An important element of the BDI architecture is its 

procedural approach to agent planning (Georgeff and Lansky 1986). Agents have a plan 

library that contains “recipes” informing the agent how to achieve its intentions. The 

plans may contain primitive actions for the agent to perform or further intentions that 

need to be achieved before the agent can continue with the plan. 
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To achieve its intentions, the agent must perform means-ends analysis and determine 

which plans are suitable in achieving the intention. Each plan contains a context that 

determines the conditions (e.g. beliefs) required for the plan to run. For example, to 

achieve the intention of eating the food on the table, if the food is soup, then agent will 

select the plan with a “food is soup” context rather than a “food is steak” context – so it 

can use a spoon to eat rather than a knife and fork. There may be more than one suitable 

plan that can achieve the intention. In order to select an appropriate plan, an agent may 

use meta-plans, which are plans used to determine which plan to execute, or use utilities 

for plans, so that the plan with the greatest utility will execute. 

Having plans defined a priori in a plan library assists in developing practical agents, 

particularly for real-time applications. Agents do not need to determine plans from first-

principles – i.e. find a plan to achieve its intentions (or goals) from scratch. First-

principles planning is performed by searching all/many possible combinations of actions 

to find the sequence of actions that can achieve the agent’s intention. This can take 

considerable time even for simple problems, particularly if trying to find the optimal 

plan. For real-time applications, the agent may not have this time to search for a suitable 

plan. Planning from first-principles is not always necessary. Plans to achieve goals in 

many real world situations can be determined a priori, to a certain level of abstraction. 

For example, when one attempts to start a car, one does not plan from scratch in order to 

determine the best way to achieve this goal. The fixed plan of “open the driver door of 

the car, get in, take out the car key, insert the key into the key hole, turn the key until the 

car starts” to achieve the goal is known by most drivers. Plans may be at a high level of 

abstraction, and thus the components in the plan may not be primitive actions that the 

agent can perform, but are intentions that the agents must achieve by selecting sub-plans. 

Having plans predefined by agents is a procedural programming approach to the agent 

planning problem, which is used in programming languages such as C, C++, Fortran, 

Pascal and Basic (Ralston and Reilly 1993). A procedural program is written specifying, 

step by step, the list of instructions on how to achieve some goal. The procedural 

approach allows resource (time) bounded agents to decide on which plans to execute and 

execute the plans rather than spend time forming the plans from scratch. In the next 
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chapter, we explain which type of application domains the procedural approach is suited 

to. 

Other BDI-based agent languages have been developed since PRS and dMARS. These 

include ATTITUDE (Lambert 1999; Lambert 1999; Lambert 2003), Jack (Busetta, 

Howden et al. 2000) and Jam (Huber 1999). ATTITUDE is used to develop the agents 

described in this thesis. 

2.3.3 ATTITUDE 

ATTITUDE (Lambert 1999; Lambert 1999; Lambert 2003) is an agent programming 

language based on the BDI architecture, with consideration from Nelson (Nelson 1982). 

It incorporates research into multi-agent reasoning, contextual reasoning, and reasoning 

under uncertainty. ATTITUDE uses the term desires, intentions and routines where 

Bratman et al. (Bratman, Israel et al. 1988) and Rao and Georgeff (Rao and Georgeff 

1991; Rao and Georgeff 1995) uses the terms intentions, desires, and plans, respectively. 

ATTITUDE agents have beliefs about the world 7. They must satisfy some primary goal or 

intention by forming desires which are sub-tasks or desirable states that the agent wishes 

to occur, moving the agent closer to its intention. Intentions and desires are attained using 

cognitive routines (we will use the term plan from now on) comprising a set of 

instructions that instruct the agent how to accomplish its desires or intentions.  ATTITUDE 

also allows declarative reasoning by storing inference rules into the agent’s knowledge 

base. 

ATTITUDE uses propositional attitude expressions as programming instructions to achieve 

these desires and intentions.  A propositional attitude has the form 

  [subject] [attitude] that [propositional expression] 

where:  

[subject] denotes an individual whose mental state is being characterised (eg. 

Fred, Harry, etc),  

                                                    

7 These are akin to knowledge bases, databases or local memory. 
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[attitude] is the subject’s dispositional attitude toward that claim about the world 

(eg. believe, desire, fears, expects, anticipates, etc.), 

[propositional expression] is describing some propositional claim about the world 

(eg. it is raining, the sky is blue, today is Monday, etc.). 

Examples of formalised propositional attitudes include “FC_IG_Agent2 believes (rain 

Tuesday)”, “Supply_Fuel_Agent4 expects that (take trucks fuel)”, and “Bde_Agent 

desires that (deploy Bde)”. 

ATTITUDE adapts propositional attitude expressions to form propositional attitude 

instructions. For example, the propositional attitude instruction “Transport_Agent1 

believe that (rain Tuesday)”, will instruct the agent called Transport_Agent1 to store into 

its knowledge base the fact (rain Tuesday).  The propositional attitude instruction may 

originate from Transport_Agent1 itself, or by another agent, such as an IG agent 

providing Transport_Agent1 with weather information – but it will be up to 

Transport_Agent1 whether it will believe or use this information once it is stored. The 

propositional attitude instruction “I desire (deploy FE)”, will result in the agent that is 

executing the command to itself attempt to satisfy its desire to deploy their FE.  The 

agent will attempt to find a plan in its plan library that can achieve this goal, and will 

execute it.  The propositional attitude instruction “Ship_Transport_Agent3 anticipate 

(breakdown ship) then also desire (replan transport cargo)”, will result in the agent 

anticipating the event (breakdown ship) while continuing to perform its current tasks.  If 

the agent does get a break down (e.g. the fact (breakdown ship) enters its knowledge 

base), then the agent will attempt to find a plan that will satisfy its desire to replan the 

transport of goods that it was supposed to transport, and execute it concurrently with the 

tasks that it is already performing.  There are many attitudes that can be used to control 

the actions of the agent, including: believe, ask if believe, not believe, desire, also desire, 

match, expect, anticipate, sense and effect. 

The flow of execution in ATTITUDE is determined by the success or failure of 

propositional attitude instructions, and ATTITUDE contains several control structures to 

manage this.  For example, the kleene star operator (“*”) will continuously execute a 

section of the plan until execution fails.  The join operator (“^”) will concatenate a 
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sequence of two or more propositional attitudes instructions to form a plan, or part 

thereof.  It succeeds when all instructions inside the join operator succeed, i.e. logical 

AND.  The exclusive union operator (“|”) is used when there are alternatives to achieve a 

goal (also known as the XOR operator).  It uses two or more plans, which the agent will 

attempt to execute in order and succeed when one of the plans executes successfully.  The 

guarded exclusive union operator (“#”) can be used to simulate an if-then-else.  A 

“guarded” statement (instruction or plan) is executed, and if it succeeds, its corresponding 

plan is executed.  If the guarded statement fails, then the next guarded statement in the 

guarded exclusive union operator, and its corresponding plan, is attempted, and so on.  If 

the guarded statement succeeds and its corresponding plan fails, or none of the guarded 

statements succeed, then an error statement is executed. 

Note that that in ATTITUDE, a token preceded by a question mark ‘?’ is a variable. The 

ATTITUDE instruction “match (?name don)” will result in the variable ?name becoming 

associated with the string ‘don’. ATTITUDE code will be presented in the next chapter. 

2.4 Agent Approaches to Logistics and Transportation 

Scheduling 

The use of agent technology for logistics (Timm, Schleiffer et al. 2002) and 

transportation (Bazzan, Klugl et al. 2004) has received greater attention in recent years. 

We present an overview of some current systems and literature in these domains. 

2.4.1 General Logistics 

The Defense Advanced Research Projects Agency’s (DARPA) UltraLog (DARPA(b) 

2000), which is a follow on project from the Advanced Logistics Project (Brinn and 

Carrico 2000; DARPA 2000; Adali and Pigaty 2003), uses agents for military logistics to 

perform dynamic planning, monitoring and replanning. Logistics processes of 

organisations within the logistics environment are modelled using agents in order to 

automate the logistics planning process. Agents are developed using an agent architecture 

called Cougaar (Cougaar 2005), which is not BDI-based, but has some similarities 

(DARPA 2000). Satapathy et al. use agents for military logistics, in a system called 
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Distributed Intelligent Architecture (or Agents) for Logistics (DIAL) (Satapathy, Kumara 

et al. 1998). Agents decompose logistics tasks and distribute these tasks to agents that can 

achieve them. DIAL allows the integration of current military logistics planning systems 

by interfacing them with agents. Collectively, agents form a coherent logistics plan. 

CDM Technologies, Inc., have developed a military logistics support system called the 

Joint Forces Collaborative Tool Kit (JFCT) (CDM Technologies 2005). JFCT contains a 

rich knowledge base (ontology) of the logistics domain. Agents reason about the 

knowledge using CLIPS (CLIPS 2005) or Jess (Jess 2005) rule-based engines. 

The aforementioned logistics tools consider the traditional logistics environment. These 

are generally more constrained (agent social structure and roles are predefined), 

cooperative (agents perform tasks allocated to them without considering their own 

interests) and perform some logistics functions in a centralised manner (e.g. assume 

organisations’/assets’ information and services are accessible by the agent). We focus on 

investigating the suitability of agents to the modern (military) logistics environment, 

where the above assumptions may not hold. 

Moore et al. use agents for logistics replanning (Moore, Kumara et al. 1996). They 

assume that an initial logistics plan exists, and agents are used to alter components the 

plan in order to accommodate events that may occur, without having to re-run the 

complete planning process again. We focus on the initial logistics plan formation. 

Tate et al. (Tate, Drabble et al. 1994; Tate, Drabble et al. 1995) propose O-Plan2, which 

incorporates agents with their (centralised) O-Plan classical planning framework (Currie 

and Tate 1991), and apply it to the logistics domain. There are three agents: a job 

assignment agent – the user specifies the task to be performed; the planning agent – 

receives the task and forms a plan to achieve the task; and an execution agent – carries 

out the detailed tasks specified by the planner. The planning is primarily performed by 

the planning agent, which is centralised, and thus not well suited to our logistics domain. 

Karageorgos et al. apply agent technology and the holonic paradigm to address planning 

and scheduling in virtual manufacturing enterprises, integrating logistics and production 

planning across companies (Karageorgos, Mehandjiev et al. 2003). It uses a Nested 

Contract Net Protocol, an extension of the Contract Net Protocol (CNP) (Smith 1980), to 
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allocate manufacturing and transportation tasks to agents. Tasks propagate along chains 

of agents at various levels of abstraction in the problem domain. In addition to the task 

allocation problem, our work focuses on the planning problem of which tasks are 

required to achieve a logistics goal, which is dependent on the services available by 

agents in the society. 

2.4.2 Transportation Scheduling 

Davidsson et al. present a comprehensive survey on agent-based literature on 

transportation (and traffic) (Davidsson, Henesey et al. 2004). Fischer et al. use agents for 

decentralised transportation scheduling in their Modeling Autonomous CoopeRating 

Shipping Companies (MARS) system (Fischer and Kuhn 1993; Fischer, Muller et al. 

1996). Agents in MARS represent shipping companies and trucks. Transportation tasks 

are distributed from shipping companies to trucks using the Extended Contract Net 

Protocol (ECNP), which is an extension of the Contract Net Protocol (CNP) (Smith 

1980). ECNP enables shipping companies to achieve a transportation request by finding a 

transportation plan (or task decomposition) in a decentralised manner and allocating these 

tasks to trucks (further details in chapter 4). Task allocations using ECNP are usually 

sub-optimal. Simulated trading procedure, which realises a market mechanism, is used by 

shipping companies to optimise their plans by buying and selling tasks. 

Fischer et al. use the MARS system and holonic concepts for transportation scheduling in 

its TELETRUCK system (Burckert, Fischer et al. 2000; Fischer, Funk et al. 2001). 

Elements required for truck transportation services, such as trucks, drivers and trailers, 

are represented as agents (or holons). To achieve a transportation task, the correct 

combination of these elements must cooperate and merge to form a larger (vehicle) holon 

– i.e. form an enterprise or coalition (see sections 2.5.1 and 2.5.6, respectively). The 

holon formation is coordinated by a Plan’n’Execute Unit (PnEUs) agent. The PnEUs 

agent also cooperates with the shipping companies using ECNP to provide transportation 

services derived by its formed holon. 

Sandholm also uses a contract net approach for transportation scheduling and routing 

(Sandholm 1993). Bouzid apply agents for online transportation scheduling, where trucks 

accept orders while executing other orders (Bouzid 2003). A Fuzzy Temporal 
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Characteristic Function based algorithm is used to consider uncertainty on the behaviour 

of trucks due to, for example, traffic density. Parkes and Ungar apply an auction based 

method for train scheduling (Parkes and Ungar 2001). 

All previous approaches assume that a single vehicle is able to perform the complete 

route of a transportation task (no drop-and-swap). This may not be the case in our 

transportation problem. Additionally, CNP and ECNP have shortfalls for our complex 

planning and task allocation requirements. In chapter 5, we present the Provisional 

Agreement Protocol, an extension of ECNP, which overcomes shortfalls of ECNP for our 

planning and task allocation requirements. In chapter 7, we present extensions to Fischer 

et al.’s transportation scheduling framework to accommodate our global transportation 

scheduling problem by allowing drop-and-swap, and thus multiple vehicles are able to 

perform the route of a transportation task. 

Funk et al. looks at intermodal transportation scheduling, which does consider the case of 

multiple transportation assets performing parts of the route of a transportation task (Funk, 

Vierke et al. 1999). Transportation tasks are split into three tasks, an initial and final leg 

that is performed by trucks, and a middle leg that is performed by trains. Montana et al. 

use agents to automate (U.S.) military transportation scheduling (Montana, Herrero et al. 

2000). Agents process and decompose received transportation tasks into smaller tasks and 

delegate these tasks to other suitable agents, which they may do the same. Dong and Li 

use agents to represent companies and their resources, and define social protocols 

required between the agents to achieve their transportation goals (Dong and Li 2003). In 

these systems, the agent social structure and roles are relatively constrained (predefined), 

and thus so too are the agents’ distributed plans and task allocations. Our domain may not 

be constrained. A suitable distributed plan and task allocation must be found at runtime, 

based on the (unknown) type of agents available at the time. 

Shehory et al. apply physics-oriented methods, a model based on classical mechanics, to 

large scale agent systems in the transportation domain (Shehory, Kraus et al. 1998). They 

consider cooperative agent system, where agents altruistically attempt to increase the 

global utility. In our domain, agents are self-interested, and thus act in order to increase 

their own utility. 
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2.4.3 Logistics Information Services 

Agents have been useful in assisting with the information function of logistics systems. 

Choi et al. use agents to efficiently exchange information among collaborative agents to 

assist product-support logistics (Choi, Kim et al. 2002). Hofmann et al. utilise agents to 

reduce messages transmitted in a tracking and tracing logistics system (Hofmann, 

Deschner et al. 1999). Agents provide a flexible decentralised information system that 

allows messages to be searched for on demand when required, rather than pushed 

throughout the system unnecessarily. 

There are other agent based information services which are not specific to logistics, but 

could be used in logistics. Sycara et al. describe an agent based system to retrieve, filter 

and fuse information, called RETSINA (Reusable Task Structure-based Intelligent 

Network Agents) (Sycara, Decker et al. 1996; Sycara and Zeng 1996). They assume that 

agents have knowledge of the task domain, and which other agents can perform parts of 

the tasks. This assumption is not valid in our domain. Klusch and Shehory use coalition 

formation approaches among information agents (Klusch and Shehory 1996), which has 

been applied to RETSINA (Shehory, Sycara et al. 1997). We discuss coalition formation 

later in the chapter. 

Although we identify information gathering as important in military logistics, we do not 

focus on this issue in this thesis. 

2.4.4 Simulation 

Henoch and Ulrich discuss using agents for simulating logistics systems, which seems 

largely conceptual (Henoch and Ulrich 2000; Henoch and Ulrich 2000). Swaminathan et 

al. describe an agent-based approach of simulating the supply chain (Swaminathan, 

Smith et al. 1998). Agents to model organisations (e.g. retailers and wholesalers), their 

control elements (e.g. inventory policy) and interaction protocols (e.g. message types). 

We focus on a planning system for logistics rather than a simulation system. 
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2.4.5 Supply Chains 

Agent technology is seen as an emerging technology for supply chains (van 

Hillegersberg, Moonen et al. 2004). A supply chain is a network of organisations, such as 

suppliers, factories, warehouses and retailers, through which resources are acquired, 

transformed, produced and delivered to the customer (Chen, Peng et al. 1999). Nissen 

uses agents for flexible integration of the supply chain (Nissen 2000).  Kimbrough et al. 

investigate using agents to play the beer game, which simulates a supply chain 

(Kimbrough, Wu et al. 2002). Agents must decide how much to order from a supplier to 

service its customers, with the aim of minimising the long term system-wide inventory 

cost. Strategies for playing the game, as well as the use of agents to automate such a 

process, were studied. Chen et al. use agents for supply chain management and present a 

framework of negotiation to support it (Chen, Peng et al. 1999). 

Hildum et al. (Hildum, Sadeh et al. 1997; Sadeh, Hildum et al. 1998) describe a 

blackboard-based (Erman, Hayes-Roth et al. 1980; Nii 1989; Corkill 1991) agent for 

supporting integrated process planning and production scheduling, and applied it to large 

and dynamic manufacturing facility. This was extended to allow multiple agents for 

planning and scheduling at various levels of abstraction in the supply chain, in a system 

called Multi-Agent Supply Chain cOordination Tool (MASCOT) (Sadeh, Hildum et al. 

1999). Their mixed-initiative capability allows humans to assist the agents with planning 

by exploring alternative tradeoffs and imposing or retracting various assumptions. 

Fischer et al. investigates using agents to apply a holonic approach to the supply chain, 

facilitating flexible supply chains, and hence labels it a supply web (Fischer, Funk et al. 

2001). Agents (or holons) represent organisational elements in the supply chain, such as 

wholesalers and retailers. They interact with each other via agents running appropriate 

coordination mechanism, such as auctions, in order to acquire and distribute goods. 

Walsh and Wellman use market protocol to allocate tasks in a supply chain (Walsh, 

Wellman et al. 2000; Walsh and Wellman 2003). In (Walsh and Wellman 2003), an 

auction is created for each good in the supply chain. Agents in the supply chain submit 

bids to buy and sell the good. Goods are allocated to agents successful in the auction. In 

(Walsh, Wellman et al. 2000), agents in the supply chain submit all-or-nothing (one-shot) 
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bids for goods that they wish to sell and buy. An auctioneer computes the appropriate 

allocation of goods in the supply chain. Babaioff and Nisan use double auctions (similar 

to a stock market) to allocate resources in a supply chain (Babaioff and Nisan 2004). 

Although supply chain concepts are important in our military logistics problem, we do 

not focus on this particular problem in this thesis. 

2.4.6 Manufacturing 

Agents have been applied to manufacturing, such as Job Shop Scheduling, as a practical 

approach to the recent concept of Holonic Manufacturing Systems (HMS) (Langer and 

Bilberg 1997; Bongaerts 1998; Bussmann 1998; Fischer 1999; Fischer, Funk et al. 2001; 

Uliera, Walker et al. 2001; Conen 2002). HMS consist of a collection of holons, which 

are autonomous, cooperative, and can be intelligent, and thus are ideally implemented 

using agents (Fischer 1999; Uliera, Walker et al. 2001). A holon can be made up of other 

holons, which combine (e.g. form enterprises) to achieve tasks. In a manufacturing 

system, all its elements may be holons, such as machines and resources. Holons 

cooperate with each other to perform tasks such as planning, production, scheduling and 

the physical production, in order to manufacture products. Holons in holonic systems 

cooperate to achieve common goals, displaying the hierarchical features, and are 

autonomous and distributed, thus increasing the system reactivity and adaptivity, which 

displays the heterarchical features. 

Peng at al. describe an agent system for enterprise integration in manufacturing planning 

and execution (Peng, Finin et al. 1998). Cicirello and Smith use agents that exhibit 

behaviour analogous to insects for manufacturing (Cicirello and Smith 2001; Cicirello 

and Smith 2001; Cicirello and Smith 2004). Wasp-like agents were used for 

manufacturing scheduling and control (Cicirello and Smith 2001; Cicirello and Smith 

2004), and agents that behave similar to a colony of ants are used for shop floor routing 

(Cicirello and Smith 2001). 

Our military logistics problem is at a higher level of abstraction than manufacturing 

logistics problems. We consider organisational logistics processes, and their interaction 

and exchange of services with other (self-interested) organisations. Literature in 
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manufacturing generally focuses on logistics processes within a single organisation. The 

agent approaches are usually cooperative (act to maximise the global utility) and do not 

consider organisational interaction such as contracting. 

The concept of HMS and virtual enterprises (see next section) is of interest to our modern 

logistics problem, as well as other modern military and commercial problems. There is a 

push for manufacturing systems to contain a heterarchical (i.e. decentralised, many-to-

many interaction) structure rather than a centralised or rigid hierarchical structure 

(Hatvany 1985; Duffie and Piper 1987; Dilts, Boyd et al. 1991). Decentralisation 

provides greater flexibility, reduced complexity in developing these systems, improved 

fault tolerance, systems that are easily reconfigurable and adaptable, allow faster 

diffusion of information, and have greater modularity (Hatvany 1985; Duffie and Piper 

1987; Dilts, Boyd et al. 1991). Our modern logistics environment is inherently 

decentralised, and therefore is suited to a system with a decentralised structure, with the 

potential benefits described above. There is also a push for military command and 

control, and thus their systems, to also move from the traditional rigid hierarchical 

structure towards a flexible decentralised structure (Lambert 1999; Lambert and Scholz 

2005; DoD-US 2006). The commercial sector are finding these types of concepts, i.e. 

virtual enterprises (see next section), useful. In this thesis, we present a protocol that 

allows decentralised agents to interact and plan in a decentralised environment, and thus 

can be applied to these modern planning problems. 

2.5 Agent Cooperation, Protocols and E-Commerce 

There are various agent subject areas that are related to the use of agents to address our 

logistics and transportation scheduling domains. Each entity (e.g. organisation), or agent 

which represents the entity in our distributed domain, is unable to achieve tasks on its 

own. Agents must cooperate with each other, in their planning and task allocation, in 

order to achieve their goals. Cooperation among agents can be achieved, for example, 

using distributed agent planning and coalition formation. In order to facilitate this 

cooperation, agent protocols are required to specify the social interaction that must be 

undertaken. Since our domain involves an exchange of services among organisations, 
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areas of automated mediated e-commerce and virtual enterprises also apply. In this 

section, we discuss some of the agent literature in these areas. 

2.5.1 Virtual Enterprises 

Virtual enterprises (VE) is composed of a number of cooperating companies that share 

their resources to support a particular business goal, for as long as it is viable to do so 

(O'Leary, Kuokka et al. 1997). VE allows dynamic alliances of small, agile organisations 

that can utilise their resources together, which they cannot if they acted in isolation. In 

our logistics domain, a situation may present itself where resources need to be transported 

when one organisation (ADF, coalition or civilian) cannot achieve the goal. Therefore, a 

collection of organisations needs to form an alliance to collectively achieve the goal. The 

alliance remains only until the goal is achieved. Potential advantages of VE include: 

maximising flexibility and adaptability to respond to environmental changes, developing 

a pool of competencies and resources by combining its member’s resources; and 

adjusting itself according to the market constraints (Martinez, Fouletier et al. 2001). 

Agent technology is suitable for VE, which requires autonomous entities to interact in 

flexible ways (Fischer, Muller et al. 1996; O'Leary, Kuokka et al. 1997). Most VE 

application issues can be interpreted and modelled as agent coordination problems (Ricci, 

Omicini et al. 2002). 

Fischer et al. use holonic concepts for virtual enterprises in the supply chain, 

manufacturing and transportation domains (Fischer, Funk et al. 2001). Elements in the 

system, such as organisations, machines or truck components, are represented as agents 

(or holons). To achieve a larger (business) goal, the correct combination of these holon 

must cooperate and merge to form a larger holon – i.e. form an enterprise. The holon 

formation is coordinated by the head agent, which also represents that holon to the rest of 

the agent society. Holons have the autonomy to join and leave holons (enterprises) as 

required. Karageorgos et al. also applies agent technology and the holonic paradigm to 

form virtual enterprises in the logistics domain using a Nested Contract Net Protocol, an 

extension of the Contract Net Protocol (CNP) (Smith 1980). In later sections we present 

some other agent research areas related to VE, such as coalition formation, agent 

contracting and negotiation, and agent mediated e-commerce. 
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There are a selection of systems and frameworks to facilitate VE. The CoABS Grid is 

middleware that integrates heterogeneous agents (Kettler). It includes the ability to 

register agents, advertise their capabilities, discover agents based on their capabilities, 

and send messages between agents. Agentcities is an initiative to create a global, open, 

heterogeneous network of agent platforms and services to which researchers can connect 

their agents (Willmott, Dale et al. 2001). Other systems, which form enterprises via e-

commerce, will be briefly discussed later. 

2.5.2 Agent Communication 

In order for distributed agents to cooperate, they need to communicate effectively with 

each other. We assume that agents have the necessary physical infrastructure to 

communicate, such as local networks and the Internet. In order to facilitate the 

cooperation, an agent communication language (ACL) is required (Chaib-Draa and 

Dignum 2002). Projects aimed at developing suitable ACLs include KQML (Finin, 

Labrou et al. 1995; UMBC 2002) and more recently, the Foundation for Intelligent 

Physical Agent’s ACL (FIPA-ACL) (Foundation for Intelligent Physical Agents). Most 

of the research has investigated the generation and interpretation of messages 

communicated, and conversational policies (agent social protocols) (Chaib-Draa and 

Dignum 2002). Our focus is on protocols (in the second part of the thesis), which specify 

the messages, or speech acts, agents must communicate to others in order achieve its 

designed purpose, which in our case is planning and task allocation in an open market. A 

speech act is an action that is performed by communicating something (Searle 1969). 

Some examples include “I promise to pay you”, “Drop your weapon or I’ll shoot”, or “I 

now pronounce you husband and wife”. The speaker of the speech act expresses a certain 

attitude, which can be described and defined in terms of beliefs, desires and intentions 

(Chaib-Draa and Dignum 2002). 

2.5.3 Cooperative Distributed Problem Solving 

Cooperative Distributed Problem Solving (CDPS), or cooperative multi-agent systems, 

studies how loosely coupled network of autonomous problem solvers, i.e. agents, can 

work together to solve problems that are beyond their individual capability (Durfee, 
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Lesser et al. 1989; Durfee 1999; Lesser 1999). CDPS includes agent subject areas such as 

distributed planning, task allocation, team work and coordination. Durfee and Lesser’s 

Partial Global Planning (PGP) allows distributed agents to cooperate and coordinate their 

activities by exchanging local plan information (Durfee and Lesser 1987). Agents 

develop short term plans to achieve their local goals, and then exchange local plan 

information to identify where other agents’ plans and goals interact. Agents’ local plans 

are altered in order to coordinate it with others. Decker and Lesser generalised and 

extended the PGP in their TAEMS testbed, producing the Generalised Partial Global 

Planning (GPGP) framework (Decker and Lesser 1995; Decker 1996). Ephrati and 

Rosenschein enabled multi-agent planning by allowing agents to solve their individual 

sub-plans and then merging these plans into a global plan (Ephrati and Rosenschein 

1994). Ephrati and Rosenschein have also used voting to facilitate multi-agent (joint) 

planning (Ephrati and Rosenschein 1993). Agents incrementally construct a plan by 

voting on each joint action at each step of the group plan. Zhang et al. use a multi-

dimensional, multi-step negotiation mechanism for task allocation among cooperative 

(not self-interested) agents based on distributed search (Zhang, Lesser et al. 2005). 

Team-based agents comprise distributed agents working collaboratively towards the same 

goal. Such architectures follow the theory of joint intentions by Cohen and Levesque, 

which is a joint commitment to perform a collective action while in a certain shared metal 

state (Cohen and Levesque 1991). Jennings et al. developed the ARCHON (formally 

GRATE*) agent architecture, allowing agents to be developed in order to collaboratively 

solve problems (Jennings 1993; Jennings 1995; Jennings, Mamdani et al. 1996). This was 

used in application domains such as electricity transportation management and industrial 

control systems. Tambe developed the Steam framework, which encodes about 300 

domain-independent rules that enables agents to exhibit team behaviour (Tambe 1997). 

Steam was used in military mission simulations and the RoboCup robotic soccer 

simulation. Tidar et al. discuss the formation of agent teams, and modelling teams and 

team tactics as part of their Smart Whole AiR Mission Model (SWARMM) (Tidhar, 

Selvestrel et al. 1995; Tidhar, Rao et al. 1996). Grosz and Kraus present a formalism that 

provides a model of collaborative planning among agents (Grosz and Kraus 1996), which 
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extends the original SharedPlans formulation (Grosz and Sidner 1990). In their model, 

agents are able to contract out tasks. 

Constraint satisfaction involves finding a consistent assignment of values to variables. In 

distributed constraint satisfaction, variables and constraints are distributed among agents, 

and message exchange is used to find variable values (Yokoo, Durfee et al. 1998; 

Faltings and Yokoo 2005). Distributed constraint satisfaction facilitates distributed 

resources allocation. Each agent has its own tasks, and there are several ways (plans) to 

perform each task. Shared resources among agents result in constraints between plans. 

The aim is to find combinations of plans so that all tasks can be executed simultaneously, 

where each task is a variable and possible plans are variable values. 

In the literature above, agents are assumed to achieve a common goal, are able to freely 

exchange plan information, or do not involve contracting among agents. In most 

situations in our domain, distributed agents are self-interested, and thus aim to achieve 

their own goals rather than a common goal, and may be reluctant to release information 

about their plans. Since our domain involves interaction among organisations, it requires 

contracting when organisations plan and allocate tasks to each other. Agents with 

contracts lack obligation to assist others with their tasks compared to when they are 

acting as a team and jointly performing and committed to tasks (Grosz 1996). To follow, 

we discuss CDPS research that focuses on self-interested agents, and in particular, 

distributed planning, task allocation and agents in e-commerce. 

2.5.4 The Contract Net Protocol 

The Contract Net Protocol (CNP) is a popular and powerful mechanism for decentralised 

task allocation, first introduced by Smith (Smith 1980). It also allows the concept of 

contracting between agents, and thus CNP approach is well suited to our planning and 

task allocation problem. A brief description of the protocol is as follows. An agent whom 

requires a task achieved, which we call an auctioneer, announces its task to potential 

agents, the bidders, that may achieve the task. Bidders submit bids to achieve the task, 

based on their capabilities, before some deadline set by the auctioneer. After the deadline, 

the auctioneer evaluates the bids. The most suited bid for the task is granted (or accepted) 

and the other bids are rejected. 



 34 

There have been various extensions to CNP in order to meet the requirements of 

particular domains. Two such extensions include the Extended Contract Net Protocol 

(ECNP) (Fischer and Kuhn 1993; Fischer, Muller et al. 1996) and another which we will 

refer to as CNP-ext (Arknine, Pinson et al. 2004). In chapter 4, we describe CNP, ECNP 

and CNP-ext in greater detail, and show that they have serious limitations for our domain. 

In chapter 5, we present an extension to ECNP to address the requirements of our 

domain. Our extension is able to address the problems that CNP, ECNP and CNP-ext are 

unable to. 

CNP has been used in a variety of problems. Collins et al. use an approach similar to 

CNP in their Multi-Agent Negotiation Test-Bed (MAGNET) system for agents to acquire 

and schedule services in order to achieve a set of tasks (Collins, Bilot et al. 2001; Collins, 

Ketter et al. 2002). As with our transportation domain, a temporal component 

complicates the task allocation problem. A mediator is used to facilitate agent interaction 

in MAGNET. Eymann proposes a completely distributed approach for decentralised 

economic coordination among agents using CNP without a mediator (Eymann 2001). 

Tidhar and Rosenschein use a centralised advisor to provide information regarding which 

agents are suitable contractors for a task (Tidhar and Rosenschein 1992). 

Sandholm and Lesser investigated using a levelled commitment contract with CNP 

(Sandholm and Lesser 1995; Sandholm and Lesser 1996; Sandholm and Lesser 2001; 

Sandholm and Lesser 2002). They show that agents benefit from allowing contracts to be 

broken (agents decommit from the contract), where the agent that breaks the contract pays 

a penalty to the other party. The penalty is agreed upon when the contract is formed. We 

focus on the agent interaction in forming a contract, while planning and allocating tasks, 

rather than their behaviour after a contract is formed. Once contracts are formed, we 

assume contracts have a levelled commitment. 

Sen and Durfee use a CNP approach for agents to schedule meetings for their human 

counterparts (Sen and Durfee 1994; Sen and Durfee 1998). In their specification, agents 

do not have strict contractual commitments as required in our domain, i.e. agents can 

decommit from a contract without penalty. Fatima and Wooldridge use a protocol similar 

to CNP to allocate tasks to agents within an organisation (Fatima and Wooldridge 2001). 
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Agents in the organisation are assumed to be benevolent. If agents within the organisation 

cannot perform all the tasks, then the organisation purchases agents (or contractors) from 

other organisations to perform the tasks. 

2.5.5 Agent Mediated E-commerce, Mechanism Design & Markets 

Agent mediated e-commerce (AMEC) looks at using agents for automating e-commerce 

(Sandholm 2000; He, Jennings et al. 2003; Sierra 2004). Information and communication 

technology provides organisations with access to a new and increasing open markets, and 

can potentially improve their interaction (faster, cheaper, more personalised and agile), 

but at the expense of an increase in complexity to deal with this new environment. Agents 

can potentially automate some of the complexities in e-commerce. AMEC involves 

investigating, for example, mechanisms required to facilitate the buying and selling of 

goods and services, for example, auctions, negotiation and bargaining. 

Collins et al. developed the Multi-Agent Negotiation Test-bed (MAGNET) system which 

supports electronic commerce by mediating interactions between customer and supplier 

agents (Collins, Bilot et al. 2001; Collins, Ketter et al. 2002). MAGNET consists of a 

market, market session and agents. The market is a forum for commerce in a particular 

business area that provides common services. Agents may register if they have an interest 

in doing business in the market, which assists in matchmaking. A market session is where 

the agent interaction occurs via a mediator, which, for example, enforces the protocol 

rules. Two types of agents in MAGNET are customer agents, who require services to 

achieve their tasks, and supplier agents, who can provide services to achieve customers’ 

tasks. García-Sánchez at al. also present a framework for developing e-commerce 

applications, without requiring a mediator (Garcia-Sanchez, Valencia-Garcia et al. 2005). 

Mechanism design is the design of protocols for governing agent interactions, such that 

these protocols have certain desirable properties (Mas-Colell, Whinston et al. 1995; 

Varian 1995; Nisan 1999; Parsons and Wooldridge 2002; Cramton, Shoham et al. 2006). 

Possible properties include  maximising social welfare and pareto optimality (or 

efficiency) (Sandholm 1999). A protocol maximises social welfare if it guarantees that 

any outcome maximises the sum of utilities of the negotiating agents. A negotiating 
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outcome is pareto optimal if there is no other outcome that will make at least one agent 

better off without making at least one other agent worse off.  

Auction protocols are investigated under mechanism design. Agents have been used to 

facilitate auctions, allowing efficient allocation of resources in the presence of self-

interested agents (Sandholm 2000). Types of auctions include the English (first-price 

open-cry), Vickrey, first-price sealed-bid and Dutch (decending) auctions. Each 

comprises an auctioneer that wants to allocate (e.g. sell or buy) some resource, and set of 

bidders that want to acquire the resource by bidding for the resource. In the English 

auction, each bidder openly announces its bid, and is free to raise its bid if it is lower than 

the current highest bid. When no bidder is willing to raise it anymore, the highest bidder 

wins the item at the price of its bid. In the first-price sealed-bid auction, each bidder 

submits one bid without knowing others’ bids. The highest bidder wins the item and pays 

the amount of its bid. In the Dutch auction, the auctioneer continuously lowers its price 

until one of the bidders takes the item at the current price. In the Vickrey auction, each 

bidder submits one bid without knowing others’ bids. The highest bidder wins, but at the 

price of the second highest bid. Each auction has its pros and cons, depending on the 

particular setting (Sandholm 2000). 

Agent-mediated auction systems have been developed, which include the AuctionBot 

(Wurman, Wellman et al. 1998) and the eMediator. Vulkan and Jennings have used 

agents that apply English auction to allocate services among agents (Vulkan and Jennings 

2000). The auction negotiates over price and quality of service. 

Wellman introduced the idea of market-oriented programming, or general equilibrium 

market mechanisms (Wellman 1993; Wellman 1996; Cheng and Wellman 1997). 

Problems are defined as computational markets and market prices are used to allocate 

resources. Markets have consumers and producers, and a set of commodity goods with a 

global price. Consumers can buy, sell or consume goods, and producers can transform 

goods into others. An auction is associated with each good, and agents may submit one 

bid for each good they are are interested in. Bids are demand functions, specifying the 

quantity demanded for any possible price of the good, under the assumption that the 

prices of the remaining goods are fixed at their current prices. General equilibrium occurs 
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when the markets clear, and consumers and producers maximise their preference for 

goods and profits, respectively, given the prices. 

Auctions and market mechanisms are generally used for dynamically priced electronic 

trades, or problems modelled in such a way. They are used to determine the price of items 

(price determination), and as a result, find a suitable allocation of the auctioned resource. 

In this thesis, we do not focus on problems of price determination, or strategies by which 

bidders can obtain the best price in auctions (Priest 2000; Byde, Priest et al. 2002; 

Shehory 2002; Airiau and Sen 2003; Anthony and Jennings 2003; He, Leung et al. 2003; 

Cheng, Leung et al. 2005; Greenwald and Boyan 2005; Reeves, Wellman et al. 2005). 

We assume that agents (bidders) have true and fixed valuations (e.g. prices) for their 

services (bids) – a take-it-or-leave valuation. This is quite common in e-commerce 

(Sandholm 2000), particularly with organisations in our domain. Additionally, general 

equilibrium approaches typically use a centralised mediator (Sandholm 1999). Therefore, 

agents may not have control over who receives their sensitive information. 

As will be discussed later, we apply a (distributed) contract net approach to planning and 

task allocation, which essentially runs a first-price sealed-bid auction. The auction only 

serves as a mechanism to extract the most suitable bid, rather than for price determination 

among bidders’ bids. This type of auction process is well understood and used between 

many organisations (government and commercial), as well as within organisations 

themselves. Therefore, our protocol remains relatively consistent with current 

organisational interaction processes, such as contracting and allocation mechanisms. This 

may increase the likelihood of organisations accepting its use. While maintaining 

consistency, we still incorporate additions in order to provide organisations with greater 

expressiveness with their planning and task allocation requirements. 

In some auctions, a collection of items need to be allocated. Combinatorial auctions are 

auctions in which bidders can place bids on combinations of items, called packages, 

rather than individual items (Nisan 2000; Sandholm 2002; Cramton, Shoham et al. 2006). 

We discuss this type of auction in more detail in chapter 6 where we use it as an 

application domain to apply and evaluate our protocol. 
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2.5.6 Coalition Formation 

Coalition formation, based on game theory, is where agents cooperate with each other in 

order to increase their utility (Rosenschein and Zlotkin 1994; Fischer, Muller et al. 1996; 

Sandholm and Lesser 1997; Shehory and Kraus 1998; Sandholm, Larson et al. 1999; 

Shehory and Kraus 1999; Kraus, Shehory et al. 2003). Usually agents have a set of tasks 

to perform, and exchange their tasks with other agents in order to execute their own tasks 

at a lower cost. The cost saved by the agents in the coalition is distributed among the 

agents. Some coalition formation approaches contain three steps. The first step is to 

generate the coalition groups who will cooperate, and usually these groups are disjoint – 

a member in one group is not a member in another. The second step is to solve the 

optimisation problem of determining an appropriate task allocation among the group of 

agents based on their capabilities. The third step is to divide the value of the coalition 

among the agents in the coalition. 

Our domain primarily concerns itself with the interaction between customers and service 

providers, rather than between services providers. It becomes a problem of distributing 

(or allocating) tasks, that the customers cannot perform, to agents at minimal cost, rather 

than exchanging tasks that it must and can perform in order to reduce the cost of 

performing its tasks. Dividing the cost saved among agents is not applicable in task 

distribution. The planning (optimisation) problem, of decomposing a task into suitable 

subtasks that can be allocated to agents, is solved in some frameworks using a single 

(centralised) agent (Sandholm and Lesser 1997). Even when the process is distributed, 

each agent decides on the task allocation of others (Sandholm, Larson et al. 1999). 

Shehory et al. (Shehory and Kraus 1996; Shehory, Sycara et al. 1997; Shehory and Kraus 

1998) presents an approach where agents form coalitions in order to achieve a set of 

global tasks, where the tasks are not associated with any service providing agent, and thus 

could have been provided by a customer. Their approach does not suit our domain 

because their agents benevolently act to increase a global utility whereas in our domain 

selfish agents may not be willing to act in order to increase the customer’s utility. Agents 

in (Shehory and Kraus 1996; Shehory, Sycara et al. 1997; Shehory and Kraus 1998) must 

also communicate their capabilities to other agents. 
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The primary purpose of the protocol that we devise (see chapter 5) is to address both the 

planning and task allocation problem, in a decentralised manner. Therefore, our protocol 

is able to perform the first two steps of the coalition formation process at the same time, 

without the requirement of having disjoint coalitions. Our protocol addresses the coalition 

formation scenario where a single agent has a set of tasks to achieve and coordinates the 

coalition formation process by allocating the tasks to a group (coalition) of agents. 

2.6 Summary 

The modern military logistics domain, which includes the global transportation 

scheduling domain, was described. In addition to typical logistics complexities, such as 

calculations and satisfaction of constraints, our domain has a complex social (open 

market) environment in which organisations must plan, which is decentralised, dynamic 

and open, and involves a many-to-many setting. Centralised approaches, such as OR and 

AI, are not well suited to our decentralised domain. Distributed agent technology could 

provide a viable approach to addressing our complex logistics and transportation 

scheduling domains. Agents have been applied to various aspects of logistics, but have 

not been applied to our particular unconstrained logistics or global transportation 

problems. From our knowledge, an investigation of the use and suitability of the BDI 

paradigm for agent development in modern logistics – the modelling of organisations’ 

logistics business processes, social interaction (protocols) and expertise – has not been 

undertaken. In the remainder of this thesis, we address these issues. 

The social interaction and cooperation required by organisations, and hence agents, in our 

modern logistics domain can be seen as an agent coordination and e-commerce problem. 

We have presented relevant background literature in this area, such as virtual enterprises, 

contract net protocol, agent automated e-commerce, and coalition formation. Current 

approaches have limitations for our particular requirements to plan and allocate tasks in 

the complex social environment, that involve current organisational interaction such as 

contracting. In this thesis, we develop a protocol in order to overcome the limitations. 
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Chapter 3 

3 Multi-Agent Logistics Tool 

In this chapter, we present the concept of the Multi-Agent Logistics Tool (MALT) 

(Perugini, Lambert et al. 2002) and the components that have been successfully 

implemented. Presented is a methodology we used to model an organisation’s processes 

and expertise, and to embed agents’ autonomous, proactive (goal-directed), reactive and 

social characteristics, using the BDI-based agent programming language ATTITUDE. The 

type of domains in which to use the BDI paradigm is also discussed. These discussions 

arose from our experience in developing a practical agent-based logistics support system. 

Components of MALT were involved in DARPA’s international CoAX demonstration 

(Perugini, Wark et al. 2003; Wark, Zschorn et al. 2003). 

3.1 Multi-Agent Logistics Tool 

MALT aims to automate aspects of logistics planning to assist the logistics planner to 

obtain required information and logistics advice, and form and analyse logistics plans, 

quickly and of high quality (large degree of accuracy, feasibility and optimality). MALT 

uses agent technology to model organisations’ and information sources’ logistics 

processes and expertise within the logistics planning environment and perform their 

logistics functions, such as analysis, calculations, scheduling, resource allocation, 

provision and collation of information, and the checking and satisfying of constraints. 

MALT also supports external (coalition and civilian) organisations due to its 

decentralised and open nature, allowing external organisations to develop their own 

agents and plug them into MALT. 
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3.1.1 Overview of MALT 
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Figure 2. MALT architecture comprising User Interface (UI), Organisational Entity (OE) 

agents and Information Gathering (IG) agents. 

Figure 2 illustrates the general architecture of MALT, containing User Interfaces (UI) 

(squares) and agents (circles), connected to a network allowing the distributed users 

(human agents) and software agents to communicate. There are two types of agents, 

Organisational Entity (OE) agents and Information Gathering (IG) agents.  OE agents 

represent and model the logistics “business” processes, expertise and interactions of their 

associated organisation or force element (FE).  They may have resources associated with 

them, such as supplies and assets (transport assets, people, etc.) which they allocate to 

achieve their required goals. OE agents access the organisation’s database or system to 

provide the agent with information required to perform the particular logistics functions, 

such as the status of the organisation’s resources (eg. location and availability) and 

costing information. IG agents will access and analyse information from their associated 

information source to provide other agents with the information that they require. 

Logistics planners interact with MALT via the UI. They may submit queries, such as 

information required or a force element to be deployed and the required deployment 

destination and deadline. The UI, which is an agent itself, will cooperate with the various 

agents, and possibly human agents (human users that are connected via UI and that 

contain the required information or services), in order to satisfy the query and present the 

information or plan back to the user. There can be many UIs, which can be 
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geographically distributed or portable, provided they can access the MALT network.  

This allows greater flexibility in the number of users and the locations from which they 

can use or contribute to MALT. 

To give the user greater confidence with a generated plan or information returned by 

MALT, information used in order to generate the results could be presented, such as cost, 

values used, assumptions made, and organisations or assets used in the plan. Agents may 

be developed to analyse logistics plans and return to the logistics planner information 

such as possible risks, any shortfalls in resources or supplies, or any unsatisfied or 

relaxed constraints. 

Although MALT aims to automate aspects of logistics planning, some users may want 

greater control over how results are compiled. Reasons for this include the specific task 

being over specified (e.g. need to select particular components of a force element for an 

operation) or to increase the comfort of the user with the result. Agents could potentially 

be developed to accommodate this flexibility in the level of control, providing autonomy 

when it suits the user. 

MALT is intended to be an open system, meaning that any organisation can develop an 

agent and “plug” it into the MALT environment. This is important because MALT is to 

incorporate external organisations that may contain private information and processes, 

which they may not be keen to release to external sources (or the ADF) in order to 

develop agents for MALT. Any organisation may develop their own agents and connect it 

into the MALT environment, at any time – as long as they have suitable social protocols 

to allow their agents to communicate, compete and cooperate with other agents in 

MALT. They may program the agent to release only the information or services that they 

want it to, based on the agent’s (the agent developer’s) interests. The agent may release 

services or information only to certain other agents. If an organisation is not comfortable 

with a software agent releasing information and services, i.e. software doing business on 

the organisation’s behalf, then they may use a UI to access MALT and have a human 

operator interacting with MALT, providing the information and services. Alternatively, 

organisations could use a combination of both, having a human operator overseeing the 

agent’s behaviour. 
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3.1.2 MALT Agents 

OE Agents 

OE agents may play three roles, and each may play more than one role, depending on 

whether it is providing or acquiring services, and which services it is providing.  The 

roles are: 

• Supply Agent(s) (SA) – agents that represent OE that provide the supply of 

resources.  Examples include a consumer goods supplier that distributes food and 

water, or military stores that supply equipment. 

• Transport Agent(s) (TA) – agents that represent OE that provide the transport of 

resources, such as military, coalition and civilian (commercial) cargo ships and 

planes. 

• Manager Agent(s) (MA) – agents that represent OE that acquire supply and 

transport services (from SA and TA) to perform specific logistics functions (or 

goals) required to support their business goals. MA contain the processes and 

expertise to manage how resources are utilised in order to perform their particular 

functions. An example is an agent that represents a military FE that requires 

deployment to some location (the logistics function) to perform a peace operation 

(the business goal). The agent, based on the particular FE’s logistics processes, 

can determine the supplies required to support the FE for the particular operation. 

The FE agent (MA) cooperates with SA and TA to acquire supplies, and transport 

them to the required destination, respectively, in order to achieve its 

“deployment” logistics function. 

Note that in the rest of this thesis, the terms SA, TA and MA will be used for both 

singular and plural contexts. 

IG Agents 

IG agents are connected to various information sources, such as airfields, ports or 

aviation fuel databases, and weather or climate Internet sites, to gather information 

requested by other agents.  IG agents may analyse the information, either individually or 
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collectively, to provide other agents with information that they have requested.  For 

example, an airfield IG agent can analyse information it has on the runway’s length, 

width and type, to determine which aircraft can land on the runway, sending this 

information to the agent that requested it.  As another example, a weather IG agent may 

know that it is likely to rain at some location, and a terrain IG agent may know that the 

roads at the same location are dirt roads. The two pieces of information could be fused 

(by another agent or the two IG agents) to deduce that the destination will contain muddy 

roads – which is important for logistics as heavy trucks may not be able to travel on them. 

Information provided by the IG agents may be tagged with meta-data about the 

information, such as the time the information was extracted and the source of the 

information, allowing its reliability to be assessed. 

The types of IG agents used in MALT are based on region then roles.  Each region will 

have a collection of IG agents, where each agent will have the role of providing a specific 

type of information about that region.  For example, there may be agents associated with 

each of the states in Australia, hence IG agents for South Australia, Victoria, New South 

Wales, etc. For each of these regions, the types/roles of IG agents may include (but are 

not limited to): 

• Weather IG agent – IG agents to provide weather and climate information about 

the region. 

• Geography IG agents – Geography IG agents to each provide information about 

one or more of the following about the region: terrain; roads; waterways; cities 

and population; distances. 

• Infrastructure IG agents – to provide information about the infrastructure in the 

region. IG agents to each provide information about one or more of the following: 

ports; airfield; fuel & fuel lines; storage; medical facilities; water; sewerage. 

There may be situations where information can cross regions or abstract information 

regarding a larger region is required.  For example, the distance between cities in two 

states, or the population of Australia, will not be covered by any of the agents described 

above.  In such cases, either a new IG agent can be created for the larger region, or agents 
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for the various regions can cooperate to collectively determine cross regional 

information. 

3.1.3 Agent Goals and Responses 

The goals in MALT that are sent between agents (including the UI) in order to ask other 

agents to assist in achieving them, have the form: 

<function,  what,  who,  where,  when,  how> 

• Function – the particular logistics “business” function to be performed. Examples 

include: information (or inform), deploy, transport, maintain, fix, sustain, stock, 

supply and build.  Deploy includes transport, stock and sustain. 

• What – resources or assets (objects) associated with the required function, or for 

an information goal, the type of information required.  For example, if the 

function is transport, then the what component may contain the objects to 

transport, such as people, military assets and supplies. If the requested function is 

build, then the what component could be bridges or roads that are required to be 

built. If the function is fix, then the what component could be particular aircraft or 

vehicles. If the function is inform, the what component could be weather or 

population. Examples of objects include: equipment or assets; people; 

infrastructure (runway, building, bridge, water); FE; and supplies. Examples of 

types of information are discussed in the previous section. 

• Who – which agent, or group of agents, are to perform the particular function.  

This does not need to be specified, and in that casse any agent (organisation) that 

can achieve the specific function can contribute in achieving it. The selected 

agent(s) must be consistent with the function and what parameters. Examples 

include: ADF or coalition force elements (Brigade, SAS); Engineering unit 

(military or civilian); supplier X and transport agency Y. 

• Where – spatial information about the function to be performed, such as where to 

perform the function or the region that the information function requires.  

Examples include: Country; city; town; port; airfield; and base. 

• When – temporal information about the function to be performed, such as when it 

should occur. For example, with the transport function, the when component 
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could be the earliest start time and latest finish time. For an information function 

such as requesting population information, the when component could specify the 

date in the past for what the population was, or a date in the future for what the 

population is expected to be. Not all goals require the when component, for 

example, if enquiring about the distance between cities (unless there is a high rate 

of continental drift). Examples include: time and date; ASAP (as soon as 

possible); before X days/hours (from start of plan); after event Y. 

• How – used for either:  

o A list of conditions to allow agents or users to control results returned by 

MALT, giving them greater control and flexibility over MALT. For 

example, the user can select whether they want to use air or sea transport 

assets to transport a FE. Examples include: by sea; by air; using ADF 

assets; using civilian assets; using coalition assets; not using X; using X; 

minimal cost; highest priority; and lowest priority. 

o Entering information required by agents to perform the function. For 

example, agents may need to know the type of mission (peacekeeping, 

intense conflict) to determine the quantity of water required for 

sustainment, or if asking for stocks of supplies, may need to provide the 

numbers of days of stocks required. 

o Provide information for responses, such as prices to perform a service (to 

achieve a goal that was sent) or information in response to a request for 

information. 

An example of a goal to transport 10 casualties from a ship to a medical facility, with 

earliest start time of 10:00 and deadline of 11:00, using only helicopters that need to 

winch the casualties, and send this task to all TA that transport resources by air, is: 

(Goal 

 <transport;  

 (casualties 10);  

 (agent air_TA);  
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 ((from location_of_Ship) (to location_of_medical_facility));  

 ((earliest_start_time 1000) (deadline 1100));  

 ((mode_trans  air  helicopter), (pickup winch), (casualties serious_condition))>) 

The agent that sent this goal should hopefully receive responses from other agents 

offering services to perfom the task. Note that responses to goals may also have the same 

structure. A response to this goal may be an ADF helicopter (called helo23) to transport 5 

casualties from the ship to the medical facility, picking up at time 1020 and delivering 

them at time 1040, which is represented by 

(Response 

 <transport;  

 (casualties 5);  

 (ADF helo23);  

 ((from location_of_Ship) (to location_of_medical_facility));  

 ((pickup_time 1020) (delivery_time 1040));  

 ((mode_trans  air  helicopter), (pickup winch), (casualties serious_condition)  

(price $10))>) 

3.1.4 Ontologies and Service Lookup 

In order to understand the terms in goals and responses sent by agents, agents require an 

ontology, which is a description of terms and their relationships. For example, in the goal 

above, it requests transport for “air_TA”. Agents need to know that this refers to air 

transport. Additionally, an agent that has access to a Seahawk helicopter must understand 

that the helicopter can transport items by air, and thus make the link between “air_TA” 

and its helicopter that can perform the goal. Figure 3 illustrates a simple example of an 

ontology which may allow agents to determine which assets are air transport assets, 

which includes the Seahawk helicopter. 
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Air Transport
(= air_TA)

Assets

Land Transport

Helicopters Planes

…

Seahawk Black
Hawk

…

 

Figure 3. Example ontology – allowing agents to understand that the term “air_TA” in a 

goal refers to a Seahawk or Black Hawk (and planes that may be included in the 

ontology). 

Ontology development for our logistics domain was briefly investigated using the 

EXPLODE methodology (Hristozova and Sterling 2002). Issues investigated include the 

representation of a fuel concept (ability of vehicles to travel certain distances) and the 

requirement for multiple ontologies. Fuel could be represented in litres that is consumed 

by transport assets or distance (in Km) achievable on a full load of fuel. With fuel 

consumption, different assets use different fuels and have different efficiencies, 

potentially making ontology development difficult. For simplification, the latter was 

chosen (distance) as it was sufficient for our implementation, although the simplification 

could result in knowledge that is less flexible. Multiple smaller ontologies may be 

required in our implementation. Helicopters can be described in an ontology regarding 

their functionality/capabilities, as well as an ontology describing its physical properties 

and its parts. It may be easier to define two smaller ontologies rather than one larger 

ontology that incorporates both. We envisage that a separate ontology for each 

component of the agents’ goals is required, i.e. function (functional ontology), what 

(object description/relationship ontology), who (social ontology), where (space ontology), 

when (time ontology), and how (domain specific ontology/knowledge). This corresponds 

closely with the ontology layering discussed in Lambert and Nowak (Lambert 2003; 

Nowak 2003; Nowak and Lambert 2005). 
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The EXPLODE methodology assumes an ontological engineer to be involved in the 

development of the ontology using an agile approach. Our experience in our domain 

supports the view that an ontological engineer will be useful. Within EXPLODE, 

implementation and testing plays a mojor role in developing the ontology. Test cases in 

MALT must cover human to agent communication, e.g. users providing logistics goals, 

and agent to agent communication, e.g. request for information regarding distance 

between locations. 

Due to the scope of the thesis, we did not investigate the ontology in any great detail. The 

agents’ ontology and knowledge was incrementally created, only as required, during 

agent development for our particular scenarios. The ontology and knowledge was 

embedded into the ATTITUDE agents’ knowledgebase for the agents to reason with. 

It may require extensive communication for an agent to send (or broadcast) a goal request 

to all agents in a system. Agents may use a service lookup, or matchmaking facility, 

which for a particular service required, provides a list of agents that can provide that 

service. Therefore, for a particular goal, the service lookup can be used by an agent to 

only communicate to those agents that are likely to be able to perform the goal. In order 

to populate the service lookup, services providing agents that enter the system may 

register their services with the services lookup server. They can provide as much or as 

little detail about their services as they desire, depending on what information they are 

willing to release. Providing greater information regarding services than can be provided 

is likely to decrease the chance of getting mismatched goal requests, and thus worthless 

communication. Service providing agents should provide information that is contained in 

the agent goals to the service lookup server, which is: function – the services it can 

provide; what – object associated with the services, or the type of information the agent 

can provide; who – the name of the agent(s) providing the service (e.g. the agent that is 

registering with the service lookup server); where – where it can provide the service; 

when – when it can provide the service (e.g. hours of operation); how – e.g. information 

that is required in a goal for the agent to effectively carry out the service. An agent that 

must satisfy a goal request may use the function, what, where, when and how elements in 

the goal to obtain suitable agents via the service lookup, which will return the who 
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component in the goal – the list of agents that are potentially suitable in achieving the 

goal. The goal can then be sent to these specific agents. 

The CoABS Grid and the e-commerce framework by García-Sánchez et al.  allows agent 

service lookup (Kettler; Garcia-Sanchez, Valencia-Garcia et al. 2005). The CoABS Grid 

was used in our implementation of MALT. Collins et al.’s Multi-Agent Negotiation Test-

bed (MAGNET) system provides a matchmaking facility between customer and service 

providing agents, via the use of an ontology (Collins, Bilot et al. 2001; Collins, Ketter et 

al. 2002). The interaction between agents in MAGNET is performed via a mediator. In 

our framework, we allow direct interaction among agents, as proposed by Eymann 

(Eymann 2001), giving agents greater control over who receives their sensitive 

information. 

3.1.5 MALT Operation Example 

A brief (conceptual) example, using a script, of how MALT may operate follows. 

Logistics planners must form a logistics plan to deploy a Brigade (Bde) army unit to a 

fictitious country FC 8. The logistics planners (users) will need to form a plan to achieve 

this, using MALT.  The script below shows the behaviours (particular logistics functions) 

and interactions of the various agents in the scenario in order to achieve the logistics goal. 

UI_Agent: The users enters a request into the UI (UI_Agent) to deploy the Bde, which in 

turn generates a logistics goal <deploy, Bde, Bde_Agent, to_FC, ASAP, via_sea> and 

sends the goal to agent Bde_Agent. 

Bde_Agent: Bde_Agent plays the role of a MA and runs its logistics process to deploy 

and sustain its troops. It calculates the quantity of supplies (food, water, ammunition, 

fuel, maintenance, etc) the deployed Bde requires per day for sustainment. Bde_Agent 

queries the FC Infrastructure IG agent for current information about supplies (only food, 

water and fuel), storage (for the supplies) and medical facilities that are available at the 

                                                    

8 To “deploy a Bde”, logistics planners must determine a plan to transport the Bde and required supplies 

(e.g. water, food and fuel) to the destination (FC). Logistics planners need to consider: how much supplies 

are required; where to obtain supplies; how to store the supplies at the destination; etc. 
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destination, using goal <inform, (supplies & storage & medical facilities), 

FC_Infras_Agent, FC, current, (supplies_interested_in (food water fuel)) >. 

FC_Infras_Agent: FC_Infras_Agent replies to Bde_Agent with the relevant 

information. One piece of information sent is that country FC contains 100 tonnes of food 

and 250 tonnes of fuel, using messsage <inform-response, storage, FC_Infras_Agent, 

FC, current, ((food 100 tonnes) (fuel 250 tonnes) (water 0 tonnes))>. 

Bde_Agent: Using the information from FC_Infras_Agent, Bde_Agent determines 

whether it must provide these supplies from home (Australia) or use the supplies at FC. 

The quantity of supplies required from home can now be calculated (for this example, 

assume only 100 tonnes of water), and thus sends this goal to the relevant SA 

(Supply_Agent) to check if it can supply the water, at what cost, and where and when 

they will be supplying this item. The goal sent is <supply, (water 100 tonnes), SA_Agent, 

Australia, ASAP, (quality drinking_water)>. 

Supply_Agent: After checking its inventory, Supply_Agent responds saying that it can 

supply the 100 tonnes of water from Sydney at 11am tomorrow, at a price of $200, using 

message <supply, (water 100 tonnes), Sydney, (1100 tomorrow), ((quality 

drinking_water), (price $200))>. 

Bde_Agent: Bde_Agent now has the quantity of resources that must be transported from 

Australia to FC, where the resources are the elements of the Bde (personnel, equipment 

and vehicles) and supplies to sustain the Bde (100 tonnes of water in this example). 

Assuming the Bde unit is also in Sydney, Bde_Agent sends the goal <transport, ((Bde) 

(water 100 tonnes)), (Sydney to FC), (1200 tomorrow), via_sea> to the TA 

(Transport_Agent) asking it to move the Bde and water from Sydney to FC at 12pm the 

next day, using only sea transport assets. 

Transport_Agent: Transport_Agent first checks if the resources to be transported can be 

transported using its transport assets (assume Transport_Agent has one cargo ship), 

because for example, large trucks may not be able to be transported by air. It uses an 

ontology to determine which assets are associated with a Bde (e.g. number of people, and 

number and type of vehicles), and their weight. Transport_Agent determines that all the 

Bde elements and water are able to be transported by its ship. It then sends a request for 
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information to the FC Weather IG agent (FC_Weather_Agent), Infrastructure IG agent 

(FC_Infras_Agent) and Geography IG agent (FC_Geog_Agent), to determine if the trip 

can be made and what conditions are required for the trip. 

FC_Weather_Agent: FC_Weather_Agent returns information that the there will be calm 

seas, little wind and no rain, making it a smooth and fast trip for the ship. 

FC_Infras_Agent: FC_Infras_Agent returns information that the port at the deployment 

destination has facilities to easily dock and unload the ship. 

FC_Geog_Agent: FC_Geog_Agent returns information that the distance is 3000Km 

from Sydney to FC. This is less than the maximum trip length that the ship can make, and 

therefore the ship is able to make the trip to transport the resources. 

Transport_Agent: From information received, Transport_Agent determines that 

conditions are satisfactory to transport the resources. Transport_Agent replies back to 

Bde_Agent that it is able to perform the (complete) transportation goal, with message 

<transport, ((Bde) (water 100 tonnes)), (Sydney to FC), (1200 tomorrow), (via_sea, 

(price $350))>. 

Bde_Agent: Bde_Agent forms the logistics plan, which includes schedules of supplies 

and transport required to deploy and sustain the Bde. It sends the plan to an agent that 

analyses plans for the Bde (the Bde_Analysis_Agent). 

Bde_Analysis_Agent: Bde_Analysis_Agent finds that there is a risk with the plan – 

storage for fuel may be insufficient if the tempo of the operation increases, as more fuel 

will need to be deployed and stored. 

Bde_Agent: Bde_Agent accepts the risk and continues to present the plan (with 

information regarding the risk – the analysis) to the UI_Agent. 

UI_Agent: UI_Agent presents the plan and analysis to the users. Users can analyse the 

plan and the information presented, and alter or fine tune the plan to meet their 

requirements, either off line or using submitting a new goal – with different parameters 

(e.g. different start or finish times) or use the how goal parameter to try different 

conditions (e.g. specify to use a certain type of ship for transport). It may be possible that 

various agents for the various services (e.g. supply and transport) involved in the logistics 
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plan have secured the services with the associated organisations (in our example, 

Supply_Agent and Transport_Agent). If the user is satisfied with the plan, the user can 

give the okay for the plan via the UI_Agent, in which case the UI_Agent will send a 

request to all the agents to secure and accept the services offered. This makes it easy for 

the user to request and secure various services from potentially many organisations. 

3.2 MALT Implementation 

Although many components of MALT are conceptual, some components of MALT have 

been successfully implemented. Agents were developed using the BDI based agent 

programming language ATTITUDE, presented in chapter 2. As will be discussed in the 

following subsections, a component of MALT has been implemented and demonstrated 

in an international (DARPA) project called Coalition Agent eXperiment (CoAX). An 

agent was developed to form a logistics plan to perform a medical evacuation of 

casualties from an Australian ship to a medical facility. Additionally, an agent was 

partially written to perform the logistics planning process of deploying a Bde 

(Bde_Agent), as observed at a military logistics training course, which also involves 

collating various pieces of information to deduce logistics facts. The methodology used 

for developing these agents using a BDI approach is presented. 

3.2.1 Modelling Logistics (Organisational Business) Processes 

Figure 4 describes the high level logistics process that the Bde (organisation) uses to 

achieve its organisational goal of deploying its Bde unit (obtained from the military 

training course; due to the sensitivity of the information, further details cannot be 

provided). Each of the steps in Figure 4 contains sub-processes (the details) that the Bde 

undergoes to perform that step, which are not shown. Note that the details in the sub-

processes that the Bde undergoes to achieve some of the high level steps to deploy its 

Bde may differ from another ADF force element. Therefore, we model agents for each 

particular organisation and model their particular processes that they use to achieve their 

particular functions and business goals. 
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Bde deploy logistics process: 

(1) Gather information about the deployment destination 

(2) Calculate the sustainment requirement for the deployed unit(s) 

(3) Try to organise supplies at the destination (so as to not have to transport them 

from home), but if not successful, organise supplies from home ready to be 

transported to the destination 

(4) Form a plan to transport resources (Bde unit and supplies) to the destination 

(5) Analyse the plan 

Figure 4.  Logistics process to achieve the Bde’s organisational goal of deploying its Bde 

Unit. 

routine (deploy ?what ?where ?when ?how) is  

((^ 

 Bde_Agent desire (gather_information ?where) 

 Bde_Agent desire (calculate sustainment FE) 

 ( |    {comment: exclusive union operator – goal “obtain supplies”} 

  Bde_Agent desire (check_availability sustainment ?where) 

  Bde_Agent desire (order sustainment home) 

 ) 

 Bde_Agent desire (transport resources ?where ?when ?how) 

 Bde_Agent desire (report_analysis) 

)); 

Figure 5.  ATTITUDE plan for Bde_Agent to model the Bde’s “deploy” logistics process. 

Figure 5 illustrates the BDI-based ATTITUDE plan used to model the Bde’s deploy 

logistics process – in the Bde’s agent called Bde_Agent. Plans in ATTITUDE are labelled 

routines. The first line states that it is a plan to achieve goal deploy, and the plan has input 

parameters (variables) ?what, ?where, ?when and ?how. The plan contains sub-goals, 

which are steps in the deploy logistics process, that must be performed in order to achieve 

the deploy function. The sub-goals are given by the instructions “I desire <sub-goal>”, 

which will result in the agent looking for a plan in its own plan library (the Bde’s 
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logistics sub-processes) to achieve this sub-goal. The first sub-goal will run the Bde’s 

plan to acquire an agent to gather information about the deployment destination, that is 

stored in the variable ?where.  This will result in the agent cooperating with, and 

extracting information from, the relevant IG agents.  The next sub-goal will result in the 

agent calculating the amount of sustainment required by the Bde, based on what Bde 

components are to be deployed.  We then encounter the exclusive union operator (“|”), 

discussed in section 2.3.3, being applied to content that aim to achieve the goal of 

obtaining supplies. The agent will attempt the first sub-goal (check_availability 

sustainment ?where), which will check if the supplies for sustainment are available at the 

deployment destination. If it succeeds, then supplies are available at the deployment 

destination, and thus do not need to be transported from home.  If it fails, then supplies 

are not available at the deployment destination, hence, the next sub-goal (order 

sustainment  home) will execute, causing the agent to cooperate with SA to find suitable 

suppliers to supply the sustainment items from home. Note that in reality, some supplies 

may be obtained at the destination and others will need to be transported from home. To 

simplify this example, we assume the supplies are either obtained from the destination or 

from home, but not both. The next sub-goal will result in the agent cooperating with TA 

to form a plan to transport the resources (Bde force elements and supplies) to its 

destination.  The last sub-goal will result in the agent performing the required analysis on 

the plan and other information it has collected or deduced, to provide the user with 

essential information about the plan. Note that the Bde_Agent plays the role of a MA in 

achieving its deploy function. 

It can be seen that the modelling of an organisation’s (logistics/business) processes into 

an agent is relatively easy and straightforward. The first step is to document the process, 

and sub-processes, that the organisation performs to achieve its particular function(s) – as 

in Figure 4. Once this is done, the mapping to the agent (ATTITUDE) code is straight 

forward. The process and sub-processes are analagous to agent plans (or routines). Each 

step in the process is either a specific action to be performed by the agent or a sub-goal 

that must be achieved, in which case the sub-goal’s associated sub-process(es) (i.e. 

associated agent plan(s)) is used to achieve it. Organisational processes that have a 

complex flow of execution (e.g. loops to perform a set of steps in a process over and over 
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until some condition is met, or perform two steps simultaneously until one succeeds) can 

also be modelled by the (ATTITUDE) agents using the operators discussed in section 

2.3.3. 

Lambert discusses a methodology for capturing processes for agent implementation 

(Lambert 2003). Speech to text is used in order to capture dialogue as an expert(s) is 

working through the problem domain and describing the process. The expert’s utterances 

are recordered and converted to text. The text is then analysed exposing: the steps in the 

process, and thus the goals in the agent plan; and the subsequent steps required when a 

particular step either succeeds or fails to be achieved, describing the flow of execution of 

the goals. In the following section, we discuss extensions to Lambert’s methodology, 

which evolved from our experience in developing agents in MALT. The captured process 

is further analysed in order to enable agents to respond appropriately from both failures 

and changes in the environment, increasing the robustness of the system. 

3.2.2 Concepts of Agency within MALT 

With the code shown in Figure 5, there is an exclusive union operator that contains code 

to achieve the goal of obtaining supplies. There are two sub-goals that can be used to 

achieve this, “I desire (check_availability sustainment ?where)” (or sub-goal 1) and “I 

desire (order sustainment home)” (or sub-goal 2). Bde_Agent will first attempt sub-goal 1 

in order to achieve its goal of obtaining supplies. Sub-goal 1 may fail, and hence 

Bde_Agent is unsuccessful in achieving its goal of obtaining supplies using that sub-goal 

(or the plan associated with the sub-goal). If this situation occurs, Bde_Agent is able to 

recover from the failure by trying a new goal (and hence plan) in order to achieve the 

goal of obtaining supplies, which is sub-goal 2. 

The ability for agents to respond to failure by trying alternative methods of achieving a 

goal, and hence showing goal-directed behaviour (pro-activeness) by being persistent in 

achieving a goal, together with their reactive ability to respond to a changing 

environment by altering their goals and behaviour, is primarily where agents attain their 

intelligent behaviour. Agents’ pro-active characteristic (or agent specification) assists in 

providing agents with greater robustness than other software approaches (e.g. object 

oriented programming) that do not have this characteristic explicitly specified. If agents 
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fail in achieving a goal (or function), then rather than crash, those agents should know the 

goal they were trying to achieve and can keep trying alternative methods of achieving it. 

Of course, this behaviour should be programmed into the agent. As mentioned, 

ATTITUDE agents are structured so that every instruction either succeeds or fails. If 

instructions fail, the agent does not crash, but instead the flow of execution proceeds. 

How the flow of execution proceeds is based on the particular ATTITUDE operator 

comprising the failed instruction, allowing the developer to respond to the failure as 

required. Therefore, code can be easily written within (ATTITUDE) agents to respond to 

failure. 

How agents should be developed to respond to failure in a particular situation depends on 

the organisational processes that they are modelling and their responses to failure. 

Therefore, the agent response to failure should be captured when modelling the 

organisational processes, as in Figure 5. For each step (or goal) in the process, the 

developer should consider more than one sub-process (or plan) that may be used to 

achieve the step (if possible) and in what order, or under what context/conditions, they 

can be used to achieve the step. This provides multiple alternatives to achieve the same 

goal, and hence if one fails, the agent may attempt another. The developer should then 

consider how to respond in the case that all the plans may fail, and therefore the 

particular step in the process cannot be achieved. Additional steps may be required to 

compensate for the step that could not be achieved. For example, with the obtaining 

supplies example mentioned above, if subgoal 1 fails to obtain supplies then subgoal 2 is 

attempted. The developer should do the same for all steps in the sub-processes, and their 

sub-sub-processes, and so on. The resulting organisational processes, which now describe 

their responses to failure, can be easily embedded into the agents, as described above, and 

illustrated in Figure 5. 

An agent’s reactive behaviour should also be captured when modelling organisational 

processes. A developer should capture the organisational responses that take place when 

changes occur to the environment or a particular situation occurs – such as late 

information being received during planning that rebuts an assumption that was made, or 

information that was used, early on in the planning, resulting in current elements of the 

plan being incorrect. There are two situations that a developer should consider: (i) 
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responses during or after a process (to achieve some organisational goal or step); and (ii) 

independent responses to situations. 

(i) With responses during or after a process, a developer should consider what 

environmental factors (or information) influence each step in each process, and hence 

influences the organisational goals/steps that the process achieves, and what 

responses are required if environmental changes occur, during the process and after it 

completes. Responses, with some examples (using the process in Figure 4), may 

include: 

• Repeat – some or all of a step, or sequence of steps, can be repeated to take into 

account the changes in the environment. For example, if at step (4) of Figure 4, 

when forming a transportation schedule, the number of troops in the Bde unit to 

deploy changes from 900 to 1000, the resulting sustainment calculations for the 

quantity of supplies required to sustain the troops will be incorrect. Therefore, the 

process may need to go back to step (2) and perform the sustainment calculations 

again, and then perform step (3) again to obtain the new quantity of supplies. 

Some components of a step, or a complete step, may not need to be repeated. In 

the previous example, a change in the number of troops may only affect the 

sustainment calculations for food and water, and not other supplies such as fuel. 

Additionally, if the food and water may already be provided at the deployment 

destination, then step (3) does not need to be repeated. Therefore, only the 

relevant food and water calculations in step (2) need to be repeated. Considering 

elements in a process that do not need to be repeated in a given situation can save 

time and effort. 

• Use a different process – the context for which a process was selected to achieve 

a step or organistional goal may change, requiring a new process to achieve it. For 

example, sustainment calculations in step (2) (Figure 4) are performed assuming a 

peacekeeping operation. If information is received that the operation is a training 

exercise, then a new process is executed to perform the sustainment calculations, 

consistent with the new context. 

• New steps to replace current ones – new steps in the same process may be 

required to replace a step(s) that is currently executing, as they are no longer 



 59 

required to achieve the process. For example, sustainment calculations in step (2) 

(Figure 4) are performed to determine the quantity of fuel required by vehicles to 

be deployed. If the vehicles are later found to be electric (in this example), then 

the goal of determining fuel is no longer valid. A new goal of determining the 

quantity of batteries, rather than fuel, to run the vehicles is required. 

• New steps to recover and continue – new steps may be performed to recover from 

effects of environmental changes, allowing continuation of the current 

step/process, rather than stop the current process/step in order to repeat or perform 

new steps/processes, as in the three points above. For example, sustainment 

calculations in step (2) (Figure 4) are performed to determine the quantity of 

unleaded fuel for vehicles. Suppose it is later discovered that they require diesel 

fuel, and not unleaded. Rather than perform the calculations again, a new step can 

be attempted to change the current quantity of unleaded fuel already calculated to 

the appropriate quantity of diesel fuel required (if such a calculation exists). 

(ii) Independent responses to situations is when some event occurs that requires a goal or 

action to be performed in order to respond to the event, which has no influence on the 

achievement of other processes that may be executing at the same time. For example, 

the Bde organisation, while performing the process to deploy a Bde unit in Figure 4, 

receives a request for information regarding the number of vehicles it possesses. The 

Bde may respond by finding and providing this information, while still performing 

the process to deploy a Bde unit. Therefore the new goal created by the event, or the 

event itself, has no influence on the achievement of the process to deploy a Bde unit. 

Developers should consider various situations and events that the agent may come 

across, and the response (goals and processes) required. These events may include the 

trigger for the organisation’s high level goals, such as requests to form logistics plans 

or provide information, or for simple reactive behaviours, such as stopping a vehicle 

if it is about to collide with an obstacle. 

ATTITUDE contains three instructions, in addition to ATTITUDE operators to control the 

flow of plans, which assists in making these organisational processes and their responses 

relatively easy to program into agents. They are: (1) anticipations, e.g. “I anticipate 

<information request> then also desire <reply information>”; (2) expectations, e.g. “I 
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expect <obstacle approaching> before <delay 15>”, and; (3) also desire removals, e.g. 

“I not also desire <information request>” (instructions slightly modified for this thesis). 

With anticipations, the agent anticipates some belief appearing in its knowledge base (the 

event), e.g. (information request), and when it does the agent attempts to achieve some 

goal, e.g. (reply information), concurrently with other tasks it is performing. Expectations 

will cause an agent to stop and wait during a plan until an expected belief appears in its 

knowledge base, e.g. (obstacle approaching). Once the event occurs, the agent will 

continue with the plan. The expected event must occur before some deadline, e.g. before 

15 seconds, otherwise the instruction fails. The also desire removal will cause the agent 

to stop the execution of a plan to achieve goal, e.g. (reply information), that it is currently 

executing. These instructions can be used to monitor for events (changes in the 

environment) and execute the required responses if these events occur, or to stop current 

plans that are being executed when their goals are no longer required. Providing agents 

with this reactive behaviour further increases their robustness as they are able to respond, 

and not fail, to a wide range of events and changes that may occur. 

Various means of embedding an agent’s pro-active and reactive behaviours, or 

characteristics, have been presented. Agents have two more characteristics, autonomy 

and social ability. Agents are inherently autonomous. Agents are able to automate 

organisational processes, and thus perform these tasks on their own. Agent can be 

developed to make their own decisions based on their own (organisation’s) goals, and 

they do not have to release information to, or perform tasks for, other agents. 

An agent’s required social capability, or protocol, depends on the particular situation. 

Some agents require a simple protocol, such as sending tasks to other agents, and others 

require more complex protocols, such as negotiation and task allocation. In the next 

chapter, a complex social protocol developed to perform planning (and task allocation) in 

a decentralised, dynamic and open environment is discussed. In order to develop a social 

protocol for a particular situation, developers need to capture the social processes that 

organisations carry out among each other to achieve their social goals. This is done in the 

same way as modelling organisational processes, except it captures the sequence of 

messages (communication) and events between organisations. Some factors that should 

be considered include the type of messages communicated (e.g. request, inform, etc.), 
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who to communicate to, information required in the messages, and the message structure. 

Once these processes have been defined, they can be embedded within the agents, as 

discussed above, except that the goals (desires) in the plan (Figure 5) are likely to be 

goals to send or receive messages. All agents that are expected to interact using the social 

protocol must have knowledge of the protocol. 

3.2.3 When to Use BDI’s Procedural Approach to Agent Planning 

As mentioned in the chapter 2, the BDI-architecture uses a procedural approach to agent 

planning, where agent plans are defined a priori during development rather than via first-

principles during execution. From our experience, the procedural approach works well 

for the organisational logistics business processes we are modelling in our logistics 

domain as their individual processes and social processes (protocols) are highly 

constrained. This may not be the case for other domains that agents may be applied to. 

On basis of experience, Figure 6 presents a graph that indicates which agent planning 

approaches are suitable for domains with a certain characteristics. The characteristics we 

use are the level of constraint in the domain and the time available for the agent to plan. 

From Figure 6, if the domain is highly constrained, then a procedural (i.e. BDI) approach 

is suitable since plans for these (relatively) fixed processes can be defined a priori. 

Time for 
planning

Level of 
Constraint

in the Domain

Low 
(e.g. real-time)

High 
(e.g. off-line)

Highly 
Constrained

Domain

Lowly 
Constrained

Domain

Procedural 
Approach

Procedural 
Approach

First-Principles
Planning

Reactive First-Principles
Planning & Execution

OR
Overly Specified 

Procedural Approach

 

Figure 6. Type of agent planning approaches suited to various domain characteristics 

(how constrained the domain is and the time the agent has to plan). 



 62 

If the domain is not highly constrained, then processes to achieve certain goals may not 

be known before hand, or there may be many plans that are possible due to a large 

number of variables in the domain. For example, in our transportation domain that we 

discuss in the next few chapters, an agent requires a distributed plan to achieve its 

transportation goal. There may be many possible routes with many different modes of 

transport that a resource could travel to get to its destination. Defining every possible 

route would not be practicable. Additionally, some routes would depend on the 

availability of transportation services that are available at the time. A developer may not 

know what type of transportation services will be present in order to predefine the agent 

plans. Therefore, a procedural approach to determine the social distributed plan to 

achieve transportation goals may not be appropriate. 

From Figure 6, if the agent has a large amount of time available for planning, then it may 

plan from first-principles. If the agent does not have a large amount of time to plan in the 

particular domain (e.g. a real-time system), then there are two possibilities. It may 

perform reactive first-principles planning and execution, or means-ends analysis (Newell 

and Simon 1972). As the agent is forming each step (or multiple steps) in the plan, it is 

executing it. Deliberative reasoning may be required in order to allow the agent to select 

suitable (primitive) actions to achieve its goal. The second possibility is for the agent to 

use a procedural approach, but have an overly specified plans library where many plan 

possibilities have been defined. Therefore, for most situations, the agent may be able to 

find a suitable plan to achieve its current goals. This approach may require extensive 

effort to set up the plan library, extensive memory to store the plans, and the agent may 

only use a small proportion of the plans available during execution. It may be necessary 

to do this, for example, because a reactive first-principles and execution approach does 

not produce suitable plans due to its reactive nature. 

With our transportation domain (see chapter 7), although the domain is not constrained, 

there is a reasonable amount of time for the agents to form a distributed plan to achieve 

their transportation goals. Therefore agents use a first-principles planning approach – top 

left quadrant of Figure 6. Since our transportation domain is highly complex and 

decentralised (requires communication), a reactive first-principles approach is taken 

(depth-first search) since a deliberative search may not be practicable. In the following 
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chapters we devise an agent protocol, which is a constrained social agent process, in 

order to enable agents to find a distributed plan to achieve their (transportation) goals. 

The plan is an unconstrained social agent distributed plan. 

3.2.4 Capturing Expertise – Collate and Analyse Information 

Organisational expertise, which includes information (or knowledge) and (logical and 

declarative) business rules, can be embedded into agents. Expertise can be used to collate 

and analyse information that is gathered or stored by the agent (including logistics plans 

formed – not to be confused with ATTITUDE agent plans), and thus deduce logistics facts 

and check logistics constraints, as well as monitor changes that may occur in the agent’s 

environment. This reasoning ability is important for IG agents so that they can analyse 

information in their domain of expertise (e.g. weather, terrain, etc.) and provide this 

expertise (e.g. logistics facts) to other agents. Agents can use expertise to influence their 

behaviour. For example, if a constraint in a plan that the agent intends to use is not 

satisfied, then the agent can respond accordingly, and run a different plan to achieve the 

same goal. 

 

    Rule: check if heavy trucks can travel on roads at the destination 

 If the destination has dirt roads AND it is raning, then the roads are muddy. 

 If roads are muddy, then heavy trucks cannot travel on them. 

Figure 7.  Rule to check if the Bde’s heavy trucks can travel at the deployment destination. 

 

An example will be used to illustrate the capturing of expertise in (ATTITUDE) agents. 

The Bde_Agent discussed in the previous section may need to check the constraint (or 

infer the logistics fact) about whether their military trucks can travel on the roads at the 

deployment destination. For example, heavy trucks cannot travel on muddy roads as they 

get bogged quite easily. If this is the case, it may be appropriate to bring smaller trucks. 

The Bde organisation (or people within it) knows from experience that if the deployment 

destination has dirt roads and it is raining at the destination, then the roads are likely to be 
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muddy and heavy trucks are unlikely to be able to travel on them. This expertise (or 

logical rule) is shown in Figure 7 (purposely represented as two separate rules). 

This expertise can be embedded into Bde_Agent using two methods in ATTITUDE, shown 

in Figure 8 and Figure 9. The first method, Figure 8, uses inference rules (declarative 

approach). The first instruction (believe propositional attitude) enters the rule “trucks 

cannot travel on a road ?road, IF the road ?road is muddy” into the agent’s knowledge 

base, as described in Figure 7. The second believe propositional attitude will enter the 

inference rule “?Y is muddy, IF ?Y is dirt AND it is raining at ?Y” as described in Figure 

7 – note that ?Y in this rule does not have to be a road. The next ask if believe 

propositional attitude will query the agent to check if it believes (or it can infer) that 

trucks will not be able to travel on a particular road. If successful, the variable 

?someRoad will be bound to the name of the road that the trucks will not be able to travel 

on. The ask if believe propositional attitude also contains an inference token truckQuery.  

This is used by the ask again instruction in the last line in Figure 8 to check other 

possible inference matches, i.e. if there are other roads that trucks cannot travel on. The 

ask again instruction can used as many times as required to find all possible answers, i.e. 

find all roads that trucks cannot travel on. If the ask again instruction is used, and no 

further answers that have not been presented are available, the ask again instruction will 

fail. 

 

Bde_Agent believe (infer (cannot_travel trucks ?road) (muddy ?road)) in ?event 1.0 

Bde_Agent believe (infer (muddy ?Y) (&(raining ?Y) (dirt ?Y))) in ?event 1.0 

Bde_Agent ask if believe (cannot_travel trucks ?someRoad) in ?event with truckQuery 

ask again truckQuery 

Figure 8.  Modelling expertise for analysis using inference rules. 
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 ( |             {comment: exclusive union operator} 

    (^      {comment: join operator start} 

  Bde_Agent ask if believe (raining ?where) in ?event 

  Bde_Agent ask if believe (dirt ?where) in ?event 

  Bde_Agent show (expression Trucks may not be able to travel on road ?where) 

    )       {comment: join operator end} 

    Bde_Agent show (expression Roads OK for trucks to travel on) 

 ) 

Figure 9.  Modelling expertise for analysis using plans with control structures. 

 

Figure 9 uses ATTITUDE control structures to make deductions (procedural approach).  

The first line is an exclusive union operator.  It contains two plan alternatives, the first 

concerns the propositional attitudes inside the join operator (see Figure 9 for join operator 

start and end) and the second is the single show instruction.  The first plan alternative in 

the exclusive union operator will execute initially. The first ask if believe propositional 

attitude will check the agent’s knowledge base if it believes it is raining at ?where.  If this 

succeeds, the plan continues, and the agent again checks the knowledge base if it believes 

the roads at ?where are dirt roads. If that propositional attitude succeeds, then the agent 

will print to the screen the message that trucks cannot travel on the roads. If any of the 

ask if believe propositional attitudes fail, then it is not raining or the roads are not dirt 

roads (or both), in which case the first plan alternative will fail, and the second plan 

alternative will execute, printing the message that the roads are “ok” for the trucks to 

travel on. 

In the past, there have been debates on the suitability of declarative and procedural 

approaches. These debates have been largely resolved and both are found to be useful 

(Winograd 1975). ATTITUDE allows both approaches to be used for agent development. 
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3.2.5 Coalition Agent eXperiment (CoAX) 

DARPA’s Coalition Agent eXperiment (CoAX) (Allsopp and al. 2002; Perugini, Wark et 

al. 2003; Wark, Zschorn et al. 2003) project was aimed at demonstrating the utility of 

agents for coalition planning. Some 20 organisations from the USA, UK and Australia 

were involved. These include: the Air Force Research Laboratory (USA); the Artificial 

Intelligence Applications Institute, University of Edinburgh (UK); BBN Technologies 

(USA); Carnegie Mellon University (USA); Dartmouth College (USA); Defence Science 

& Technology Organisation (Australia); Global Infotek Technologies Inc; the Institute 

for Human and Machine Cognition, University of West Florida (USA); Lockheed-Martin 

Advanced Technology Laboratory (USA); the Naval Research Laboratory (USA); the 

Potomac Institute (USA); QinetiQ, Malvern (UK); the University of Maryland (USA); 

the University of Michigan (USA); and the University of Texas (USA). MALT was 

implemented within CoAX (Oct 2002), with the aims of demonstrating components of 

MALT; the use of agents for military logistics planning in the Australian-Coalition 

contexts; interoperability with foreign agents (i.e. agents not developed by us); and the 

dynamic capability of MALT. 

Our part of the CoAX project involved a vignette where an Australian ship was struck by 

a torpedo, resulting in damage to the ship and casualties. A medical evacuation (medivac) 

is required to transport the casualties from the ship to a coalition medical facility using 

available helicopters. Agents represented the ship’s medevac function (medevac agent) 

and onboard resources, and a single proxy agent represented the coalition helicopter and 

medical facility resources, providing information regarding the availability of medical 

facilities to treat casualties, and the availability of helicopters to transport the casualties. 

The medevac agent modelled the logistics process of planning a medical evacuation from 

the ship. The agents cooperated in order to form a medevac logistics plan. 

The medevac agent was developed using ATTITUDE. The logistics process for a medevac 

was represented as a plan, and executed when casualties were detected on the Australian 

ship, triggering the “medevac” function (or goal). Cooperation (e.g. communication) 

between the medevac agent and the other agents were facilitated by the DARPA’s 

CoABS grid (Kettler). 
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The medevac agent, when triggered, requests the availability of medical facilities to treat 

its casualties, and helicopter resources to plan the transportation of casualties from the 

Australian ship to the nearest suitable medical facility. The proxy agent responds with 

available medical facilities and helicopters, providing distances to facilities, start 

location, earliest start time, and types of helicopters available.  The medevac agent uses 

prior knowledge of the carrying capacity and speed of the types of helicopters. 

A simple algorithm is used by the medevac agent to form a transportation plan. The 

helicopter that can transport the injured to the medical facility at the earliest time is 

selected to perform the transportation task. Highest priority casualties are transported 

first. If the selected helicopter cannot transport all the injured, the process is continued 

with the remaining injured.  

The plan formed is sent to the foreign Multi-Level Coordination Agent for processing, to 

deconflict and optimise (merge) the medevac plan with existing flight plans developed by 

foreign (coalition) agents. The plan is then distributed to the appropriate coalition 

helicopters and medical facility for execution. The medevac agent reacts to any changes, 

such as helicopter availability, the number and type of casualties, or the availability of the 

helicopter landing pads and replans if necessary.  

The CoAX demonstration was held in October 2002 at the US Navy Warfare College, 

Newport RI.  It successfully presented components of MALT in operation, and thus 

demonstrated the use of agent technology for military logistics planning. DARPA’s 

UltraLog (or ALP) and CDM Technologies JFCT has also demonstrated that agents can 

be used for aspects of the U.S. logistics planning domain (see section 2.4.1), but we are 

focusing on the Australian-Coalition contexts, and using the BDI agent paradigm. The 

logistics process of a (ship) medevac was effectively modelled in the medevac agent 

using ATTITUDE. The medevac agent successfully cooperated with foreign agents (all 

agents used the same simple social protocol), sending the final medevac plan to the 

foreign Multi-Level Coordination Agent for processing and distribution to coalition 

helicopters and medical facility. The medevac agent was able to dynamically replan when 

the situation changed. 



 68 

3.2.6 Brigade Agent 

In sections 3.2.1and 3.2.4, details of an agent Bde_Agent were given, which modelled the 

logistics process of deploying a Bde unit, as observed and performed at the military 

logistics training course. The agent was partially implemented – the first two goals (steps) 

in Figure 4 (gather information and sustainment calculation), and some components of 

the last goal (analyse plan). 

With gathering information, one of the examples used was that presented in section 3.2.4 

– for the agent to determine whether heavy trucks can use the roads at the deployment 

desination. Two IG agents were set up to provide information on weather (if it is raining) 

and terrain (if the roads are dirt) at the deployment destination. Bde_Agent first gathered 

the required information from the IG agents by sending requests for information to the 

particular agent, in which they replied with the information requested. Once the 

information was received, and thus is stored in Bde_Agent’s knowledgebase (as beliefs 

about the world), one of the rules in Figure 8 and Figure 9 were used to deduce the fact of 

whether the Bde heavy trucks were able to use the roads at the destination. This fact was 

used to determine whether heavy trucks were to be deployed, and thus influenced the 

calculations of the quantity of resources (e.g. trucks) to be transported to the destination. 

Rules (expertise) were also used to analyse the parts of the logistics plan currently formed 

(for the analyse plan goal). A similar example as above, if the roads at the destination are 

rough, then certain vehicles could have their movement restricted. A rule was written to 

check if the surface at the destination was rough (information gathered from the terrain 

agent), and if so, if a particular vehicle was selected to be deployed, then this fact would 

be flagged to the user, making the user aware of the risk with the plan. Agent plans were 

used by Bde_Agent to analyse the current elements of the logistics plan formed 

(primarily supplies required by the deployed Bde unit) – modelling processes (Bde) 

planners will use to analyse their logistics plan. Bde_Agent provided information such as 

the quantity of the various types of supplies required in the operation and the financial 

cost (price) expected to purchase supplies for the logistics plan. Agents need only release 

logistics plan information that is required by the users, hiding logistics plan (or planning) 

details. Information provided could be customised for particular users, depending on their 
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information requirements, or could be set up such that abstract logistics plan information 

is first provided, and further details can be provided if requested. 

Bde_Agent also performed sustainment calculations as performed in the logistics training 

course, working out the quantity of various supplies required to support the deployed Bde 

unit. In the training course, these repetitive and numerous calculations were done 

manually, with a calculator. They were tedious, time consuming, and prone to error, 

where one error earlier on in the calculations may carry on in later calculations. 

Bde_Agent, being software, was able to perform these mathematical calculations very 

quickly without error (if code and hardware not erroneous). Bde_Agent performed the 

calculation in a matter of seconds (under 3 seconds) compared with taking over 15 

minutes for manual calculation at the military logistics training course. At the training 

course, if there was a change in the logistics goal, such as a change in the size of the Bde 

force to be deployed (due to the campaign planners changing the campaign plan), then 

these sustainment calculations were perfomed again, taking at least another 15 minutes. 

Bde_Agent is able to replan and perform these calculations again for the training course 

scenario almost instantly. The Joint Operational Logistics Tool Suite (JOLTS), which can 

also perform logistics sustainment calculations using Excel software, is also able to 

perform the calculations very quickly. Therefore software, and hence agents, when it 

comes to calculations required in logistics planning, is likely to be much faster and more 

responsive to the dynamic nature of logistics goals, than performing the calculations 

manually (as observed at the training course), due to the speed and accuracy that software 

can perform calculations. 

Bde_Agent was developed so that users could enter parameters allowing them to control 

Bde_Agent’s planning process. Items in the planning process that the user could control 

include which individual Bde elements to deploy, and information or values used in the 

sustainment calculations (such as the consumption rate and whether the operation is a 

peacekeeping operation). If these parameters are not given, the agent will use default 

values or attempt to gather information in order to deduce appropriate values (in the 

Bde_Agent prototype, “information gathered” in this instance was already stored locally 

in the agent’s knowledge base). Therefore, Bde_Agent was developed such that users can 

direct as much control over the agent, and its planning process and actions, as they desire. 
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Users may provide Bde_Agent with an abstract goal, without any details, if for example, 

they trust the agent will use the correct values and perform the correct actions, or want 

approximate values/plans for a logistics goal (hence, exact values are not a great 

concern). Otherwise, users may enter more detailed instructions and information to 

Bde_Agent, giving the user greater control over Bde_Agent’s actions. 

The components of Bde_Agent that have not yet been fully completed are the scheduling 

of supplies and transportation. In order to schedule supplies and transportation, 

Bde_Agent must cooperate and obtain services from other agents – cooperate with SA to 

obtain supplies and TA to obtain transportation services. The transportation scheduling 

component was attempted first. It was discovered that such a task was not trivial, due to 

the complexity of the transportation scheduling (or planning) problem required by the 

military, and that planning was to be performed in a decentralised, dynamic and open 

environment, requiring a complex social protocol to facilitate the planning. The next few 

chapters provide further details regarding the protocol and the transportation 

implementation. 

3.3 Discussion 

MALT was presented, using agents to automate aspects of logistics planning and 

information gathering. This chapter reflects our experience in implementing components 

of MALT using the BDI agent paradigm. The implementation of two agents in MALT 

was described (note that due to the sensitivity of the information, further details regarding 

implementation and results could not be provided). In the description, a methodology was 

presented to model the organisation’s (business) processes and expertise, and to embed 

agents’ autonomous, proactive (goal-directed), reactive and social characteristics, using 

the BDI-based agent programming language ATTITUDE. Agent (BDI) concepts and our 

methodology enable the developer to think about failures and possible events when 

developing the agent, producing a robust software system. Types of domains where BDI, 

or procedural, approaches are appropriate are in highly constrained domains or domains 

with little time available for planning (e.g. real-time systems). Most organisations in 

MALT are highly constrained. In lowly constrained real-time systems, considerable effort 
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may be required to develop the agents due to the large number of plans required to 

consider many possible situations. The ease at which agents can be developed to model 

organisations’ (individual and social) processes and expertise to produce a robust 

software support system indicates that they are suitable for modern military logistics. 

Agent technology provides a suitable conceptual framework by which agents can be 

developed for elements within the logistics domain. 

Jennings et al. investigates using agents for business process management in a system 

called Advanced Decision Environment for Process Tasks (ADEPT) (Jennings, Faratin et 

al. 1996). Similar to our domain, agents represent various entities within their domain and 

automate aspects of their business processes. Brazier et al.’s DESIRE framework enables 

high-level specification of a system’s conceptual design (Brazier, Dunin-Keplicz et al. 

1997). It models the knowledge, interaction and coordination of complex tasks in agent 

systems. The GAIA methodology (Wooldridge, Jennings et al. 2000), ROADMAP (Juan, 

Pearce et al. 2002), the architecture-centric method (Park and Sugumaran 2005) and 

Prometheus (Padgham and Winikoff 2002) provide methodologies for developing agent 

systems. Taveter and Wagner propose an agent-oriented approach to representing and 

visualising agent business rules and processes, which uses a declarative agent approach 

(Taveter and Wagner 2001). Graham uses an Object-Oriented approach to modelling 

business processes with agents (Graham 1997). Bose designs agents with object-oriented 

technology and implements agents using Prolog in order to automate organisational tasks 

(Bose 1996). 

These agent methodologies and systems typically investigate the social structure of 

agents, their social or abstract roles and functions, behaviours and interactions, their 

general architecture, or do not consider the BDI paradigm and its intricacies. None of the 

above mentioned literature investigates the methodology of developing the individual 

agent plans, and thus the agents, using a BDI framework – the transition from a 

description of the business processes and expertise into the final (BDI) agent – and how 

to obtain desirable agent properties such as reactivity and proactiveness. 
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Chapter 4 

4 Contract Net Approaches to Task Allocation 

In this Chapter an analysis and comparison of existing contract net protocols is explored, 

to determine their appropriateness to perform the planning and task allocation required in 

our logistics domain. The protocols we compare are Smith’s Contract Net Protocol 

(CNP) (Smith 1980), Fischer et al.’s Extended Contract Net Protocol (ECNP) (Fischer 

and Kuhn 1993; Fischer, Muller et al. 1996) and Aknine et al.’s CNP extension, which 

we will refer to as CNP-ext (Aknine, Pinson et al. 2004). To explore the different contract 

net approaches, processes of planning and task allocation among agents are defined. 

Additionally, we present a new protocol representation, called the Protocol Flow 

Diagram. We show that the CNP, CNP-ext and ECNP fall short in addressing the 

planning and task allocation required in our logistics domain, in particular our 

transportation domain. 

4.1 Planning, Task Allocation, and Protocol Processes 

In this thesis, we consider a multi-agent system to comprise of a set of agents                 

T     = 
Λ

 ∪ Г , consisting of a set of auctioneers 
Λ

 ⊆ T     and a set of bidders Г  ⊆ T , which 

are not necessarily mutually exclusive sets. Each auctioneer α  ∈ 
Λ

 has a goal G that it 

wishes to achieve by the achievement of a set of tasks T. Note that the auctioneer need 

only achieve some subset of its set of tasks Talloc ⊆ T to achieve G. The partial 

achievement of T is allowed in the combinatorial auction application domain discussed in 

chapter 6. Specifically, an allocation of a subset, Talloc of T, may be preferred (e.g. is more 

profitable) over an allocation of the complete set of tasks T. Each bidder γ ∈ Г  holds a 

possibly empty set of bids B that may be used to achieve the set of tasks desired by the 

auctioneers. Auctioneers allocate tasks to bidders according to the merit of their bids. 

The three types of planning and task allocation problems that are considered in this thesis 

are as follows: 
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1. Task allocation – An auctioneer α  allocates its set of tasks Talloc to a single bidder 

γ in order to attain its goal G. The auctioneer accepts a single bid b from bidder γ, 

which can completely achieve T
alloc (i.e. achieve all tasks in T

alloc) and is as 

preferable as any other possible achieving bid available by any bidder in Г . 

2. Task allocation with bid planning – An auctioneer α  allocates its set of tasks Talloc 

to a set of bidders Ξ ⊆ Г  to attain its goal G. The auctioneer must find and accept 

a set of bids B
acc (the bid plan) by bidders Ξ. Each bid b ∈ B

acc by bidder γ 

achieves a subset of the set of tasks Θ ⊆ Talloc (set of tasks Θ allocated to γ) and 

B
acc is as preferable as any other possible achieving set of bids by bidders in Г . 

3. Planning and task allocation – An auctioneer α  must find a specific set of tasks 

Talloc to allocate to a set of bidders Ξ ⊆ Г  to attain its goal G, where there are 

many sets of tasks (plans) that can achieve G. The auctioneer must find a suitable 

set of tasks Talloc
, as well as find and accept a set of bids Bacc (the bid plan) by 

bidders Ξ  that can achieve Talloc. The set of tasks Talloc
 and set of bids Bacc are as 

preferable as any other possible set of tasks and achieving set of bids, and each 

bid b ∈ B
acc by bidder γ achieves a subset of the set of tasks Θ ⊆ T

alloc (set of 

tasks Θ allocated to γ). 

Problem (1) is special case of problem (2) which is a special case of problem (3). Note 

that auctioneers are manager agents (MA) and bidders are transport agents (TA) in the 

terminology used in Chapter 3. The terms MA and TA will be used when we are referring 

to the protocols applied to the transportation scheduling domain, and we will use the 

terms Auctioneer and Bidder elsewhere, including applying the protocol to combinatorial 

auctions. 

In order to address the problems above, auctioneers and bidders undergo negotiations. In 

a negotiation, agents follow a protocol, which specifies the states of an interaction, i.e. 

the set of speech acts (or messages) and events, between an auctioneer α  and a bidder γ in 

order to accept a bid and ultimately commit to the bid to fully or partially achieve an 

auctioneer’s set of tasks �  ⊆ T. We define backtracking as the process of undoing the 

acceptance (or selection) of a bid in order to find another bid option to achieve the set of 
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tasks. A protocol process is the execution of the protocol (the negotiation) between an 

auctioneer and a bidder. We define a negotiation, or protocol process, as a 9-tuple: 

Neg = < α , γ, � , Σ , S, A, δ, s, F > 

• α  ∈ 
Λ

 where α  is an auctioneer from the set of auctioneers 
Λ

. 

• γ ∈ Г  where γ is a bidder from the set of bidders Г . 

• �  ⊆ T is the set of tasks from α  that the agents α  and γ are negotiating over (see 

below). 

• Σ  ⊆ B is the set of bids from γ that the agents α  and γ are negotiating over. 

• S is the set of possible states in the protocol. 

• A is the set of possible speech acts or events that can occur in the protocol 

resulting in a transition between states. Speech acts are the messages 

communicated between the agents. Events are situations, which are not speech 

acts, that result in the protocol changing state, e.g. no communication. 

• δ ⊆ (S×A×S) is a set of triples which specifies the transitions between all the 

possible states of the protocol, i.e. <current state, speech act or event, next state> 

∈ δ. 

• s∈ S is the start state of the negotiation (protocol process) between α  and γ. 

• F ⊆ S is the set of final states of the negotiation between α  and γ. 

We will see later that an initial protocol process by an auctioneer to achieve T may result 

in T being only partially achieved by a bidder’s bid. New protocol processes for the set of 

tasks �  ⊆ T that were not achieved are then executed between the auctioneer and bidders 

(see section 4.7.5). Partial achievement of �  may result in further protocol processes to 

achieve � ′⊆ � , and so on. The set of tasks allocated (achieved by the selection of 

bidders’ bids) by the auctioneer α  through the execution of one or more protocol 

processes associated with the set of tasks T is Talloc ⊆ T. 

Due to the agent system’s many-to-many setting, an auctioneer α  may be negotiating with 

a set of bidders simultaneously regarding the achievement of its set of tasks � . Similarly, 
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a bidder γ may be negotiating with a set of auctioneers Λ regarding the achievement of 

the set of each auctioneers’ set of tasks, i.e. ∪{� α  | α  ∈ Λ}. 

4.2 Contract Net Protocol and the Protocol Flow Diagram 

FIPA-ContractNet-Protocol

Initiator Participant

cfp

refuse

propose

reject-proposal

accept-proposal

cancel

inform

dead-

line

failure

x

x

x

 

Figure 10. Conventional representation of the Contract Net Protocol (CNP). cfp represents Calls 

for Proposals. 

A conventional representation of the contract net protocol (CNP) is shown in Figure 10, 

which was obtained from the Foundation for Intelligent Physical Agents (FIPA) (FIPA 

2005). CNP operates similarly to a first-price sealed-bid auction (or reverse auction). An 

initiator agent announces a call for proposals (cfp), i.e. a task that it would like achieved, 

to one or more participant agents. The participant agents may either submit a proposal 

(or bid) to achieve the complete task or refuse to submit proposals. A participant agent’s 

proposal may specify details such as the time at which the task can be performed and the 

price that must be paid in order for the participant to execute the proposal. After some 

deadline specified by the initiator, the proposer will select the best proposal, based on 
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some criteria depending on the particular situation, and accepts this proposal. The 

initiator sends an accept-proposal speech act (or message) to the appropriate participant 

agent. The initiator then rejects all other proposals and sends a reject-proposal speech 

act to all other participants. The participant agent that had its proposal accepted will 

perform the task and inform the proposer of the completion of the task. 

The conventional representation of CNP makes it difficult to represent the other contract 

net-based protocols, such as CNP-ext, ECNP and our Provisional Agreement Protocol 

(PAP). These protocols have complex state transitions, such as repeated states. Therefore, 

we define a new representation, called the Protocol Flow Diagram, which is essentially a 

modified event flow diagram. Figure 11 illustrates CNP (using different terminology) 

using the Protocol Flow Diagram representation. It may be easier for a reader to 

comprehend an illustration such as that in Figure 10 and Figure 11, rather than pseudo-

code, to describe speech acts and events between agents. An initial description of PAP 

using pseudo-code required six separate algorithms to describe the various step(s) of the 

protocol among the agents. Each algorithm was linked with other algorithms (via speech 

acts or events between agents/algorithms) (Perugini, Lambert et al. 2003), which may not 

be easy to follow. 

In the Protocol Flow Diagram representation in Figure 11, each vertical line represents 

the agents involved in the protocol (the auctioneer and bidder agents). There are also 

three matching boxes on each vertical line. These three pairs of boxes correspond to the 

three steps in the protocol, as denoted by the brackets on the far right hand side of Figure 

11. Each pair of boxes represents an eXclusive-OR (XOR) step in the protocol, and 

therefore, only one speech act or event may occur at that step. In step one of CNP, only 

one speech act (Task Announcement) may occur, but in step two, either the Bid speech 

act or the Refuse speech act must occur, but not both. Similarly, in step three, either the 

Grant Bid or the Reject Bid speech act must occur, but not both. The XOR applies 

between two agents that are interacting because, for example, an auctioneer (initiator) 

may be announcing a task to many bidders (participant), and thus be receiving Bids from 

some agents and Refuse from others. In this case, it receives both speech acts, but only 

receives one or the other from each agent that it is interacting with. The auctioneer may 

be at different steps in the protocol between different agents. 
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Each speech act or event between agents in the Protocol Flow Diagram has an associated 

dotted line that emanates from it and protrudes outside the vertical lines. The dotted line 

is used to describe the next step in the protocol if that speech act or event occurs. In 

Figure 11, Task Announcement speech act in step one has a dotted arrow emanating 

from it and points to the second XOR box (from the top) along the vertical line, which 

represents step two of the protocol. Therefore, after the task announcement, the protocol 

proceeds to step two. In step two, if the auctioneer receives Bids from the bidders, then 

the arrow emanating from the Bids speech act indicates that the protocol proceeds to step 

three (third XOR box from the top). If a bidder sends a Refuse speech act, or the 

auctioneer sends a Reject Bid speech act, then the dotted line ending with a diamond 

emanating from that speech act indicates that the protocol (process) between the two 

respective agents ends without a contract (note that the protocol process for the same task 

announcement may still be running between the auctioneer and other bidders). When the 

auctioneer sends a Grant Bid speech act, the protocol process between the two respective 

agents ends with a contract. This is indicated by the dotted line ending with an oval 

emanating from the Grant Bid speech act. 

Bid(s)

Grant Bid

Reject Bid

Auctioneer

(MA)

Bidder

(TA)
Protocol

Steps

(1)

(2)

(3)

Task Announcement

Refuse

XOR – only 1 speech act 

may occur (one step)

Speech act

Protocol control

Exit with no contract

Exit with contract

 

Figure 11. CNP, using the Protocol Flow Diagram representation. 

Each step in the Protocol Flow Diagram, in addition to the two type of exits (with and 

without contracts) are the states of the protocol shared by the agents involved in the 

negotiation. The CNP, and thus the two agents using CNP, have 5 states, which are the 

three protocol steps and the two types of exits. The dotted control lines indicates the 

transition between states if a particular speech act or event occurs. Further details 
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regarding this for the CNP is discussed in section 4.4.1. The side (auctioneer or bidder 

side) that the dotted control lines and exits appear are irrelevant. 

Some additions to the Protocol Flow Diagram representation are used to illustrate ECNP 

and PAP. These additions will be introduced later when they are required. CNP 

representation in Figure 11 removes the last three speech acts (responses related to the 

completion of the task) from FIPA’s original CNP description because as we are 

concerned with the allocation of tasks, rather than the successful execution of these tasks 

after they are allocated. Our representation also uses different terminology to the FIPA’s 

description of CNP. Call for proposals (cfp) is termed Task Announcement, proposals 

is Bid(s), accept-proposals is Grant Bid and reject-proposals is Reject Bid. The names 

of the two types of agents are also different. The initiator is the Auctioneer and the 

participant is the Bidder. 

In the protocol description above, we use the term speech acts and events rather than only 

speech acts. In the CNP description, all steps involve speech acts, which are messages 

communicated between the agents, and the dotted line indicates the next state when that 

speech act occurs. Later, when discussing PAP, the protocol process may move to a new 

state without any messages being communicated, for example, if the auctioneer decides 

to backtrack or if there is no communication between the agents in a step and they move 

on to the next state (agents may realise the event has occurred when the next speech act is 

sent). Therefore, we refer to such conditions as events in the protocol, which cause a 

transition to a new state in the protocol process. 

4.3 Contract Net Protocol Applied to Transportation Scheduling 

In the transportation domain, the task announcement in CNP (see Figure 11) may be a 

transportation task that the Auctioneer, or MA, desires to be achieved. Bids sent by the 

bidders, or TA, may be services (actions) that they can perform to achieve the 

transportation task. Bids may contain times that the task can be achieved and a price that 

the MA must pay for the bid. The MA may select the most appropriate bid, based on 

criteria required of the task, which may include the price of the bid and the time to 

complete the transportation task. 
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b3b2b1

MA

TA3TA2TA1

Reject

b1

MA

TA3TA2TA1

(a) Task announcement
by MA

(c) Granting and rejecting 
bids by MA

(b) Bids by TA
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* Tr = transport
Syd = Sydney
Melb = Melbourne
est = earliest start time

lft = latest finish time

b2 = Tr (50 tonne fuel, Syd to Melb, 
est 14:00 & lft 15:00, price $25)

b1 = Tr (50 tonne fuel, Syd to Melb, 
est 12:00 & lft 20:00, Price $10)

b3 = Tr (50 tonne fuel, Syd to Melb, 
est 09:00 & lft 16:00, price $15)

 

Figure 12. Example of CNP applied to the transportation scheduling domain. t = transportation 

task, bx = bid to achieve t. From problem 1 in section 4.1, {t} = Talloc = T, to attain goal G of 

moving 50 tonnes of fuel from Sydney to Melbourne. α = MA, Γ = {TA1, TA2, TA3}, b = b3. Bid 

evaluation criteria is to minimise price and latest finish time. 

Figure 12 illustrates an example. In Figure 12 (a), a manager agent (MA), which may 

represent an army unit, announces a task t to three transport agents (TA) to transport 50 

tonnes of fuel from Sydney to Melbourne, with earliest starting time of 09:00 and latest 

finish time of 20:00. In Figure 12 (b), the three TA respond with bids b1, b2 and b3, 

respectively, to completely achieve the task. b1 transports the fuel with earliest starting 

time of 12:00 and latest finishing time of 20:00, with price $10; b2 transports the fuel 

with earliest starting time of 14:00 and latest finishing time of 15:00, with price $25; b3 
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transports the fuel with earliest starting time of 09:00 and latest finishing time of 16:00, 

with price $15. The MA evaluates the bids in order to determine which is most 

appropriate for selection. From Figure 12 (c), the criteria that the MA uses to evaluate the 

bids are to minimise price and the latest finish time. Since this is an illustrative example, 

we ignore details of calculations the MA may use to evaluate the bids. The MA decides 

that b3 is the most appropriate bid and grants b3, and rejects b1 and b2 – as b3 has the best 

compromise between price and time, where b1 is cheap but arrives late and b2 arrives 

earliest but is expensive. 

4.4 CNP Analysis 

4.4.1 CNP Protocol Description 

In the previous section, CNP was presented diagrammatically using the Protocol Flow 

Diagram. We will define CNP using the negotiation (or protocol process) description 

presented in section 4.1, and the Protocol Flow Diagram illustration in Figure 11. We 

have a negotiation defined as 

Neg = < α , γ, � , Σ , S, A, δ, s, F > 

where: α  is an auctioneer in the negotiation; γ is a bidder in the negotiation; �  = T is the 

set of tasks that the agents α  and γ are negotiating over for its full or partial achievement 

(with one bid to attain goal G); Σ  is the set of bids that the agents α  and γ are negotiating 

over. The other tuples are dependent on the protocol: 

• S = {step1, step2, step3} ∪ {exitNC, exitC} is the set of possible states in the 

protocol. exitNC is the state which exits with no contract and exitC is the state 

which exits with a contract. 

• A = Aα ∪ Aγ ∪ Ae is the set of possible speech acts or events where: Aα is the set 

of speech acts associated with the auctioneer; Aγ is the set of possible speech acts 

associated with the bidder; and Ae is the set of events (common to both agents).    

Aα = ({task announcement}× � ) ∪ ({grant bid}× Σ ) ∪ ({reject bid}× Σ ); Aγ = 

({bid}× Σ ) ∪ ({refuse}× � ); Ae = ∅. 
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• δ ⊆ (S×A×S) specifies the transitions between the possible states, such that δ is a 

function, with δ(step1, < task announcement, ω>) = step2; δ(step2, < bid, σ>) = 

step3; δ(step2, < refuse, ω>) = exitNC; δ(step3, < grant bid, σ>) = exitC; δ(step3, 

< reject bid, σ>) = exitNC. 

• s = step1, is the start state. 

• F = {exitNC, exitC} is the set of final states. 

4.4.2 Communication 

The best-case communication requirements, which is the number of messages (speech 

acts) sent and received, for CNP to achieve an auctioneer’s set of tasks will be 

formulated. This allows us to compare the best-case communication requirements of CNP 

to the worst-case communication requirements of our Provisional Agreement Protocol 

(PAP) in chapter 5. 

Refer to the CNP specification in Figure 11. Assume a maximum of κ  bidders and a 

maximum of br bids received per task announcement. At step 1, the auctioneer sends out 

a task announcement to each of the κ  bidders, therefore communicates κ  messages. At 

step 2, the bidders submit (communicates) br bids – in the best case, no refuse messages 

are communicated. At step 3, the auctioneer sends a grant for it most preferred bid, and 

sends reject messages for every other bid, and thus br messages are communicated. 

Therefore, the total communication required by CNP for a task allocation is the sum of 

the number of messages communicated: 

Eq 1: Total communication for CNP = κ  + br + br = κ +2 � br 

4.4.3 Memory 

The best-case memory requirements, which is the number of tasks and bids that must be 

stored at any one time, for CNP to achieve an auctioneer’s set of tasks will be formulated. 

This allows us to compare the best-case memory requirements of CNP to the worst-case 

memory requirements of our Provisional Agreement Protocol (PAP) in Chapter 5. 
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Refer to the CNP specification in Figure 11. Assume a maximum of κ  bidders and a 

maximum of br bids received per task announcement. At step 1, the auctioneer 

announces its set of tasks to each of the κ  bidders. Therefore, the auctioneer and each 

bidder must store 1 set of tasks. The protocol proceeds to step 2, where bidders submit br 

bids, and therefore, the auctioneer must store br bids and the bidders must store their 1 

submitted bid. The protocol proceeds to step 3 where the auctioneer will grant its 

preferred bid and reject the other bids. Therefore, the bidders may delete the set of tasks 

and its bid, and the auctioneer may delete all the br - 1 rejected bids. The total memory 

requirement for the auctioneer is 1 set of tasks and br bids, and for the bidders are 1 set of 

tasks and 1 bid, which is deleted if/when their bid is rejected. 

4.5 Contract Net Protocol – Extension 

CNP was extended by Aknine (Aknine, Pinson et al. 2004), which we refer to as CNP-ext 

(CNP-ext is not to be confused with Fischer’s extension, ECNP). CNP-ext allows bidders 

to negotiate with many auctioneers simultaneously. The protocol is presented in Figure 

13 using the Protocol Flow Diagram representation. There are five steps (and hence 7 

states) in the protocol. In step 1, the auctioneer sends a Task Announcement to all 

bidders, and the protocol proceeds to step 2. Bidders may send a PreBid for the complete 

task, which are temporary bids for the task, or send nothing, No Communication. For 

both events the protocol proceeds to step 3. At step 3, the auctioneer selects the best pre-

bid for the task, and gives the agent associated with the pre-bid a provisional grant, which 

temporarily grants the bid, and proceeds to step 4. All the agents associated with the 

unsuitable pre-bids are given either a Provisional Reject, in which case the protocol 

proceeds back to step 2 to allow the bidder to send an updated bid to improve their pre-

bid for the task, or send a Confirm Reject, in which case the protocol exits without a 

contract for the auctioneer and bidder involved in the negotiation. At step 4, the bidder 

sends a Definitive Bid, which is a final bid for the task and can differ to its pre-bid, and 

the protocol proceeds to step 5. If the auctioneer accepts the definitive bid, then it sends 

the associated bidder a Confirm Grant, and the negotiation is complete (protocol exits 

with a contract) and the task has been allocated. Otherwise, the auctioneer may 

Provisionally Reject the bid because, for example, the definitive bid is worse than the 
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pre-bid or other agents’ updated pre-bids are better than the definitive bid (or both). In 

this case, the protocol proceeds to step 2 to allow the rejected bidder to send an updated 

pre-bid, and the auctioneer can select a new pre-bid at step 3. The auctioneer is also able 

to send a Confirm Reject at step 5 to the bidder associated with the provisionally granted 

pre-bid, and the protocol exits without a contract for the two agents. 

Note that the CNP-ext specification in uses the terms pre-accept, pre-reject, definitive 

grant, and definitive reject where we have used the terms provisional grant, provisional 

reject, confirm grant and confirm reject, respectively. This allows us to keep terminology 

consistent with the terminology we have used with our PAP discussed in Chapter 5. 

(4)
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Provisional Grant

Provisional Reject

Auctioneer

(MA)

Bidder

(TA)
Protocol

Steps

(1)

(2)
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XOR – only 1 speech act 

may occur (one step)

Speech act

Protocol control

Exit with no contract

Control lines joined

Confirm Reject

Definitive Bid

Confirm Grant

Provisional Reject

Confirm Reject

(5)

Exit with contract

 

Figure 13. Aknine et al.’s CNP-ext. 

With CNP, as if more than one task is received, the bidder may only bid for one task and 

wait for the negotiations for this task to complete (grant or reject the bid) before it may 

bid for the next task. Auctioneers for other tasks may have already allocated their tasks 

during this time, resulting in the bidder losing potential contracts. With CNP-ext, when 

tasks are received from various auctioneers, the bidder sorts the tasks, forms bids for the 

tasks and sends the bids to the various auctioneers. Therefore, CNP-ext allows bidders to 

negotiate with many auctioneers at the same time. 
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Bidders sort tasks received from auctioneers based on their preferences, where tasks (and 

their bids) lower in the order are dependent on tasks (and their bids) higher in the order. 

Tasks that commenced lower in the order and whose bids are rejected are moved higher 

in the order, replacing higher order tasks whose bids were rejected, so that the bidder can 

submit an improved (updated) bid for the lower order task. 

4.5.1 CNP-ext Applied to Transportation Scheduling 

CNP-ext in the transportation domain operates in a similar manner to CNP presented in 

section 4.3. The unsuitable bids b1 and b2 in Figure 12 (c) would first receive a 

provisional reject (in which case the TA would be able to update their bids, if possible) 

and then receive a confirm reject once a bid is confirm granted. The selected bid b3 would 

first receive a provisional grant, the TA would then send a definitive bid b3, and the 

auctioneer would send a definitive grant for b3. 

4.6 CNP-ext Analysis 

4.6.1 CNP-ext Protocol Description 

We will define CNP-ext using the negotiation (or protocol process) description presented 

in section 4.1, and the Protocol Flow Diagram illustration in Figure 13. We have a 

negotiation defined as  

Neg = < α , γ, � , Σ , S, A, δ, s, F > 

where: α  is an auctioneer in the negotiation; γ is a bidder in the negotiation; �  = T is the 

set of tasks that the agents α  and γ are negotiating over for its full or partial achievement 

(with one bid to attain goal G); Σ  is the set of bids that the agents α  and γ are negotiating 

over. The other tuples are dependent on the protocol: 

• S = {step1, step2, step3, step4, step5} ∪ {exitNC, exitC} is the set of possible 

states in the protocol. exitNC is the state which exits with no contract and exitC is 

the state which exits with a contract. 

• A = Aα ∪ Aγ ∪ Ae is the set of possible speech acts or events where: Aα is the set 

of speech acts associated with the auctioneer; Aγ is the set of possible speech acts 
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associated with the bidder; and Ae is the set of events (common to both agents).    

Aα = ({task announcement}× � ) ∪ ({provisional grant}× Σ ) ∪ ({provisional 

reject}× Σ ) ∪ ({confirm reject}× Σ ) ∪ ({confirm grant}× Σ ); Aγ = ({PreBid}× Σ ) ∪ ({definitive bid}× Σ ); Ae = ({no communication}). 

• δ ⊆ (S×A×S) specifies the transitions between the possible states, such that δ is a 

function, with δ(step1, < task announcement, ω>) = step2; δ(step2, < PreBid, 

σ>) = step3; δ(step2, <no communication>) = step3; δ(step3, < provisional 

grant, σ>) = step4; δ(step3, < provisional reject, σ>) = step2; δ(step3, < 

confirm reject, σ>) = exitNC; δ(step4, < definitive bid, σ>) = step5; δ(step5, < 

confirm grant, σ>) = exitC; δ(step5, < provisional reject, σ>) = step2; δ(step5, < 

confirm reject, σ>) = exitNC. 

• s = step1, is the start state. 

• F = {exitNC, exitC} is the set of final states. 

4.6.2 Communication 

The best-case communication requirements, as in section 4.4.2, will be formulated. Refer 

to the CNP-ext specification in Figure 13. Assume a maximum of κ  bidders, a maximum 

of br bids received per task announcement, and η  is the number of repeated negotiations 

(a provisionally granted bid is rejected to select another bid) before a bid is confirm 

granted. At step 1, the auctioneer sends out a task announcement to each of the κ  

bidders, and therefore communicates κ  messages. At step 2, the bidders submit 

(communicates) br pre-bids. The protocol proceeds to step 3, which is the point where 

the negotiation repeating commences (see below). Since we are not at the end of 

planning, we ignore the confirm reject speech act. The auctioneer provisionally grants 

its preferred bid and provisionally rejects the other bids, and therefore communicates br 

messages. The bidders associated with the bids that were provisionally rejected proceed 

to step 2 and send an updated pre-bid, and therefore, communicate br – 1 pre-bids, and 

proceed to step 3. The agent associated with the bid that is provisionally granted, will 
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send 1 definitive bid. For the best case communication (compared with PAP in chapter 

5), the definitive bid must be different to the provisionally granted bid 9. Therefore, the 

total number of bids sent after the provisional grants and rejects at step 3 is br – 1 + 1 = 

br. Once a definitive bid is submitted, the protocol proceeds to step 5. We can ignore the 

confirm reject speech act at step 5 as the CNP-ext specification states that it is only used 

to fully reject a definitive bid to discourage bidders from submitting a definitive bid that 

is much worse than the provisionally granted bid. If the auctioneer finds a better pre-bid 

than the definitive bid, then the auctioneer will send the 1 bidder associated with the 

definitive bid a provisional reject at step 5 (proceeds to step 2 to send 1 updated bid), 

send 1 bidder associated with the current preferred pre-bid a provisional grant at step 3 

(proceeds to step 4 to send 1 definitive bid) and sends the other br - 2 bidders associated 

with the rest of the updated pre-bids a provisional reject message at step 3 (proceed to 

step 2 to send br - 2 updated bids). The total number of messages communicated if a 

definitive bid is not confirm granted at step 5 is 1 + 1 + br – 2 = br, which is equal to the 

number of provisional grant/rejects submitted in the initial negotiation (the first of the 

repeated negotiations). After this, the number of definitive bids and pre-bids submitted is 

br again, equivalent to the number of pre-bids and definitive bids submitted after the 

provisional grant/rejects in the initial negotiation (the first of the repeated negotiations). 

Therefore, if this process (provisional grants and rejects, then submission of definitive 

bids and updated pre-bids) repeats η  times, CNP-ext would communicate (br + br) � η  

messages. At the η th repeated negotiation, the definitive bid submitted at step 4 is better 

than all the updated pre-bids sent by bidders, and therefore, at step 5, the auctioneer sends 

the bidder associated with the definitive bid a confirm grant, and sends all the br - 1 

bidders that has unsuitable pre-bids (at step 3) a confirm reject message. Hence, the 

                                                    

9 With the PAP (see chapter 5), this is equivalent to withdrawing the bid, submitting an updated bid (which 

is the “different” definitive bid), provisionally granting the updated bid and having the provisional grant 

accepted (which commit the bidder to the bid in the PAP, and hence is equivalent to the bidder being 

committed to the definitive bid in CNP-ext). If the definitive bid is the same as the provisionally granted 

bid, then no speech acts are required in the PAP. 
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auctioneer sends 1 + br – 1 = br messages. The total communication required by CNP-

ext to allocate a set of tasks is the sum of the number of messages communicated: 

Eq 2: Total communication for CNP-ext = κ  + br + (2 � br) � η  + br 

4.6.3 Memory 

The best-case memory requirements, as in section 4.4.3, will be formulated. Refer to the 

CNP-ext specification in Figure 13. Assume a maximum of κ  bidders and a maximum of 

br bids received per task announcement. At step 1, the auctioneer sends out a task 

announcement to each of the κ  bidders. Therefore, the auctioneer and the κ  bidders store 

1 set of tasks. The protocol proceeds to step 2, where bidders submit br pre-bids, and 

hence the auctioneer stores br received bids and the bidders store their 1 submitted bid. 

Since we are not at the end of planning, we ignore the confirm reject speech act at step 

3. The auctioneer provisionally grants its preferred bid and provisionally rejects the 

other bids. The auctioneer may delete its br – 1 provisionally rejected pre-bids, and thus 

has the 1 set of tasks and 1 provisionally granted pre-bid stored. The bidders that have 

their br – 1 pre-bids provisionally rejected may delete their pre-bids, but do not delete 

their 1 set of tasks because they proceed to step 2 and send br – 1 updated pre-bids. The 

bidder associated with the bid that is provisionally granted, will send a definitive bid, 

and the protocol proceeds to step 5. Therefore, at this stage, the auctioneer has 1 set of 

tasks and br + 1 bids stored, and the bidders have, in total together, κ  set of tasks and br 

bids (the provisionally granted pre-bid is deleted and replaced with the definitive bid). 

The auctioneer may compare the provisionally granted pre-bid and the definitive bid 

before deleting the pre-bid, because in the CNP-ext specification, if the definitive bid is 

much worse than the pre-bid, the auctioneer may confirm reject the definitive bid at step 

5 (we assume this does not occur). There are two possibilities: (i) the auctioneer finds a 

better pre-bid than the definitive bid, or (ii) the definitive bid is still preferred over all 

pre-bids. 

Case (i): The auctioneer will send the bidder associated with the definitive bid a 

provisional reject at step 5, which the auctioneer and bidder will delete the 1 definitive 

bid. CNP-ext proceeds to step 2 for the bidder where the bidder submits 1 updated pre-

bid to replace the provisionally rejected bid, and thus the auctioneer and bidder each store 
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the 1 updated pre-bid. The bidder associated with the current preferred pre-bid receives a 

provisional grant at step 3, and proceeds to step 4 to send a definitive bid. Therefore, the 

auctioneer will store the 1 definitive bid, as well as the 1 pre-bid that was provisionally 

granted (as above), and the bidder will replace its pre-bid with it definitive bid, therefore 

storing 1 bid. The other br - 2 bidders associated with the rest of the updated pre-bids 

receive a provisional reject message at step 3, and proceed to step 2 to send br - 2 

updated bids. Again, the auctioneer has 1 set of tasks and br + 1 bid stored, and the 

bidders have 1 set of tasks and 1 bid stored, and the protocol is back to case (i) or (ii). 

Therefore, it doesn’t matter how many times the auctioneer provisionally rejects the 

definitive bid at step 5, the auctioneer and bidders will require the same amount of 

memory. 

Case (ii): The auctioneer sends the bidder associated with the definitive bid (at step 5) a 

confirm grant, and sends all the br - 1 bidders that has unsuitable pre-bids (at step 3) a 

confirm reject message, and the bidders delete their bids and it associated sub-task. The 

protocol completes. No extra bids or sub-tasks are stored. 

Therefore, the maximum memory is as above – the auctioneer has a maximum of 1 set of 

tasks and br + 1 bid stored, and the bidders have together, in total, 1 set of tasks and 1 bid 

stored. 

4.7 Extended Contract Net Protocol 

4.7.1 Limitations of CNP and CNP-ext to Fischer’s Transportation 

Problem 

Fischer found that CNP was insufficient for his transportation problem (Fischer and Kuhn 

1993). The quantity of resources that a MA requires to be transported may be greater than 

any one TA’s capacity. This results in no TA submitting bids, even though collectively 

they have the capacity to transport the quantity of resources (if the resources can be 

divided among the TA). An example is illustrated in Figure 14. The MA requires 50 

tonnes of fuel transported, but the TA can only transport 40 tonnes, 20 tonnes and 10 

tonnes respectively. The MA is able to decompose the transportation task into a set of 
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transportation tasks with smaller quantities such that the TA are able to bid for the tasks. 

In order to find a suitable decomposition, the MA would require details of the type of TA 

that are available and their available services – i.e. knowledge of the capabilities of the 

agents in the society. This information may not be available (agents may not be willing to 

release this information), may require extensive communication, or due to the dynamic 

nature of the domain (agents come and go and their services are continually changing), 

will be difficult to keep up to date. CNP-ext also suffers from the same problem as CNP 

because bids from the TA (or bidders) must completely achieve the announced task. 

In order to overcome the shortfalls of CNP and CNP-ext for Fischer’s transportation 

domain, Fischer proposed an extension to the contract net protocol, called the Extended 

Contract Net Protocol (ECNP). ECNP does not require the MA to decompose the 

transportation task a priori or possess knowledge of other agent’s capabilities during the 

task allocation process. 

Trans 
50 tn

MA

TA3TA2TA1

Trans 

50 tn

Trans
50 tn

Capacity:  
40 tn

Capacity:  
20 tn

Capacity:  
10 tn

? ??

 

Figure 14. Shortfall with CNP – the quantity of resources that MA requires to be transported is 

greater than any one TA’s capacity. 

4.7.2 Extended Contract Net Protocol 

Fischer’s ECNP specification for his transportation domain is shown in Figure 15. There 

are two primary extensions to the original CNP. First, ECNP allows partial bids, where 

bids do not necessarily have to achieve the complete task that is announced. Therefore, if 

a MA (termed shipping company in Figure 15) announces a transportation task where the 

quantity to be transported is greater than the capacity of any single TA (termed truck in 
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Figure 15), then the TA are able to send a bid with the maximum capacity that they are 

able to perform – a partial quantity bid. After the MA selects a partial quantity bid, the 

MA will re-announce the remaining quantity of the transportation task that is left to 

achieve, and this process continues until the complete transportation task is achieved.  

The second extension to CNP is that the grant and reject speech acts are split into four 

speech acts – temporal grant, temporal reject, definitive grant and definitive reject. 

Once a bid is received in ECNP, the MA may reject the bid using temporal reject, or 

grant the bid temporarily using temporal grant, in which case the TA modify their local 

plan incorporating the bid. Once a collection of partial bids are (or one single bid is) 

found that can completely achieve the transportation task, then the MA decides whether 

the allocation is suitable. If the allocation is suitable, then the MA sends all the TA with a 

temporal granted bid a definitive grant. If the allocation is not suitable, then the MA 

sends the TA with temporal grants a definitive reject, in which case the TA are no longer 

committed to their bids and they revert to their original plan without the bid. In Fischer’s 

specification, an external agent determines whether an allocation is suitable, as shown by 

the “send a bid” and “wait for Grant/Reject” steps in Figure 15 (a). We do not make 

assumptions where this decision is made, whether it is the MA itself or an external agent, 

and thus reduce these two steps to “is allocation suitable”. Additionally, the 

transportation task is received by the MA from an external agent – see “receive order” 

step in Figure 15 (a). We do not make any assumptions regarding how the MA’s 

transportation task came about. 
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Figure 15. ECNP specification for the (a) MA (shipping company) and (b) TA (truck), obtained 

from (Fischer and Kuhn 1993). 

Figure 16 shows ECNP in use for Fischer’s transportation problem: (a) the MA 

announces a task to transport 50 tonnes of some resource, and the TA respond with bids 

that are the maximum capacity that they can transport, which is 40 tonnes, 20 tonnes and 

10 tonnes respectively; (b) the MA prefers the 40 tonnes bid and sends that agent a 

temporal grant for the bid; (c) the remaining task left to achieve is to transport 10 tonnes 

of resources, and hence the MA announces this new task, and receives two bids from the 

TA to transport 10 tonnes of resources each; (d) the MA selects the most preferred bid 

and sends the associated TA a temporal grant for the bid; (e) the complete 

(transportation) task has now been achieved and the MA finds that the final allocation is 

suitable, and therefore sends the two agents that have a bid with a temporal grant a 

definitive grant. 
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Figure 16. Example of ECNP in use. trans = transport; tn = tonnes; cap = capacity. 

ECNP does not require the MA to decompose the task a priori in order to match the 

announced tasks with the services (or capabilities) of agents in the society. Task 

decomposition (plan) for the overall task is obtained during the planning process by 

extracting and assembling the relevant services that are available by the agents (TA) at 

the time for the particular task at hand. Therefore, the MA do not need to possess 

knowledge of other agents’ capabilities a priori in order to find a plan and allocation of 

its task(s). 
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4.7.3 Simulated Trading 

Fischer uses Simulated Trading (ST) in addition to ECNP to improve the solution 

obtained by ECNP. ST uses a market mechanism (stock market, double auction) to 

enable TA to exchange (reallocate) allocated transportation tasks with other TA if the 

exchange is beneficial (saves money). Our focus in the thesis is on the initial allocation of 

tasks from MA to TA, i.e. the type of interaction that ECNP facilitates, and not the 

reallocation of tasks between TA. In section 6.6, we discuss the unsuitability of double 

auction type mechanisms, which ST uses, for the initial allocation of tasks for our 

domain. 

 

4.7.4 ECNP Facilitates Decentralised Greedy Search with Limited 

Backtracking 

In general, ECNP facilitates a decentralised greedy search (or means-ends-analysis 

planning (Newell and Simon 1972)) with limited backtracking – the complete final plan 

can be abandoned if deemed unsuitable. Refer to Figure 17. ECNP commences with the 

MA’s (or the auctioneer’s) initial task announcement, which is t0 in Figure 17. This is the 

overall goal that the MA would like to achieve, and corresponds to the root node of the 

search tree. The bids sent by the TA (or bidders) are the options the MA has to achieve, 

or move it closer to, its goal, and hence correspond to the branches of the search tree. In 

Figure 17, the bids for t0 are branches b1 and b2. The planning is decentralised because 

the TA makes the decision on how (and how much) they will achieve the task at hand, if 

at all, and they present this service (bid) to the MA for consideration. The MA does not 

have any control over the TAs’ decisions, and the TA do not need to provide the MA any 

further information regarding their available services or any other private information. 

By granting a bid, the MA traverses one of the branches of the search tree, selecting one 

of the options it has available to fully or partially achieve its goal. In the example in 

Figure 17, the MA decides to (temporally) grant b2. If the bid only partially achieves the 

goal, then the remaining component of the task (goal) that was not achieved by the bid is 

the new task to be announced by the MA. In the example in Figure 17, the new task is t1, 
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which is the difference between the task t0 and the component of the task that bid b2 

achieves. Again, bids are received (b3 and b4) for the announced task (t1). This process 

continues – the MA greedily selects (grants) the best bid for the current task and proceeds 

to achieve the remaining portion of the task that is not achieved by the bid (announces the 

new task), until the complete task is achieved. In Figure 17, the selection of bid b5 results 

in the complete goal being achieved as the difference between the task t2 and its selected 

bid b5 is null – ‘∅’. 

Backtrack

t0 (root node/goal)

t1 = diff(t0, b2)

b2b1

b4b3

b6b5

t2 = diff(t1, b3)

Goal achieved:
diff(t2, b5) = ∅∅∅∅ ∅∅∅∅∅∅∅∅  

Figure 17. Search tree representing ECNP decentralised greedy search with limited backtracking 

– tasks t in ECNP are the nodes and bids b in ECNP are the branches of the search tree. diff(t, b) 

is a function that returns a task which is the difference between the task t and the portion of the 

task that the bid b achieves. 

The branches (bids) along the path in the search tree from the root node to the null node, 

which have been selected (granted) by the MA, is the plan to achieve the MA’s initial 

goal (task). In Figure 17, the final plan is b2, b3 and b5 to achieve t0. ECNP allows limited 

backtracking because it enables the MA to abandon the complete plan if it is unsuitable 

(by sending the TA with temporally granted bids a definitive reject message), but does 

not allow the MA to backtrack individual bids/branches in the search tree. If the plan is 

suitable, the MA may definitively grant the bids in the plan to secure the plan and 

allocate the tasks (the tasks that the granted bids are to achieve) to the relevant TA. 
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4.7.5 ECNP Using the Protocol Flow Diagram Representation 

Figure 18 illustrates ECNP using our Protocol Flow Diagram representation. Note that 

we use the terms provisional and confirm rather than the terms temporal and definitive, 

respectively. There are three new symbols used to represent ECNP, which are “+”,   “-“ 

and “(x)”. The symbol “(x)” is used when there is greater than one option for the next 

step of the protocol if a particular speech act is used. Therefore, in Figure 18, if the 

provisional grant speech act is used in step (3), then the agents may take option (a) and 

proceed to step (1), or option (b) and proceed to step (4). The option taken may depend 

on certain conditions, and may be dictated by a particular agent. In ECNP, after a 

provisional grant, the MA takes option (e), i.e. goes back to the task announcement, if 

the bid does not completely achieve the task, or takes option (f), i.e. may confirm grant 

or confirm reject the final plan (provisionally granted bids), if the bid does completely 

achieve the task. 

XOR – only 1 speech act 
may occur (one step)
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Bid

Provisional Grant

Provisional Reject

Speech act

Protocol control

Confirm Grant

Confirm Reject

Exit with no contract
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(2)

(3)

(4)

+

+ Spawn new protocol process

- Return to previous protocol 

process

-

New task to announce  in  

new protocol process        

= diff(task, bid)

(a)

(b)

(x)  Take control line option x

Auctioneer

(MA)

Bidder

(TA)

-

Protocol

Steps
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Figure 18. ECNP using the Protocol Flow Diagram representation. diff(task, bid) is a function 

that returns a task which is the difference between the task and the portion of the task that the bid 

achieves. 

The illustration in Figure 19 will be used to explain the use of symbols “+” and “-“, and 

the concept of a protocol process. The protocol representation in Figure 19 is equivalent 

to that in Figure 18, but without the “+” and “-“ symbols, and hence, graphically 
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illustrates the symbols purpose – to describe the control of the protocol execution 

between protocol processes. A single protocol process is the execution of the protocol for 

a single task, and thus contains its associated state variables (such as bids sent/received 

for the task) and the position in the protocol. Therefore in Figure 19, the initial protocol 

process corresponds to achieving task t0, and its n bids (say b0
1, …, b0

n), and the protocol 

process completes when the bids are (provisionally or confirm) granted or rejected for t0. 

In the initial protocol process, if the provisionally granted bid does not achieve the 

complete task, then a new protocol process is spawned (see Figure 19, option (a) in t0’s 

protocol process) for task t1, which is the portion of t0 that the provisionally granted bid 

for t0 does not achieve. The protocol process for t1 has m new bids associated with it (say 

b2
1, …, b2

m). The initial protocol process is halted until the spawned (next) protocol 

process is complete (confirm grant or confirm reject a bid for t1). When this occurs, the 

initial protocol process continues at step (4), shown by the control lines from step (4) of 

the spawned protocol process to step (4) of the initial protocol process in Figure 19, 

which is to confirm grant or confirm reject the provisionally granted bid for t0. Therefore, 

the symbols “+” and “-“ in Figure 18 indicates that control should proceed to the next or 

previous protocol process, respectively, and the control line associated with the symbols 

indicate which step in the next or previous protocol process execution should commence. 

Task Announcement – t0

Bid

Provisional Grant

Provisional Reject

Confirm Grant

Confirm Reject

(a)

(b)

Auctioneer
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Provisional Reject

Confirm Grant

Confirm Reject
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Initial Protocol Process Spawned Protocol Process
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Figure 19. Representation of ECNP without the“+” and “-“ symbols. 
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4.8 ECNP Analysis 

4.8.1 ECNP Protocol Description 

We will define ECNP using the negotiation (or protocol process) based on the description 

presented in section 4.1, and the Protocol Flow Diagram illustration in Figure 18. Since 

the description of ECNP is complicated with new protocol processes spawned due to the 

partial fulfilment of its set of tasks �  ⊆ T, multiple negotiations between an auctioneer 

and bidder may be required to achieve T. We use the subscript x to indicate the xth 

protocol process, and hence xth negotiation, between auctioneer α  and bidder γ in order to 

achieve T. We have a negotiation defined as  

Negx = < α , γ, � x, Σ x, Sx, A, δx, sx, Fx > 

where α  is an auctioneer in the negotiation, and γ is a bidder in the negotiation. Other 

tuples are dependent on the protocol: 

• � x ⊆ T, is the set of tasks that the agents α  and γ are negotiating over in order to 

fully or partially achieve it, and � x+1 ⊆ � x ⊆ … ⊆ � 0 = T. x = 0 denotes the 

negotiation corresponding to the initial (ECNP) protocol process to achieve T.      

x + 1 denotes the negotiation (Negx+1) corresponding to the protocol process to 

achieve � x+1, spawned from the xth protocol process negotiation (Negx) due to the 

partial achievement of � x. 

• Σ x is the set of bids that the agents α  and γ are negotiating over to fully or partially 

achieve the set of tasks � x. 

• Sx = {step1x, step2x, step3x, step4x, step1x+1, step4x-1} ∪ {exitNC
x, exitCx} is the set 

of possible states that are accessible by the protocol in the xth protocol process. 

exitNC
x is the state which exits with no contract and exitC

x is the state which exits 

with a contract. 

• A = Aα ∪ Aγ ∪ Ae is the set of possible speech acts or events where: Aα is the set 

of speech acts associated with the auctioneer; Aγ is the set of possible speech acts 

associated with the bidder; and Ae is the set of events (common to both agents).    
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Aα = ({task announcement}× � ) ∪ ({provisional grant}× Σ ) ∪ ({provisional 

reject}× Σ ) ∪ ({confirm reject}× Σ ) ∪ ({confirm grant}× Σ ); Aγ = ({bid}× Σ ); 

Ae = ∅. 

• δx ⊆ (Sx×A×S) specifies the transitions between the possible states in the xth 

protocol process, such that δ is a function, with δ(step1x, < task announcement, 

ω>) = step2x; δ(step2x, < bid, σ>) = step3x; δ(step3x, < provisional grant, σ>) = 

step1x+1; δ(step3x, < provisional grant, σ>) = step4x; δ(step3x, < provisional 

reject, σ>) = exitNC
x; δ(step4x, < confirm grant, σ>) = exitC

x & step4x-1 (see 

below); δ(step40, < confirm grant, σ>) = exitC0; δ(step4x, < confirm reject, σ>) 

= exitNC
x &  step4x-1 (see below); δ(step40, < confirm reject, σ>) = exitNC

0. 

• sx = step1x, is the start state for the xth protocol process. 

• Fx = {exitNC
x, exitCx} is the set of final states for the xth protocol process. 

(exitC
x & step4x-1) and (exitNC

x &  step4x-1) asserts that the participating agents exit the 

current (xth) protocol process with and without a contract, respectively, and then proceeds 

to state step4 of the previous (x-1th) protocol process. 

4.8.2 Communication 

The best-case communication requirements, as in section 4.4.2, will be formulated. Refer 

to the ECNP specification in Figure 18. Assume a maximum of κ  bidders, a maximum of 

br bids received per task announcement, and m is the depth of the search (number of bids 

to achieve the initial set of tasks). At step 1, the auctioneer sends out a task 

announcement to each of the κ  bidders, therefore communicates κ  messages. At step 2, 

the bidders submit (communicates) br bids. The protocol proceeds to step 3. The 

auctioneer provisionally grants its most preferred bid, and provisionally rejects all the 

other bids, and thus communicates br messages. If the selected bid does not achieve the 

auctioneer’s complete set of tasks, then ECNP proceeds to step 1 (control option (a)) to 

announce the remaining set of tasks that the bid did not achieve, and the same process is 

repeated until the mth bid is provisionally granted at step 3 which does fully achieve the 

set of tasks announced by the auctioneer. Therefore, ECNP has performed step 1 to step 3 
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m times, and thus the total communication at this point is (κ  + br + br) � m. The protocol 

proceeds to step 4 (take control option (b)) where the auctioneer will either send all m 

provisionally granted bids a confirm grant (if the plan is suitable) or a confirm reject (if 

the plan is unsuitable), and thus communicates m messages. The total communication 

required by ECNP to plan and allocate tasks is the sum of the number of messages 

communicated: 

Eq 3: Total communication for ECNP = (κ  + 2 � br) � m + m 

4.8.3 Memory 

The best-case memory requirements, as in section 4.4.3, will be formulated. Refer to the 

ECNP specification in Figure 18. Assume br is the maximum number of bids submitted 

for each announced set of tasks, κ  are the number of bidders that submit bids and m is the 

depth of the search (number of bids required to achieve the auctioneer’s initial set of 

tasks). At step 1, the auctioneer announces its set of tasks to each of the κ  bidders. 

Therefore, the auctioneer and the κ  bidders store the 1 set of tasks. At step 2, the bidders 

submit br bids, and hence the auctioneer stores br received bids and the bidders store 

their 1 submitted bid. The protocol proceeds to step 3. The auctioneer provisionally 

grants its most preferred bid, and provisionally rejects all the other bids. Therefore, the 

auctioneer and bidders may delete the rejected bids and its associated task. The 

auctioneer has stored a maximum of 1 set of tasks and br bids, and the κ  bidders have 

stored together a maximum of κ  set of tasks and κ  bids, and only the bidder that had its 

bid provisionally granted still has the set of tasks and its bid stored. If the selected bid 

does not achieve the auctioneer’s complete set of tasks, then ECNP proceeds to step 1 

(control option (a)) to announce the remaining set of tasks that the bid did not achieve, 

and the same process is repeated. For the next announced set of tasks, again the 

auctioneer will send its set of tasks, receive br bids, and therefore the auctioneer will 

have 2 sets of tasks and br+1 bids in memory. The bidders will have stored the new sets 

of tasks and its bids,  in addition to the previously granted bid and its associated set of 

tasks. Therefore, the bidders have stored together κ  + 1 set of tasks and κ  + 1 bids. When 

bids are provisionally granted/rejected, the auctioneer deleted the rejected bids and the 

bidders associated with the rejected bids will delete their set of tasks and its bid. Again, if 
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the bid does not fully achieve the set of tasks, the process repeats, until the m
th bid is 

provisionally granted at step 3 which does fully achieve the set of tasks. The auctioneer 

would have a maximum of m sets of tasks and br+m-1 bids stored in memory (just before 

the provisional reject deleted br – 1 bids for the final set of tasks). The total maximum 

memory required for all the κ  bidders together is κ  + m - 1 sets of tasks and κ  + m - 1 

bids. After the provisional reject, the auctioneer deletes the br – 1 rejected bids, and all 

but one bidder delete their set of tasks and its bid. The protocol proceeds to step 4 (take 

control option (b)) where the auctioneer will either send all m provisionally granted bids a 

confirm grant (if the plan is suitable) or a confirm reject (if the plan is unsuitable). 

Therefore, the total maximum memory required for the auctioneer is m sets of tasks and 

br + m – 1 bids, and the total maximum memory requirements for all the κ  bidders 

together is κ  + m - 1 sets of tasks and κ  + m - 1 bids. 

4.9 ECNP Shortfalls for Our Transportation and General 

Planning Problems 

There are a few shortfalls with ECNP for our particular transportation problem (Perugini, 

Lambert et al. 2003), and hence to our general planning problem. We require a protocol 

that can facilitate agent planning and task allocation in a decentralised, dynamic and open 

environment, within a many-to-many setting (open-market). By many-to-many setting, or 

open-market, we mean that there are many agents, the MA/auctioneers, acquiring 

services (or in the reverse case, could be providing goods or services) from many services 

providing (or requesting) agents, the TA/bidders, and many TA providing services to (or 

requesting goods and services from) many MA, simultaneously (see Figure 20). We 

require a protocol that allows the MA to find the suitable plan and allocation of its task(s) 

(i.e. goods or services provided or requested) to TA in this complex environment. 
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Auctioneers / MA

Bidders / TA  

Figure 20. The complex and dynamic many-to-many setting/interaction. 

The many-to-many setting, in addition to the dynamic (organisations) and open nature of 

the environment, increases the complexity and dynamics of the interaction required for 

planning and task allocation. From the perspective of the TA, MA tasks (or business 

goals) are continually changing, i.e. new tasks emerge and old tasks are withdrawn, for 

three reasons. First, due to the dynamics of organisations, their business goals may 

change. Second, due to the open environment, agents may enter or leave the system at 

any time, and thus bring new tasks and withdraw old tasks, respectively. Finally, an agent 

may acquire a service (bid) which partially achieves a task, and thus creates a new task to 

be achieved. If newly created task cannot be achieved, then the corresponding bids and 

tasks must be withdrawn. 

From the perspective of the MA, TA bids (services or capabilities) are continually 

changing, i.e. new bid emerge and old bids are withdrawn, even during the MA’s 

planning process (of finding suitable bids to achieve their tasks), for three reasons. First, 

due to dynamics of organisations, they may acquire new, and dispose of old, capabilities, 

which therefore, change the services (bids) that they can provide. Second, due to the 

dynamic nature of the environment, agents may enter or leave the system at any time, and 

thus bring new bids and withdraw old bids, respectively. Finally, due to the many-to-

many setting, a bid that was available to a MA could be acquired by another MA, and 

thus the bid is no longer available for the MA. Alternatively, a bid acquired by a MA 

could no longer be required and released, and therefore, the bid is now available to other 

MA. In addition to the complexity of the dynamics, agents must manage many 

interactions from many agents simultaneously.  
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The applications we required a protocol to facilitate planning for are of greater 

complexity than Fischer’s transportation problem. The military transportation 

requirements for MALT are global; hence we term the problem global transportation 

scheduling. We require a large quantity of resources is to be transported on a global scale 

– between countries, states and cities.  Thus, a single transport asset is unable to transport 

the full quantity of resources the complete distance, or route. This results in TA 

submitting partial quantity and partial route bids for a transportation task, compared with 

just partial quantity (full route) bids with Fischer’s transportation problem. This increases 

the complexity because we have two dimensions (quantity and route) of partiality to 

consider. Time constraints associated with the transportation task and the route are 

dependent on each other, adding a third temporal dimension, which also results in time-

space issues that need to be resolved during planning. For example, consider the task of 

transporting fuel from Melbourne to Sydney. If a TA bids to move the fuel from Canberra 

to Sydney starting at time t, and the bid is granted, then there may not be a single TA, or 

a collection of TA, that can transport the fuel from Melbourne to Canberra by time t, or at 

all. The greater complexity (and search space) results in a greater likelihood of an 

infeasible or bad solution being encountered in planning. Therefore, we require a more 

flexible planning protocol for these complex problems than the greedy planning with 

limited backtracking provided by ECNP. 

In light of the complexity and dynamics of our agent domain described above, three 

shortfalls with ECNP for our planning requirements are: 

• Backtracking – Due to the increased complexity of the applications, and thus 

likelihood that an infeasible (or bad) solution may be encountered, backtracking is 

required. The protocol needs to be able to reject a granted bid that results in an 

infeasible (or bad) solution, and reselect a bid for the associated task to replace 

the rejected bid. ECNP’s specification does not accommodate backtracking 

because it does not allow the MA to reject individual bids that were previously 

granted. 

• Multiple MA/auctioneers and the eager bidder problem – ECNP (and CNP) 

suffers from the eager bidder problem (Schillo, Kray et al. 2002), which could 
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limit the TA’s ability to bid for more than one MA simultaneously. When TA bid 

for a task, they are committed to the bid even though the bid has not been granted, 

and hence cannot make the same or a conflicting bid to other MA. Having to wait 

for negotiations to complete with one MA in order to make a bid to another can 

result in the TA losing potential bid allocations (contracts) with other MA. 

• Dynamic bids and tasks – ECNP does not consider dynamic bids and tasks. Bids 

and tasks that are sent may no longer be available, and are therefore withdrawn, 

when agents may attempt to use them. New bids by TA could emerge for a MA 

during its planning, and thus the TA should be able to send updated bids. The 

ECNP specification does not allow for withdrawn bids and tasks, and updated 

bids. 

In addition to these shortfalls, a protocol for decentralised planning could involve 

extensive communication, particularly in a large system (many agents) for a large 

planning problem. Therefore, minimising the amount of communication required in the 

protocol that facilitates decentralised planning is another primary concern. To follow, we 

present the Provisional Agreements Protocol (PAP), which is an extension of ECNP, 

developed to overcome the shortfalls of ECNP to our planning (and hence, global 

transportation scheduling) problem10. Note that details regarding our global transportation 

problem and it implementation are discussed in chapter 7. 

                                                    

10 Note that ECNP was not desiged for multiple auctioneers or the combinatorial auction application we use 

to evaluate PAP (Chapter 6). 
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Chapter 5 

5 Provisional Agreement Protocol 

This chapter presents the Provisional Agreement Protocol (PAP) (Perugini, Lambert et al. 

2003; Perugini, Lambert et al. 2003; Perugini, Lambert et al. 2004; Perugini, Lambert et 

al. 2004; Perugini, Lambert et al. 2005). PAP is an agent protocol that facilitates planning 

and task allocation in a decentralised, dynamic and open environment within a many-to-

many setting and involves contracting, as required by the modern military logistics 

domain. PAP allows agents to acquire and assemble services from other agents, within 

the complexity and dynamics of an open market, in order to achieve their logistics goals. 

PAP is an extension of Fischer’s Extended Contract Net Protocol (ECNP), overcoming 

its shortfalls for our transportation and planning domains. Formal analysis of PAP is 

presented. We show that PAP has greater flexibility with planning (performs a 

decentralised depth-first search) and reduced communication (under certain 

circumstances) over CNP, ECNP and CNP-ext presented in the previous chapter. PAP 

does not fall into livelock or deadlock. 

5.1 Protocol Specification 

5.1.1 Protocol Policies 

Agents in PAP implement commitment, persistence and bidding policies. 

Commitment Policy: 

The commitment policy states that bidders are not committed to submitted bids unless 

they are provisionally granted, and the grant is accepted. This allows the bidders to bid 

many conflicting bids to different auctions concurrently, and prevents the eager bidder 

problem of waiting for rejection of a bid sent to one agent before submitting a bid 

elsewhere. Therefore, auctioneers do not need to reject bids, but must act quickly in order 

to secure the bids – first in first served. Auctioneers are only committed to a bid when 
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they send a confirm grant for it, and are therefore able to reject a provisionally granted 

bid, in which case the bidder is no longer committed to the bid. 

Persistence Policy: 

PAP allows backtracking, and thus agents store received bids and task announcements for 

future use. Since bids and tasks may no longer be available at a later time when agents 

decide to use them, the persistence policy states that agents’ tasks and bids are considered 

persistent unless they reveal otherwise, and therefore communication is not required for 

unavailable bids and tasks. Hence, agents will only discover that tasks and bids are 

unavailable, or (provisionally) withdrawn, after they try to bid for it, or grant it, 

respectively. This allows MA to not have to reject bids that they do not intend to use, 

allowing bids to remain available later if required during backtracking. 

Bidding Policy: 

There are a few components to the bidding policy. A bidder may bid for a task anytime 

that it believes the task is available – even after the deadline as the task, and hence its 

bids, may be revisited during backtracking. Only one bid may be submitted for a task per 

bidder, which is the bid that the bidder believes the auctioneer most prefers, and that can 

fully or partially achieve the task. Bidders can determine which of their bids the 

auctioneer prefers because the auctioneer supplies bidders with a bid evaluation function 

with the task announcement, which is a function the auctioneer will use to evaluate the 

bids for the task. Bidders send an updated bid, if possible, if their worst submitted bid is 

either rejected or attempted to be provisionally granted but is (provisionally) withdrawn, 

to replace the unwanted or unavailable bid, respectively. An updated better bid is sent 

when new opportunities arise and a bid becomes available that is better than the worst 

submitted bid for a task. The auctioneer should therefore have, at any time, all the 

bidders’ best bids through to its worst submitted bid for a task (if it’s in the bidder’s 

interest to do so). Bid replacements are only sent when the worst bid is rejected or 

withdrawn because if the auctioneer is not interested in the bidder’s worst submitted bid, 

then it would not be interested in an updated bid that is the same or worse. 
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5.1.2 The Protocol 

Figure 21 illustrates PAP using our Protocol Flow Diagram representation, and Table 1 

presents the meaning of the speech acts and events in the protocol. 

Table 1. Meaning of the speech acts and events used in PAP between the auctioneer (or 

MA) and the bidder (or TA). 

Speech Act or Event Meaning 

Task Announcement The auctioneer requests bids (from bidders) to partially or fully achieve a task. 

Bid The bidder sends its desire (a bid) to fully or partially achieve the task, but is not 

committed to the bid. 

No Communication There is no communication between the auctioneer and bidder at the particular step in the 

protocol. 

Provisional Grant The auctioneer would like to provisionally accept a bid for the partial or full execution of 

the task (so will not be committed to the bid, and thus may reject the bid later if it is not 

suitable), and therefore asks the bidder to accept the grant and commit to the bid (i.e. the 

auctioneer asks the bidder to formally offer the bid with commitment). 

Provisional Grant 

Accepted 

The bidder accepts the provisional grant (i.e. the bidder formally offers the bid with 

commitment) and is therefore committed to the bid. The auctioneer is not yet committed to 

the bid until the auctioneer accepts the contract (sends a confirm grant) for the bid, and 

can therefore reject the bid. In the acceptance, the bidder specifies some deadline by which 

the auctioneer must commit/grant or reject the bid, after which time the bidder may 

decommit. 

Provisionally Withdrawn The bidder’s bid is not available at the moment (or does not currently desire to perform the 

bid), but may become available sometime in the future. 

Withdrawn From the bidder – the bidder’s bid is no longer available (or does not desire to perform the 

bid) now or in the future. 

From the auctioneer – the task that the bidder submitted a bid for is no longer available 

(no longer needs to be achieved). 

Provisional Reject The auctioneer informs the bidder that its bid is not currently suitable for the task, and 

therefore may decide to grant the bid later if it discovers otherwise. If the bid is 

provisionally granted, then the bidder is no longer required to be committed to the bid. 

Backtracking The current task is the portion of the previous task that its partial bid did not achieve. The 

partial bid granted for the previous task that created the current task is not suitable as the 
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current task cannot be achieved, or cannot be achieved well. The auctioneer will revert 

back to the previous task by rejecting the partial bid that was granted for the previous task, 

in an attempt to grant another (more suitable) bid to achieve the previous task. 

Confirm Grant The auctioneer confirm grants the bid, and hence formally accepts the bid to partially or 

fully achieve the task. The auctioneer and bidder are committed to the bid (have a 

contract) and cannot decommit (without penalty). 

 

XOR – only 1 speech act 

may occur (one step)

Task Announcement

Bid *

No Communication

Provisional Grant

Withdrawn

Provisional Reject

No Communication

Speech act

Protocol control

Provisional Grant Accepted

Provisionally Withdrawn

Withdrawn

Confirm Grant

Provisional Reject

Exit with no contract

Control lines joined

Protocol

Steps

(1)

(2)

(3)

(4)

(5)* Can occur anytime

during the protocol

Backtracking

+

-

+ Spawn new protocol process

- Return to previous protocol 

process
-

New task to announce in 
new protocol process        

= diff(task, bid)
(a)

(b)

(c)

(d)(e)

(f)

(x)  Take control line option x

Auctioneer

(MA)

Bidder

(TA)
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Figure 21. PAP using the Flow Diagram Representation. diff(task, bid) is a function that 

returns a task which is the difference between the task and the portion of the task that the 

bid achieves. 

The protocol contains five steps, and operates as follows (see previous chapter for 

discussion on the concept of a protocol process): 

Step 1: The auctioneer broadcasts a Task Announcement to all suitable bidders. The 

announcement contains a set of tasks T, a bidding deadline d which is the earliest 

time that the auctioneer may select a bid for the task, and bid evaluation function  

f : ∑ → � for the set of bids ∑. f(b) informs bidders how the auctioneer will 

evaluate bid b, so bidders can submit their best bid for T. An example is T = {t1, 
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t2, t3, t4, t5}, where ti are sub-tasks to be performed to achieve the overall task T, d 

= 5 seconds, f(b)= min[price(b) / number-of-sub-tasks(b)], i.e. want to minimise 

the price (p) paid per unit task. Control then proceeds to step 2. The initial task is 

T, which the initial protocol process attempts to achieve. If a partial bid is selected 

for task T (in the following protocol steps), then a new protocol process is 

spawned to achieve the remaining task T+  that is not achieved by the partial bid, 

commencing at step 1. 

Step 2: Bidders may submit one (best/next-best) Bid b that they believe can partially or 

fully achieve the task, or submit nothing – No Communication. The initial bid 

submitted for the task should be the bidder’s best bid (determined by f(b)). If this 

step is arrived at from a following step (a submitted bid is rejected or withdrawn), 

then the updated bid submitted should be the bidder’s next best bid. If no 

communication occurs, then the protocol either exits for the bidder for that task 

(path (a) in Figure 21) or proceeds to step 3 (path (b) in Figure 21) if the bidder 

still has bids submitted which have not been provisionally granted 11. The 

auctioneer proceeds to step 3 if no bids are submitted (path (b) in Figure 21). 

Whether a bid is submitted or not, if an opportunity arises later for the bidder to 

submit an initial bid (if no communication previously) or a bid that is better than 

its worst submitted bid (updated better bid), then bidder may submit the bid at 

anytime during the protocol. After a bid is submitted, control proceeds to step 3.  

An example of bids is: b1 = {t1, t4}, p1 = $10, f(b1) = 10/2 = 5; and b2 = {t2, t4, t5}, 

p2 = $60, f(b2) = 60/3 = 20. Since f(b1) < f(b2), b1 is preferred by MA over b2. 

Therefore, b1 should be sent by the bidder. 

Step 3: After the bidding deadline d, the best bid for the task T, based on f(b), is given a 

Provisional Grant and control proceeds to step 4. The provisional grant is 

supplied with a provisional grant acceptance deadline (pgad) by which the bidder 

must accept the provisional grant, otherwise the auctioneer may no longer 

                                                    

11 This may occur if the agent arrives at this step from a following step (bid rejected or withdrawn), and 

therefore may have already submitted other bids not used by the auctioneer (e.g. updated better bids). 
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consider the bid (assume its withdrawn). If a submitted bid is unsuitable, the 

auctioneer sends a Provisional Reject, and the bidder proceeds back to step 2, 

allowing it to send an updated bid to replace the rejected bid. The reject is 

provisional so the auctioneer can grant it again later if it wants to – there is no 

benefit in “fully” rejecting the bid. Auctioneers implement their own strategy for 

dealing with provisionally rejected bids – when, or if, they should grant the bid 

again (see below). If a bid is sent for a task that is no longer available (e.g. already 

achieved), then the auctioneer sends a Withdrawn message, and the bidder can 

delete the task so it does not consider the task for any further bids. Bidders which 

do not have their bids granted, receive No Communication and exit the protocol 

after some length of time after which the bidder is confident that the bid will not 

be required. If no bids are received by the deadline, the auctioneer assumes no 

solution exists for the task, and thus requires Backtracking or can accept the 

current partial solution (see step 5). If this occurs with the initial (root) task, then 

no solution exists, so path (c) in Figure 21 is taken and the process exits. 

Otherwise, for task T, path (d) in Figure 21 is taken to step 5 of the previous 

protocol process associated with task T
- (the protocol process for T was created 

from a partial bid selection for task T-). Even if bids are received, the auctioneer 

may backtrack if it is not satisfied with the current plan. 

Step 4: The bidder may Accept the Provisional Grant, in which case it becomes 

committed to the bid, and cannot decommit without penalty. The bidder specifies 

a confirm deadline cd by which the auctioneer must confirm grant the bid, 

otherwise the bidder may de-commit. If the task T is completely achieved, path (f) 

in Figure 21 is taken to step 5. Otherwise, path (e) in Figure 21 is taken to step 1 

(of a new spawned protocol process for T+), and the new task T+ to announce is 

the remaining portion of the task T not achieved by the bid. In our example with  

T = {t1, t2, t3, t4, t5}, if b1 = {t1, t4} was selected the new task would be T+ = T \ b1 

= diff(T, b1) = {t2, t3, t5}. The bidder may not accept the provisional grant, and 

send a Provisionally Withdrawn or Withdrawn message instead, or submit 

nothing by the pgad deadline. A provisionally withdrawn message informs the 

auctioneer that the bid is not available at the moment, but may become available 
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later – e.g. conflicts with  another bid that is provisionally granted, and hence may 

be rejected later, making the bid available again. A withdrawn (or no) message 

informs the auctioneer that the bid is not available now or in the future – e.g. 

conflicts with another bid that is confirm granted. Auctioneers may discard 

withdrawn bids. Control proceeds to step 2 to allow the bidder to submit an 

updated bid to replace the (provisionally) withdrawn bid. Auctioneers and bidders 

may implement their own strategy for dealing with provisionally withdrawn bids 

– when, or if, to grant or resubmit the bid again (see below). 

Step 5: If control arrived from step 3 (from backtracking in the following protocol 

process for task T+), the auctioneer has two choices for task T. It can accept the 

current solution, even if it has not fully achieved the task (which is allowed in the 

combinatorial auction application), and Confirm Grant all the provisionally 

granted bids (in this protocol process for T, and all previous protocol processes, 

for tasks T-, T--, etc.), which allocates and secures the bids (forms a contract). 

Otherwise, if the auctioneer believes the solution is not suitable, then it can 

backtrack by Provisionally Rejecting the bid for the task T, in which case the 

bidder is no longer committed to the bid. Control then proceeds to step 2 and 3, 

where the bidder that had its bid rejected may send an updated bid for T, and the 

auctioneer can then select a new bid for T 
12. If control arrived from step 4, then 

the task was completely achieved, so all the provisionally granted bids may be 

Confirm Granted. If the auctioneer’s task T is completely achieved with 

provisionally granted bids but the solution is not suitable (a bad plan has resulted), 

the auctioneer may backtrack if it desires, as explained above. Once confirm 

granted, both the auctioneer and bidders are committed to the bids, and thus 

cannot decommit without penalty. If a bidder with a provisionally granted bid 

                                                    

12 In our example, if backtracking task T+ (e.g. because the auctioneer received no bids for T+), then reject 

b1 for T, where T+ is associated with the following protocol process that backtracked and T is associated 

with the current protocol process. The bidder may then send an updated bid b2 for T to replace its 

provisionally rejected bid b1, and auctioneer may provisionally grant the new bid b2 for T. 
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does not receive a confirm grant before deadline cd, it may de-commit from the 

bid. 

In the current PAP implementations, agent strategies for dealing with provisionally 

rejected and provisionally withdrawn bids are to discard them, and hence not used them 

again. This is one of the conditions that ensure convergence, and results in PAP 

performing a decentralised depth first search (see section 5.3.4). Also, the provisional 

grant acceptance deadline pgad and confirm deadline cd are large enough not to affect 

planning, but small enough to ensure protocol robustness (see the following sections). 

Therefore, we can ignore pgad and cd in the implementations that are presented. The 

auctioneer waits for the deadline d at step 3 even during bid updates, i.e. after a bid is 

rejected or withdrawn, as the update may be better than the currently held bids. 

We assume that agents may be cooperative or self-interested. Additionally, we assume 

that bidder agents bid their true valuations, and have no preference for having one 

submitted bid granted over another submitted bid. Their aim is to have their bids 

(services/requests) granted. 

5.1.3 PAP Example in the Transportation Domain  

The operation of PAP and its various features will be illustrated by applying it to the 

transportation problem of finding a route for the transport of resources (simplified for 

illustrative purposes). Note that since we are applying PAP to the transportation domain, 

we refer to the auctioneers as Manager Agents (MA) and bidders as Transport Agents 

(TA). The map of Australia in Figure 22 provides a reference for the locations used in the 

transportation example. 
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Figure 22. Map of Australia (obtained online from www.flagfocus.info). 

The overall transportation task in this example is to transport resources from Perth to 

Cairns – represented as T(Perth, Cairns). This is shown in Figure 23 (a), where a MA 

announces (Task Announcement) the task t0 to the TA. We assume that the MA wants 

to minimise the evaluation function f, which is sent to the TA with the task announcement 

(not shown). In this illustrative example, we do not show how f is obtained, rather we just 

state the value of f(b) associated with each bid b, which we will call the f-value, to 

indicate which bid the MA prefers – the MA prefers the bid with the smallest f-value. To 

the right of the figure is a search tree that illustrates the search process that the MA 

undergoes in finding a suitable plan, which in Figure 23 (a) consists of just the root node. 

There is another MA present in Figure 23 (MA2), as TA may interact with more then one 

MA simultaneously. 
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Figure 23. PAP example with (a) Task Announcement of task t0. (b) Bid b1 and b2 from 

TA1 and TA2, respectively. (c) Provisional Grant of b2 and Provision Grant is Accepted. 

MA’s search tree is to the right of the figure. The 
?

 indicates a provisional grant. 

In Figure 23 (b), both TA1 and TA2 submit bids b1 and b2 respectively, to (partially) 

achieve t0. Since b2 has a smaller f-value, MA prefers b2 over b1, and therefore, 

provisionally grants b2 (Figure 23 (c)). The provisional grant is accepted (Provisional 

Grant Accepted) by TA2. The search tree now consists of the root node t0, and branches 

b1 and b2, with option b2 selected to achieve t0. The ?  near b2 in the search indicates 
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that it has been selected, but the MA is still unsure if the bid will satisfy its needs, and 

thus MA may reject b2 later if the bid is found unsuitable. 
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Figure 24. Example continued – (a) Task Announcement of t1 (portion of t0 that bid b2 

did not achieve), then TA Bid b3 and b4. (b) b2 Provisionally Granted, Provisional Grant 

is Accepted, then Task Announcement of task t2. (c) TA1 Bid b5 to MA, but also to MA2 

(in a separate interaction), TA2 bids nothing (No Communication), as it has no suitable 

bids. 
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The example continues in Figure 24 (and continues through to Figure 29). Figure 24 and 

Figure 25 illustrate PAP’s ability to allow TA to interact with multiple MA 

simultaneously, in addition to dynamic bids (bids being withdrawn) and backtracking. In 

Figure 24 (a), since the provisionally granted bid b2 (to transport resources from Perth to 

Adelaide) did not completely achieve the task t0 (to transport resources from Perth to 

Cairns), the MA announces the portion of the task that b2 did not achieve, which is t2 (to 

transport resources from Adelaide to Cairns). MA receives bids b3 and b4 to (partially) 

achieve t2. In Figure 24 (b), MA provisionally grants b4, which is accepted by TA2, and 

then announces t2, the portion of the task t1 that the bid b4 did not achieve. In Figure 24 

(c), TA1 bids b5 to (fully) achieve t2. While this occurs, TA1 is also interacting with MA2, 

and also sends the bid b5 to MA2 (e.g. to achieve some task for MA2, this full interaction 

is not shown), which is allowed as TA1 is not committed to its bid b5 (it has not been 

provisionally granted). 
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Figure 25. Example continued – (a) MA2 (i) Provisionally Grants or (ii) Confirm Grants 

b5. (b) MA tries to Provisionally Grant b5, but it is no longer available – it is (i) 

Provisionally Withdrawn or (ii) Withdrawn, respectively. (c) No bids to achieve t2, so 

MA Backtracks to t1 by Provisionally Rejecting b4, then Provisionally Granting b3 for t1, 

which the Provisional Grant is Accepted. 
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In Figure 25 (a), MA2 decides to either (i) provisionally grant or (ii) confirm grant (after a 

initially provisionally granting) bid b5. Therefore, TA1 is committed to performing b5 for 

MA2. In Figure 25 (b), MA decides to provisionally grant b5, but since it is no longer 

available for MA, TA1 sends MA a (i) provisionally withdrawn message (indicated in 

the search tree by ?××××) or (ii) withdrawn message (indicated in the search tree by ××××). As 

previously mentioned our current implementation of PAP discards provisionally 

withdrawn bids to ensure convergence, even though they may become available again at 

a later time. Hence, in both cases (i) and (ii) the branch b5 is deleted from the search tree 

(i.e. the path through b5 is no longer an option), as shown in Figure 25 (c). In this 

example, TA1 does not possess an updated bid for task t2 to replace the (provisionally) 

withdrawn bid b5, and thus there is no communication. 

In Figure 25 (c), the MA has no bids to achieve t2, and therefore assumes that it can not 

be achieved (encounters an infeasible solution). The MA decides to backtrack by 

provisionally rejecting the bid b4 (indicated in the search tree by ?××××) for the previous 

task t1, and provisionally granting another bid option b3 for t1, which is accepted. Once 

again, provisionally rejected bids (and their associated task) are discarded in our current 

implementation of PAP to ensure convergence, even though the MA may want to use it 

again at a later time. 

The diagrams in Figure 26 to Figure 28 contain an ordered list of bids for each TA for 

task t3, labelled Bids(t3), which appears directly to the right of each TA. The list is 

ordered by the f-value, where Bids(t3) = {<bid1, f-value1>, …, <bidn, f-valuen>}, where f-

value1 ≤ f-value2 ≤ … ≤ f-valuen, hence bid1 is the best (MA’s preferred) bid. The lists 

will be used to explain PAP’s updated bid and updated better bid features. 

Figure 26 illustrates PAP’s ability to reject and extract new bids from a TA if a submitted 

bid is found to be unsuitable when received (and not due to backtracking as described in 

Figure 25). In Figure 26 (a), the MA announces task t3, which is to transport resources 

from Alice Spring to Cairns, and receives bids b6 and b11 from TA1 and TA2, 

respectively. It can be seen from the ordered list associated with TA1 and TA2 that b6 and 

b11, respectively, are the best bids (based on f-value) for the task t3. In this case, MA finds 

TA1’s bid b6 unsuitable (e.g. say MA has a business policy not to transport resources 
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through Mackay), and in Figure 26 (b), MA provisionally rejects b6. TA1 decides to 

send an updated bid b7, which is the next best bid in its ordered list of bids for t3, to 

replace its rejected bid b6. TA1 sends the update because even though TA1’s best bid was 

not suitable, its second best bid may still be better than other bids sent by other TA. In 

this example, this is the case as b7 has an f-value of 12, and b11, the only other bid MA 

has for t3, has an f-value of 20. Therefore, in Figure 26 (c), MA provisionally grants b7 

and the provisional grant is accepted.  

Figure 27 illustrates PAP’s ability to allow TA to send updated bids after having bids 

rejected during backtracking. This provides TA with another chance of having a bid 

allocated, and ensures the MA has the best selection of bids for its task. In Figure 27 (a), 

after announcing task t4, the TA do not submit any bids (no communication) by the 

deadline. The MA assumes that the task t4 cannot be achieved (encounters an infeasible 

solution), and decides to backtrack in Figure 27 (b). Bid b7 is provisionally rejected and 

again, TA1 submits its next best bid for task t3, which is b8 (as indicated by TA1’s ordered 

list of bids for t3). The MA now has two bids for its task, which are b8 with an f-value of 

15 and b11 with an f-value of 21. The updated bid b8 is the preferred bid for MA, and thus 

is provisionally granted in Figure 27 (c), and the provisional grant is accepted. If an 

updated bid is not allowed in this case, then the MA would not able to select the optimal 

bid for task t3. 
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Figure 26. Example continued – (a)Task Announcement of t3, and TA send Bids b6 and 

b7. (b) MA believes b6 is unsuitable so Provisionally Rejects it, and TA1 sends an updated 

Bid to replace it – next best bid in list Bids(t3). (c) b7 is Provisionally Granted and the 

Provisional Grant is Accepted. Bids(t3) is a function that returns an ordered list of 

suitable bids for task t3 – list shown in figure as {<bid, f-value>, …}. 
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Figure 27. Example continued – (a) Task Announcement of t4 but TA have no suitable 

bids to submit (No Communication). (b) MA decides to backtrack, so Provisionally 

Rejects b7, in which case TA1 sends an updated Bid b8 (its next nest bid). (c) b8 is 

Provisionally Granted, and the Provisional Grant is Accepted. 

Figure 28 illustrates PAP’s ability to keep MA’s tasks up-to-date with TA’s best possible 

bids, and even if a bid has been provisionally granted for the task the MA may benefit 

from this. In Figure 28 (a), after bid b8 had been provisionally granted for task t3 (Figure 
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27 (c)), an opportunity arose for TA2 to submit a better bid (b16) for t3 than the previous 

bid b11 that was sent (e.g. because TA2 acquired new capabilities or a TA2’s bid b16 had 

been freed (rejected) by another MA). According to the bidding policy, if a better bid 

arrises, then the TA sends this bid – an updated better bid. In Figure 27 (b), MA 

announces task t5 but receives no bids for t5 (no communication). MA assumes that no 

solution is possible for t5, and therefore in Figure 27 (c) backtracks by provisionally 

rejecting b8. Since TA1 has no more bids for t3 (indicated by its ordered list of bids for 

t3), it cannot send an updated bid to replace the rejected bid. MA has two bids available 

for selection, which are b16 with an f-value of 5 and b11 with an f-value of 21. b16 is the 

preferred bid, and therefore it is provisionally granted, and the provisional grant is 

accepted. If TA1 did not send the updated better bid (b16) for task t3, even though MA 

had already (provisionally) selected a bid for t3, then MA would not be able to make the 

optimal choice (at the time) for task t3 after backtracking. 
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Figure 28. Example continued – (a) Updated better Bid b16 is sent for task t3. (b) Task 

Announced for t5, but no bids submitted (No Communication). (c) MA backtracks by 

Provisionally Rejecting b8, and then Provisionally Grants b16, which the Provisional 

Grant is Accepted. 

Figure 29 illustrates how MA completes its planning and secures its distributed plan by 

allocating the relevant tasks, and the ability for PAP to allow MA to withdraw tasks. In 

Figure 29 (a), since the provisionally granted bid b16 fully achieves its task t3 (diff(t3, b16) 

= ∅), the complete task t0 has been achieved. In Figure 29 (b), the MA confirm grants 
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all the bids that it had provisionally granted (b2, b3 and b16) in order to secure the 

distributed plan and allocate the relevant tasks (i.e. the task that the bids achieve) to the 

respective TA. The MA is now committed to the bids, and neither MA nor TA can 

decommit (without penalty). The final plan to achieve task t0 of transporting resources 

from Perth to Cairns is: b2 (transport resources from Perth to Adelaide), b3 (transport 

resources from Adelaide to Alice Springs) and b16 (transport resources from Alice 

Springs to Cairns). The final plan can be seen by the thick lined path (with ticked bids) in 

MA’s search tree in Figure 29 (b). 

In Figure 29 (c), after the MA has completed planning, an opportunity arises for TA2 to 

submit a better bid for task t1 than any bids it has previously sent for t1. Since t1 has been 

achieved, and thus is no longer available for achieving (assume the contract for t1 cannot 

be terminated in this example), the MA sends a withdrawn message. TA2 can therefore 

remove the task t1 from it memory and not consider it for anymore updates. 

Note that in the above illustrative example, we purposely use examples where the partial 

bid that is granted results in one remaining task that must be achieved. For example, for 

the task T(Perth, Cairns), the bid b = T(Perth, Alice Springs) results in one remaining 

task  T(Alice Springs, Cairns) that must be achieved. Partial bids could be accepted by 

the MA that result in split tasks. Thus, for the task T(Perth, Cairns), a bid b = T(Adelaide, 

Alice Springs) may be selected, resulting in two remaining tasks that must be achieved. 

These are T(Perth, Adelaide) and T(Alice Springs, Cairns). This issue is further discussed 

in chapter 7. 
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Figure 29. Example continued – (a) Bid b16 fully achieves it task t3, therefore complete 

task t0 is achieved. (b) MA Confirm Grants (allocates) all the provisionally granted bids 

– b2, b3 and b16. The distributed plan is secured. (c) TA2 sends an updated better Bid b25 

for task t1, and MA replies with a Withdrawn message (as the task is achieved). 
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5.2 Protocol Features 

5.2.1 Greater Planning Flexibility 

PAP allows backtracking of single bids, overcoming the shortfall with ECNP to provide 

greater flexibility with planning. PAP can address problems which require backtracking, 

such as our transportation domain which may encounter an infeasible solution during 

planning and must backtrack in order to find a solution. Other domains may also desire 

backtracking, for example, when a bad solution is encountered during planning. 

Backtracking can be used to search for a better solution. Later, we will show that PAP 

runs a decentralised depth-first search. 

PAP is able to address planning and task allocation problems that CNP, CNP-ext and 

ECNP can address. These protocols are not always able to address problems that PAP is 

able to. Formal proofs are provided in section 5.3.3. 

5.2.2 Multiple Auctioneers/MA and the Eager Bidder Problem 

As discussed in the previous chapter, the eager bidder problem occurs when bidders 

submit bids that they are committed to, and therefore cannot submit the same or a 

conflicting bid elsewhere until the bid is rejected. This may result in the auctioneer 

missing potential contracts when dealing with multiple auctioneers. PAP’s commitment 

policy overcomes the eager bidder problem because bidders are not committed to 

submitted bids until it is provisionally granted. This is similar to an approach suggested 

by Schillo et al., except that they do not allow the auctioneer to (provisionally) reject the 

bid once the bidder has accepted the (provisional) grant (Schillo, Kray et al. 2002). 

Therefore, a bidder may submit bids for many tasks, from the same or multiple 

auctioneers, simultaneously as they are received, allowing the bidder to be involved in all 

potential contracts. The bidder only needs to commit to its bid when an auctioneer has a 

genuine interest in the bidder’s bid and provisionally grants the bid, in which case the 

bidder may accept the provisional grant in order to commit to the bid. After a provisional 

grant, if the bidder, for whatever reason, no longer wants to commit to the bid, i.e. the bid 

is (provisionally) withdrawn, then the bidder may continue negotiations by sending an 
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updated bid, if desired, as an alternative to its previous bid for the auctioneer’s 

consideration. 

CNP-ext allows bidders to manage multiple auctioneers. The protocol also allows bidders 

to submit bids without commitment during the “pre-bidding” phase. Bidders’ bids are not 

committed until their bids are pre-accepted and the bidder sends a definitive bid. 

Although CNP-ext does not require bidders to be committed to initial bids, in its 

specification, they do not necessarily submit conflicting bids. Bidders sort tasks received 

from auctioneers and make bids based on this order, where tasks (and their bids) lower in 

the order are dependent on tasks (and their bids) higher in the order. Tasks that 

commenced lower in the order and whose bids are rejected are moved higher in the order, 

replacing higher order tasks whose bids were rejected, so that the bidder can submit an 

improved (updated) bid for the lower order task. 

There are a couple of issues with this approach. In an agent system, there may be a 

greater likelihood that a bidder’s bids will be rejected than granted, assuming all bidders 

have similar capabilities, and thus are all equally likely of having their bid granted. For 

example, if there are only two bidders per auctioneer, then one would expect a 50% 

chance that each bid will be granted. If there are any more bidders per auctioneer, which 

in many applications is likely, then the chance of a grant reduces below 50%, which for 

nb number of bidders the expected chance of acceptance for a bid would be              

(1/nb) × 100%. Therefore, for only 10 bidders, only 10% of bids are likely to granted, i.e. 

a 90% rejection rate. With a large number of rejections and a large number of tasks in the 

task order, CNP-ext would require a potentially large number of re-orderings of the task 

order and updated bids. This may result in the auctioneer waiting for a large number of 

updating iterations as its task is re-ordered and updated by bidders before it converges to 

a solution. Additionally, an auctioneer may need to wait many iterations for its task to 

move high enough in the task order of a bidder such that its updated bid is suitable for the 

auctioneer. Even if the bid is finally granted (pre-accepted), due to the dependency of 

tasks lower in the task order with those higher in the tasks order, a bidder is unable to 

commit to the bid (send a definitive bid) until it receives grants for bids for all tasks 

higher in the task order. Therefore, CNP-ext initial bidding phase (before dependent bids 
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are granted and committed) suffers from a problem similar to the eager bidder problem, 

where a negotiation regarding one bidder’s bid is dependent on the results of negotiations 

regarding another bid(s). 

With PAP, no order is formed in the initial bidding phase; rather the best bid for each task 

is submitted, even if they all conflict. The first auctioneer to grant their bid will be 

allocated the bid. Following this, if any other auctioneer tries to provisionally grant its 

bid, which is likely to be a small number if there are many bidders per auctioneer 13, and 

the bid conflicts with the provisionally granted bid, then the bidder will (provisionally) 

withdraw the bid and submit an updated bid, which is its next best available bid. Again, 

the auctioneer that provisionally grants the updated bid first will be allocated the bid, and 

any others that do so after this, which is likely to be a smaller number again 14, will 

receive an updated bid. This process continues until the relevant tasks have been 

allocated bids. For all the bids that were not successful in the auctioneer provisionally 

granting it (i.e. the auctioneer rejects the bid), there is no updating, and hence no 

communication, required. With CNP-ext, if the task for a bid is initially lower in the 

order, then the bidder could potentially send many updated bids for its rejected bids for 

the task until the task is at the top of the order and still be unsuccessful in being allocated. 

With PAP, bidders’ bids are not dependent on negotiations for other bids in the initial 

bidding phase before they can commit to the bid. Additionally, with many bidders, and 

thus rejections, and a large number of tasks in the task order, there are likely to be less 

updating iterations from many agents before an auctioneer converges to a solution or 

receives a suitable bid from a bidder. Bidders in PAP submit their best bid first, and 

auctioneers only wait for updates from the individual bidder that (provisionally) 

withdraws its bid that the auctioneer tries to provisionally grant. 

                                                    

13 E.g. if 100 bids are sent and there are 10 bidders per auctioneer, then number of bids likely to be granted 

are 1/10 × 100 = 10% of 100 bids, which is 10 bids granted. 1 is allocated the bid and 9 are sent updates 

(bids withdrawn). 

14 E.g. with our previous example, of the 9 auctioneers that are sent updated bids, only 10% of the 9 

updated bids are likely to be granted, therefore only 1 is expected to grant the bid, which will get the 

allocation. 
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A bidder’s ordering of tasks (and their bids) in PAP is determined by the interaction with 

the auctioneers, such as the type of bids that they require and when they request and 

secure them, rather than the bidder itself. In our experiments we assume that bidders have 

no preference for one bid for a task over another because the profit margins are the same 

for all bids. If this is not the case, as with CNP-ext that orders tasks based on bidders’ 

preferences, then bidders may still submit their best bid for all tasks, even lower priority 

tasks. If a bid for a lower priority task is provisionally granted, then the bidder may hold 

the acceptance of the provisional grant until the end of the provisional grant acceptance 

deadline (pgad), in the hope that the higher priority bids may be granted. If not, then the 

bidder may accept the provisional grant for the lower priority bid, assuming that there is 

no interest in its higher priority bids, or withdraw the bid if it still believes there is a 

reasonable chance that its higher priority bids will be granted. 

Although PAP does not suffer from the problem of dependence of negotiations between 

bids in the initial bidding phase, both PAP and CNP-ext suffer from this problem in the 

later bidding phases when bids are committed by the bidder. If a bidder commits to a bid 

b1 which is provisionally granted, and then commits to another bid b2 which is dependent 

on b1, then if b1 is provisionally rejected, b2 may not be achievable or be achievable but at 

a loss. We see an instance of this in the next chapter where the pricing of one bid is 

dependent on another provisionally granted bid which may be rejected. As we will 

discuss in the next chapter, we address this by calculating the price for a bid as the 

mathematical expectation, with the value function being the price of the bid if the 

dependent bids remains, and using the probabilities of the dependent bids remaining. 

Therefore, the price is adjusted to allow for the rejection of dependent bids, minimising 

loss of profit. In the case that a rejection of a dependent bid results in another committed 

bid being unachievable, the bidder must de-commit from the bid, paying the penalty for 

de-commitment. 

5.2.3 Planning in a Dynamic Environment 

PAP is able to cope with a dynamic environment, where old bids and tasks are withdrawn 

and new bids and tasks arise. With auctioneers’ tasks, when a new task arises, because, 

for example, the selection of a bid for an existing task did not achieve the complete task 
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or the auctioneer received a request to achieve a new (business) goal, the auctioneer starts 

a new protocol process by announcing the task to bidders, and uses PAP to achieve the 

task. If a bidder submits a bid for a task which is no longer available, because, for 

example, the task has been achieved or is unachievable as it was involved in 

backtracking, then the auctioneer may withdraw the task by sending the bidder a 

withdrawn message. The bidder may then remove the task from memory so that it does 

not consider the task for any more bids. With bidders’ bids, if an auctioneer tries to 

provisionally grant a bid that is not longer available, because, for example, the bid (or a 

conflicting bid) has been granted elsewhere, then the bidder may withdraw the bid by 

sending a (provisionally) withdrawn message. If a new opportunity arises for the bidder 

to submit a better bid than it had previously for a task, because, for example, a 

provisionally granted bid was rejected that released the availability of another bid, then 

the bidder is able to send the (updated better) bid for the task. 

CNP and ECNP do not consider withdrawn tasks and bids, and updated bids. CNP-ext 

does not explicitly consider withdrawn tasks and bids, although if a bid is withdrawn, a 

bidder may submit a different definitive (final committed) bid from the (pre-)bid that was 

granted. This effectively withdraws the granted bid and updates with a new bid, but can 

only occur once as the bidder is committed to this new (definitive) bid. PAP allows 

bidders to withdraw many consecutive bids as updated bids that replace withdrawn bids 

that are not committed to by the bidder until it accepts a provisional grant for it. We do 

not allow bidders to propose and commit to a final bid that is different to the bid that the 

auctioneer and bidder have been negotiating over. If a bid is no longer available, the bid 

must be withdrawn and a new bid sent to recommence the negotiation process. CNP-ext 

allows bidders to send updated bids when their bid are rejected, resulting in their tasks 

being re-ordered so that the bidder can submit a better bid for the task. 

5.2.4 Updated Bids and Updated Better Bids 

Figure 26 to Figure 28 shows the utility of PAP’s updated bid and updated better bid 

features. The updated bids feature allows the bidder to submit its next best bid to replace 

a bid that has been withdrawn or rejected. The updated bid may be better than bids 

currently held by the auctioneer, and therefore without this feature, the auctioneer may 
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not be able to access the best potential bid for its task. The updated better bids feature 

allows the bidders to submit bids which are better than its currently submitted bids, if the 

opportunity arises, e.g. it acquires new capabilities or a provisionally granted bid is 

rejected resulting in a better bid for the task becoming available again. Using the updated 

better bids feature, the auctioneer is ensured that there are no other bids it has not got 

access to which is better than the bids it currently holds. If one does become available, it 

will be submitted. In Figure 28 we have shown that this can be of use even if a bid for a 

task had been provisionally granted because the auctioneer may backtrack, and thus 

revisit bids for that task, which the updated better bid may be the best bid at the time. 

Therefore, the updated bids and updated better bids features allow auctioneers to hold the 

best bids for their tasks at any time, potentially enabling them to obtain the best plan to 

achieve their task. 

CNP-ext uses updating of bids in a slightly different way. CNP-ext does not require that 

bidders submit their best bid. As a result, CNP-ext uses updating of bids to allow bidders 

to submit a better bid to replace a rejected bid in order to keep the negotiation of a task 

continuing and improve their chances of an allocation. PAP uses updating of bids to 

allow bidders to provide auctioneers with their best set of possible bids for a task at any 

time. 

5.2.5 Consistent with Contracting 

An important feature of PAP is its initial bidding phase, namely the bidding without 

commitment and the provisional grant. Although others, such as ECNP and CNP-ext, 

have used similar concepts, in applying PAP to real world open-market and e-commerce 

applications, these concepts must be consistent with real world contracting and agreement 

processes. We believe that PAP is predominantly consistent with these processes. 

The task announcement and bidding in PAP is an information exchange phase, as 

opposed to a formal contracting negotiation with CNP. A task announcement informs 

bidders of an auctioneer’s desire to achieve some task, which could be to acquire or 

provide some service. Bidding is a way for bidders to inform the auctioneer of possible 

services they may desire to provide or request from the auctioneer. An auctioneer sending 

a provisional reject after a bid is received informs the bidder that its bid is not suitable for 
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its task, allowing the bidder to submit an updated bid. Therefore, this information phase 

provides the auctioneers with knowledge of bids (or resources) that could possibly 

achieve its task. With this information, the auctioneer is able to make more informed 

decisions regarding taking the next step of a formal contracting negotiation. 

The formal contracting negotiations phase begins with a provisional grant, which is 

equivalent to the auctioneer asking the bidder if it would formally propose its bid, and 

thus commit to it. The bidder may respond by formally proposing and committing to the 

bid, by sending a provisional grant accepted message. Alternatively, it may retract its 

desire to perform the bid, by (provisionally) withdrawing the bid, in which case the 

bidder may send an updated bid that indicates its new desire of services it is now willing 

to provide or request. Once the bidder accepts the provisional grant, the contracting 

agreement is not yet complete – it must be accepted by both parties. The auctioneer must 

also accept the agreement, which is the allocation of the bid (or the task that the bid 

achieves) to the bidder. This occurs when the auctioneer confirm grants the bid, which is 

the final signing of the contract. If the bid does not fully achieve the task, then the 

auctioneer delays the confirm granting of the bid until it finds a suitable plan to achieve 

the rest of the task that the bid does not achieve. When a plan is found, the confirm grant 

is sent, and the contract is now formed. Both the auctioneer and the bidder are committed 

to the bid. If the auctioneer finds that the bid is not suitable, it may reject the formal offer 

for the bid, by sending a provisional reject message. The bidder will no longer be 

committed to the bid. 

The information exchange phase mentioned above occurs quite often in the real world. 

People often discuss their desires, i.e. tasks that they will like to perform or have 

performed, to others without committing to it. If an utterance of a desire resulted in an 

individual being committed to it, then there would likely be many broken contracts in the 

real world. The concept of provisional grant is not new for some industries. Many hotels, 

for example, will allow an individual (an auctioneer) to place a tentative booking 

(provisional grant) on a room. The individual is not committed to the booking (service), 

and thus is allowed to cancel (provisional reject) at a later date. The individual is only 

committed to the booking when it accepts the service (confirm grant), for example, by 
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paying for it. Organisations which allow this flexibility would likely be preferred over 

those that do not. 

Sandholm and Lesser state that offers (bids) without commitment strategically 

meaningless (Sandholm and Lesser 2002). The initial bidding in PAP is considered 

information exchange rather than a formal offer, which occurs during a provisional 

accept. Reeves et al.’s ContractBot generates contracts by automating the discovery, 

negotiation and execution of contracts (Reeves, Wellman et al. 2002). The contract 

negotiation is auction-based, used to determine the price and other terms of the contract. 

We assume contract terms, such as price, in PAP are fixed and are not negotiated over. 

The terms are defined by the bids sent by bidders, where the auctioneer may or may not 

accept the terms. 

An element of the legal contracting process that PAP and other aforementioned Contract-

Net based protocols do not accommodate is the ability for bidders to revoke their offer 

(withdraw a provisionally granted bid) before the auctioneer accepts it. Excluding 

revocation from PAP offers computation efficiency, preventing bidders from revoking 

bids during a search. This will force the auctioneer to backtrack to the revoked bid. 

Extending PAP to include revocation is the subject of future work. 

5.2.6 Reduced Broken Contracts 

PAP’s information phase reduces the likelihood of broken contracts compared with the 

traditional CNP, such as Sandholm’s CNP (Sandholm and Lesser 1996; Sandholm and 

Lesser 2002). Sandholm’s CNP allows agents to break contracts, or their commitments, 

and take alternative options (backtrack), but pay a penalty in order to do so. PAP allows 

agents to test different options first without the commitment, by exchanging information, 

and when a suitable solution is found, only then do they proceed with the formal 

contracting negotiations (commitment). Bidders may submit bids for many tasks at the 

same time. When bids are provisionally granted by the auctioneer, bidders need only 

commit to bids that they find suitable, and withdraw those that are not. Auctioneers are 

able to “search” for a suitable plan for its task, testing different options (bids) and 

backtracking when required, before entering into a full contract. 
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5.2.7 Reduced Communication and Distributed Processing 

PAP was developed to minimise communication since communication is vital in order for 

PAP to operate, and can be expensive or limited (e.g. bandwidth). Additionally, PAP 

could be applied to large scale applications, increasing the communication requirements, 

potentially becoming a bottleneck. Furthermore, computational processing is an issue 

with large scale systems, which can also be a potential bottleneck. PAP was developed to 

take advantage of distributed processing, by constraining the processing required by the 

auctioneer that is performing the planning. 

Allowing the auctioneer to submit the bid evaluation function enables bidders to 

determine their best bid for the auctioneer. Therefore, auctioneers need only 

communicate one bid, which is their best bid. If their best bid is not preferred by the 

auctioneer, then any other bid which is worse should not be either. This prevents the 

bidders from communicating many bids. 

With a centralised approach, the auctioneer receives all bidders’ bids at the start and 

processes them in order to find a suitable plan. Although this saves the auctioneer from 

having tasks, bids, and other speech acts communicated during planning, it has some 

disadvantages. If the number of possible bids submitted by each bidder is large, then 

communication could be greater than with PAP (see following sections). There may be 

potentially complex dependencies between bids that the bidders submit. For example, 

selecting one bid may result in other bids’ price changing or becoming unavailable. These 

dependencies could become complex and difficult to define. Furthermore, the bidder may 

not want to release this potentially private information regarding its many/all bids and 

their dependencies. As we will show later, a centralised approach may not allow the 

auctioneer take advantage of a dynamic environment. This may result in a worse or 

infeasible solution compared with PAP, which interacts with the environment during 

planning. 

PAP’s feature of allowing auctioneers to send the bid evaluation function and receive one 

bid from bidders, rather than all bids for processing as in the centralised approach, takes 

advantage of distributed processing. In the centralised approach, the single auctioneer 

must process the potentially large number of bids from many bidders, and their 
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dependencies, in order to find suitable bids for its tasks. With PAP, the auctioneer sends 

the bid evaluation function to the bidders to allow the bidders to process their bids and 

submit the best one for the task. Therefore, the processing of suitable bids for a task is 

transferred to the potentially many bidders, and hence many distributed processes. This 

has the additional benefit of decentralisation, allowing the bidders to have greater control 

over their actions (the bids that they perform for the task at hand) and minimises the 

information that they need to release. 

Communication is further reduced with PAP as it does not require rejection of bids that 

the auctioneer does not intend to use. This can potentially be a considerable saving in 

communication if many bids are submitted for a task because typically with contract net 

approaches, such as CNP, ECNP and CNP-ext, all bids but the one bid that is selected are 

rejected. With PAP, it does not matter how many bids are submitted, communication 

(provisional grant, etc.) is only required for the one selected bid (unless backtracking is 

required, or a submitted bid is unsuitable, and thus is provisionally rejected when 

received). Not rejecting unused bids during planning also has the benefit of allowing bids 

to remain available later when required during backtracking. Additionally, not rejecting 

bids after a plan is found (confirm granted) allows the bids to remain available for 

replanning if the contracts are broken. 

The persistence policy also assists in minimising communication. Bidders and 

auctioneers in PAP do not inform others that their bids and tasks have changed status, 

respectively, unless other agents try to use, and therefore show interest, in them. If a 

bidder uses an unavailable task by submitting an updated bid for it, only then does the 

auctioneer inform the bidder that the task is withdrawn. If an auctioneer uses an 

unavailable bid by trying to provisionally granting it, only then does the bidder inform 

the auctioneer that the bid is withdrawn. We believe this is likely to save communication 

because in our applications of interest the instances of agents using tasks and bids after 

the initial task announcement and bidding phase is likely to be low compared with the 

number of agents that need to be informed of status changes and the number of possible 

status changes over time. If a bidder sends a bid for a task, then the chance that the 

auctioneer does use the bid could be small if the auctioneer has many bids. In the chance 

that the auctioneer does use the bid, it will likely use the bid shortly after it is submitted, 
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in which case the bid is likely to still be available after this short time anyway. If the 

auctioneer does not use the bid in the first instance, then the chances of using the bid 

reduces even further as the auctioneer will need to backtrack and again select the bid over 

many others. If the bidder did keep the auctioneer informed of its bid’s status, then it may 

communicate often as the bid’s status may change often over time, possibly being 

dependent on other bids in the bidder’s local plan that are changing over time. Therefore, 

it is beneficial to inform the auctioneer regarding the status of the bid only at the 

particular time that the auctioneer wants to use the bid.  

When an auctioneer announces a task, the bidders should submit their best bid for the 

task. We believe it is unlikely that the bidder will find an opportunity to submit a better 

bid for the task after the length of time it takes the auctioneer to withdraw the task 

(achieve it or find it unachievable). In the short term, a bidder may be negotiating with 

many auctioneers, which may, for example, release (provisionally reject) bids in order to 

create opportunities for updated better bids – and the likelihood that these bid releases 

could created an updated better bid could be small. After a short time, negotiations should 

have completed and any bids whose release may allow an updated better bid would have 

been released, with the task likely to be still available. Therefore, the bidder is not likely 

to submit many updated bids when the task is withdrawn. If the auctioneer was to keep 

the bidders informed when its task changes status, then it would have to communicate 

with all the bidders, which could potentially be a large number. 

We will later show that PAP requires less communication than CNP, CNP-ext, ECNP, 

and the centralised combinatorial auction approaches (centralised auctioneer described 

above) under certain circumstances. We believe these circumstances are valid in many 

real world applications. Additionally, in the chapter 7 we will show how communication 

is constrained in the transportation domain when tasks in one node of an auctioneer’s 

search tree (or PAP planning process) is repeated in its child nodes. The repeated tasks do 

not have to be re-announced, and the bidders are still able to submit their best bids – as 

long as conditions on the auctioneer’s bid evaluation function are met. 
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5.3 Formal Analysis 

5.3.1 Problems Addressed by CNP, CNP-ext, ECNP and PAP 

In section 4.1, we presented three types of planning and task allocation problems: 

1. Task allocation – an auctioneer’s set of tasks Talloc is allocated to a single 

bidder, by the acceptance of one of its bids, to attain the auctioneer’s goal 

G. 

2. Task allocation with bid planning – an auctioneer’s set of tasks Talloc is 

allocated to a set of bidders, by finding (bid planning) and accepting a set 

of bids held by the bidders, to attain the auctioneer’s goal G. 

3. Planning and task allocation – an auctioneer must find a suitable set of 

tasks Talloc among a collection of sets of tasks, and allocate Talloc to a set of 

bidders, by finding (bid planning) and accepting a set of bids held by the 

bidders, to attain the auctioneer’s goal G. 

CNP and CNP-ext were developed to achieve the problem definition (1) above, which is 

the task allocation problem of allocating (all or some of) an auctioneer’s set of tasks to a 

single bidder. ECNP and PAP are also able to address this problem if the auctioneer only 

receives bids that fully achieve the announced set of tasks Talloc. Problem definition (2) 

above, which is task allocation with bid planning, involves an auctioneer with a 

predefined plan, i.e. the (single) set of tasks, to achieve its goal G. The auctioneer must 

allocate elements within the set of tasks to different bidders as a single bid, and hence a 

single bidder cannot achieve the auctioneer’s set of tasks. It is a bid planning problem as 

the auctioneer must plan over the possible set of bids that can be used to achieve its set of 

tasks in order to find a suitable bid allocation plan. The combinatorial auctions problem, 

which we apply PAP to in chapter 6, is of the same class of problems. 

Although there is planning with respect to the bids in problem definition (2), from the 

auctioneers perspective, it is essentially a task allocation problem as the auctioneer is 

allocating its predefined set of tasks to bidders. There is no planning with respect to the 

auctioneer’s goal that must be achieved. With problem definition (3), planning and task 
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allocation, there is planning with respect to the auctioneer’s goal as the set of tasks to 

achieve the goal is not predefined. Therefore, the auctioneer must solve the problem of 

finding a suitable plan (or task-decomposition) for its goal, in addition to the bid planning 

problem of finding and accepting suitable set of bids from bidders that can achieve the 

plan (set of tasks) for the goal. Our transportation problem that we apply PAP to in the 

next chapter is associated this class of problems. Both ECNP and PAP are able to address 

both problems (2) and (3), but due to PAP’s flexible planning and ability to plan with 

multiple auctioneers simultaneously and in a dynamic environment, PAP is able to 

address a larger range of problems of this class than ECNP. 

5.3.2 PAP Negotiation 

We will define PAP using the negotiation (or protocol process) based on the description 

presented in section 4.1, and the Protocol Flow Diagram illustration in Figure 21. Since 

the description of PAP is complicated with new protocol processes spawned due to the 

partial fulfilment of its set of tasks �  ⊆ T, multiple negotiations between an auctioneer 

and bidder may be required to achieve T. We use the subscript x to indicate the xth 

protocol process, and hence xth negotiation, between auctioneer α  and bidder γ in order to 

achieve T. We have a negotiation defined as γ 

Negx = < α , γ, � x, Σ x, Sx, A, δx, sx, Fx > 

where α  is an auctioneer in the negotiation, and γ is a bidder in the negotiation. Other 

tuples are dependent on the protocol: 

• � x ⊆ T, is the set of tasks that the agents α  and γ are negotiating over in order to 

fully or partially achieve it, and � x+1 ⊆ � x ⊆ … ⊆ � 0 = T. x = 0 denotes the 

negotiation corresponding to the initial (PAP) protocol process to achieve T. x + 1 

denotes the negotiation (Negx+1) corresponding to the protocol process to achieve � x+1, spawned from the xth protocol process negotiation (Negx) due to the partial 

achievement of � x. 

• Σ x is the set of bids that the agents α  and γ are negotiating over to fully or partially 

achieve the set of tasks � x. 



 138 

• Sx = {step1x, step2x, step3x, step4x, step5x, step1x+1, step5x-1} ∪ {exitNC
x, exitC

x} is 

the set of possible states that are accessible by the protocol in the current (xth) 

protocol process. exitNC
x is the state which exits with no contract and exitC

x is the 

state which exits with a contract. 

• A = Aα ∪ Aγ ∪ Ae is the set of possible speech acts or events where: Aα is the set 

of speech acts associated with the auctioneer; Aγ is the set of possible speech acts 

associated with the bidder; and Ae is the set of events (common to both agents).    

Aα = ({task announcement}× � ) ∪ ({provisional grant}× Σ ) ∪ ({withdrawn}× � ) ∪ ({provisional reject}× Σ ) ∪ ({confirm grant}× Σ ); Aγ = ({bid}× Σ ) ∪ 

({provisional grant accepted}× Σ ) ∪ ({provisionally withdrawn}× Σ ) ∪ 

({withdrawn}× Σ ); Ae = ({no communication}) ∪ ({backtracking}). 

• δ ⊆ (Sx×A×S) specifies the transitions between the possible states in the xth 

protocol process, such that δ is a function, with δ(step1x, < task announcement, 

ω>) = step2x; δ(step2x, <bid, σ>) = step3x; δ(step2x, <no communication>) = 

step3x; δ(step2x, <no communication>) = exitNC
x; δ(step3x, <provisional grant, 

σ>) = step4x; δ(step3x, < withdrawn, ω>) = exitNC
x; δ(step3x, <provisional 

reject, σ>) = step2x; δ(step3x, <no communication>) = exitNC
x; δ(step3x, 

<backtracking>) = step5x-1; δ(step4x, <provisional grant accepted, σ>) = 

step5x; δ(step4x, <provisional grant accepted, σ>) = step1x+1; δ(step4x, 

<provisionally withdrawn, σ>) = step2x; δ(step4x, <withdrawn, σ>) = step2x; 

δ(step5x, <confirm grant, σ>) = exitC
x &  step5x-1 (see below); δ(step50, 

<confirm grant, σ>) = exitC0; δ(step5x, <provisional reject, σ>) = step2x. 

• sx = step1, is the start state. 

• Fx = {exitNC, exitC} is the set of final states. 

(exitC
x & step5x-1) asserts that the participating agents exit the current (xth) protocol 

process with a contract, and then proceeds to state step5 of the previous (x-1th) 

protocol process. 
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5.3.3 Planning Flexibility 

We formally compare the planning flexibility of PAP with CNP, CNP-ext and ECNP. 

Our analysis shows that PAP is able to perform the planning and task allocation that these 

contract net-based approaches can. However, there are planning problems that CNP, 

CNP-ext and ECNP cannot address that PAP is able to solve. Before we commence the 

analysis, we introduce some notation. 

Definition 1: An agent system consisting of a set of agents T     to solve a planning 

problem comprises an auctioneer α  ∈ T     and a set of bidders Г  ⊆ T     \ {α }. The 

auctioneer comprises a set of tasks Tj, where T0 is the initial set of tasks. The index j > 0 

is used to denote new sets of tasks that are created in achieving T0 as the protocol 

(planning) proceeds. The auctioneer allocates bid(s) submitted by bidders in order to 

achieve T0. For each announced set of tasks Tj, the auctioneer receives a set of bids Bj 

from a set of bidders in order to fully or partially achieve Tj. Bj = {b1,j , …, bn,j}, where n 

is the number of bids submitted for the auctioneer’s jth set of tasks Tj. The auctioneer’s 

preference among the bids Bj for Tj is denoted prefer(Tj, Bj). diff(Tj, bi,j) is a function that 

returns a set of tasks Tj+1, which is the remaining set of tasks that the bid bi,j does not 

achieve from the set of tasks Tj. If Tj+1 = ∅, then the bid bi,j fully achieves the set of tasks 

Tj. 

Theorem 1: PAP finds an equivalent task allocation to CNP for an agent system T     if: 

• T     comprises a single auctioneer 

• bidders can only submit bids that can fully achieve the auctioneer’s announced set 

of tasks, and 

• PAP precludes withdrawals, the updating of bids, rejection of bids and 

backtracking. 

Proof: 

Task allocation with CNP: 

Refer to the CNP specification in section 4.2 (Figure 11), and Definition 1. The 

auctioneer α  commences at step 1 by announcing its initial set of tasks T0, and proceeds 
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to step 2. The bidders Г  submit bids B0 in order to achieve T0 such that they are full bids, 

i.e. ∀k [bk,0 ∈ B0 ⇒ diff(T0, bk,0) = ∅], ignoring bidders that submit refuse messages. 

Control proceeds to step 3. The auctioneer α  selects its most preferred bid, which is 

prefer(T0, B0), grants the bid, and rejects all other bids B0\{ prefer(T0, B0)}. The 

auctioneer α  has bid prefer(T0, B0) allocated to achieve the set of tasks T0. 

Task allocation with PAP: 

Refer to the PAP specification in section 5.1 (Figure 21), and Definition 1. The 

auctioneer α  commences at step 1 by announcing the set of tasks T0, and proceeds to step 

2. The bidders Г  submit bids B0 in order to achieve T0 such that the bids fully achieve the 

set of tasks, i.e. ∀k [bk,0 ∈ B0 ⇒ diff(T0, bk,0) = ∅], ignoring bidders that do not submit 

bids – no communication. PAP proceeds to step 3. Since we do not consider 

withdrawals and backtracking in the context of the theorem, these speech acts or events 

(e.g. withdrawn, provisionally reject and backtracking) can be ignored at step 3. 

Therefore, at step 3, the auctioneer α  selects its preferred bid, prefer(T0, B0) and 

provisionally grants the bid. PAP proceeds to step 4, where the bidder of bid prefer(T0, 

B0) accepts the provisional grant, as the bidder is unable to (provisionally) withdraw in 

the context of the theorem. Since the bid prefer(T0, B0) fully achieves the task T0 in the 

context of the theorem, PAP takes control path (f) to step 5. The auctioneer must now 

confirm grant the bid prefer(T0, B0), as provisional rejects are precluded in the context 

of the theorem. Since bidders are not committed to their submitted bids in PAP, rejection 

of the other bids B0\{prefer(T0, B0)} is not required. The auctioneer α has bid prefer(T0, 

B0) allocated to achieve task T0. 

Final allocation for both protocols 

The resulting task allocation for both CNP and PAP are equivalent in the context of the 

theorem, with both allocating bid prefer(T0, B0) for task T0. 

Q.E.D. 

Definition 2: For any set of bids B and an auctioneer α ∈ T     , we write suitable(α, B) 

when α regards the set of bids (plan) B as suitable. 
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Theorem 2: PAP finds an equivalent plan and task allocation as ECNP for an agent 

system T      if 

• T     has a single auctioneer 

• PAP precludes withdrawals, the updating of bids, and the rejection of bids on 

submission, and 

• PAP only backtracks when a plan is found and deemed unsuitable. 

Proof: 

Task allocation with ECNP: 

Refer to the ECNP specification in section 4.7 (Figure 18), Definition 1 and Definition 2. 

The auctioneer α  commences at step 1 by announcing the set of tasks T0, and proceeds to 

step 2. The bidders Г  submit bids B0 in order to achieve T0, and ECNP proceeds to step 3. 

The auctioneer α  selects its most preferred bid, which is prefer(T0, B0) and provisionally 

grants the bid. The other bids B0\{prefer(T0, B0)} are provisionally rejected. If the bid 

prefer(T0, B0) does not fully achieve the set of tasks T0, then the remaining set of tasks 

that are not achieved, T1 = diff(T0, prefer(T0, B0)), becomes the new set of tasks to 

announce at step 1 (proceed back to step 1, where a new protocol process is created to 

achieve T1). This process continues, e.g. receive bids B1 for T1, provisionally grant 

prefer(T1, B1) for T1 and rejecting the others B1\ {prefer(T1, B1)}, and re-announcing the 

task T2 = diff(T1, prefer(T1, B1)) at step 1 again, etc., until we arrive at task Tj such that 

diff(Tj, prefer(Tj, Bj)) = ∅, i.e. the task Tj (and hence T0) is fully achieved. In this case, 

ECNP proceeds to step 4.  

The auctioneer now has the set of bids (a plan) B = {prefer(T0, B0), prefer(T1, B1), …, 

prefer(Tj, Bj)} that are provisionally granted. If the plan is suitable, i.e. suitable(α , B), 

then the auctioneer α  confirm grants all the bids in B in order to allocate the tasks. If the 

plan is not suitable, i.e. ¬ suitable(α , B), then the auctioneer confirm rejects all the bids 

in B. Therefore, the auctioneer α  has a plan and allocation for its set of tasks T0 of B if the 

plan is suitable, or a rejected plan if B is not suitable. 
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Task allocation with PAP: 

Refer to the PAP specification in section 5.1 (Figure 21), Definition 1 and Definition 2. 

The auctioneer α  commences at step 1 by announcing the set of tasks T0, and proceeds to 

step 2. The bidders Г  submit bids B0 in order to achieve T0, ignoring bidders that do not 

submit bids – no communication. PAP proceeds to step 3. Since we do not consider 

withdrawals, rejection on bid submission and backtracking until the end, in the context of 

the theorem, these speech acts or events (e.g. withdrawn, reject and backtracking) can be 

ignored at step 3. Therefore, at step 3, the auctioneer α  selects its preferred bid, which is 

prefer(T0, B0) and provisionally grants the bid. Since bidders are not committed to their 

bids, the auctioneer does not need to reject the other bids B0\{prefer(T0, B0)}. PAP 

proceeds to step 4, the bidder of bid prefer(T0, B0) accepts the provisional grant of its 

bid as (provisional) withdrawals are not permitted in the context of the theorem. If the bid 

prefer(T0, B0) does not fully achieve the set of tasks T0, then the remaining set of tasks 

that is not achieved, T1 = diff(T0, prefer(T0, B0)), becomes the new set of tasks to 

announce at step 1 (proceed back to step 1, where a new protocol process is created to 

achieve T1). This process continues, e.g. receive bids B1 for T1, provisionally grant bid 

prefer(T1, B1) for T1, and re-announcing the set of tasks T2 = diff(T1, prefer(T1, B1)) at 

step 1 again, etc., until we arrive at set of tasks Tj such that diff(Tj, prefer(Tj, Bj)) = ∅, i.e. 

the set of tasks Tj (and hence T0) is fully achieved. In this case, PAP proceeds to step 5.  

The auctioneer now has the set of bids (a plan) B = {prefer(T0, B0), prefer(T1, B1), …, 

prefer(Tj, Bj)} provisionally granted. If the plan is suitable, i.e. suitable(α , B), then the 

auctioneer confirm grants all the bids in B in order to allocate the tasks. If the plan is not 

suitable, i.e. ¬suitable(α , B), the auctioneer rejects the complete plan B by doing the 

following. The auctioneer provisionally rejects prefer(Tj, Bj). This is the last bid that 

was provisionally granted, as this will be the current protocol process that the auctioneer 

is executing (to achieve Tj). According to the PAP specification, if this occurs, PAP 

proceeds to step 2. Since all bids are already submitted, as updated bids are precluded in 

the context of the theorem, the protocol proceeds to step 3 (path (b) with no 

communication). PAP may use backtracking at step 3. This results in PAP proceeding 

to step 5 of the previous protocol process for Tj-1 (takes control path (d) since it is not at 
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the initial protocol process, which is for T0). Again, prefer(Tj-1, Bj-1) is provisionally 

rejected and PAP proceeds to step 2, etc., which continues until PAP arrives to step 5 of 

the initial protocol process for T0 and provisionally rejects prefer(T0, B0). PAP proceeds 

to step 2, takes path (b) with no communication, and backtracks again. Since PAP is 

backtracking from the initial (root) set of tasks T0, PAP takes path (c) to exit the protocol. 

The complete plan B has been rejected. 

Note that ECNP confirm rejects the provisionally granted bids in B, which has the effect 

of decommitting the bidders from their provisionally granted bids. PAP’s provisional 

reject does the same, except it is provisional in case the auctioneer wants to grant the bid 

again at a later time. Using PAP, the auctioneer has a plan and allocation for its set of 

tasks T0 of B if the plan is suitable, or a rejected plan if B is not suitable. 

Final allocation for both protocols 

Both ECNP and PAP produce the same result, which is a plan B = {prefer(T0, B0), 

prefer(T1, B1), …, prefer(Tj, Bj)} for the set of tasks T0 that is either allocated if suitable 

or rejected if unsuitable. 

Q.E.D. 

In order to analyse PAP with CNP-ext, we need to extend Definition 1 to include a time 

component to the set of bids B, as this may change with time. 

Definition 3: An agent system consisting of a set of agents T     to solve a planning 

problem comprises an auctioneer α  ∈ T     and a set of bidders Г  ⊆ T     \ {α }. The 

auctioneer comprises a set of tasks Tj, where T0 is its initial set of tasks. The index j > 0 is 

used to denote new sets of tasks that are created in achieving T0 as the protocol (planning) 

proceeds. The auctioneer allocates bid(s) submitted by bidders in order to achieve T0. At 

time τ, for each announced set of tasks Tj, the auctioneer has a set of bids Bτ,j that are 

submitted by the set of bidders in order to fully or partially achieve Tj. The submitted set 

of bids Bτ,j for the set of tasks Tj may change over time because bidders may send 

updated bids throughout the protocol (planning) process. Bτ,j = {b1,j , …, bn,j} where n is 

the number of bids submitted up to time τ for the auctioneer’s j
th set of tasks Tj. The 

auctioneer’s preference among the bids Bτ,j for Tj is denoted prefer(Tj, Bτ,j). diff(Tj, bi,j) is 
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a function that returns a set of tasks Tj+1, which is the remaining set of tasks that the bid 

bi,j does not achieve from the set of tasks Tj. If Tj+1 = ∅, then the bid bi,j fully achieves 

the set of tasks Tj. bidder(bi,j) is a function which returns a bidder γ ∈ Г  that submitted 

the bid bi,j. 

Definition 4: With CNP-ext, δ τ is a definitive bid submitted by bidder bidder(δ τ) ∈ Г  

after its pre-bid b ∈ Bτ,j is provisionally granted by the auctioneer α  from a list of 

submitted pre-bids Bτ,j for the set of tasks Tj. After a definitive bid δ τ is submitted at time 

τ' > τ for bidder(δ τ)’s pre-bid b, δ τ replaces  its associated (pre-) bid b in the bid list Bτ',j, 

i.e. δ τ ∈ Bτ',j where [b ≠ δ τ ⇒ b ∉ Bτ',j] & [b = δ τ ⇒ b ∈ Bτ',j]. 

Theorem 3: PAP finds an equivalent task allocation as CNP-ext if 

• PAP only allows bids that can fully achieve the auctioneer’s announced set of 

tasks,  

• PAP precludes withdrawal of tasks, rejection of bids on submission, provisionally 

withdrawn bids, and backtracking,  

• the condition used for provisionally rejecting a provisionally granted bid with 

PAP is that the provisionally granted bid is no longer preferred over a newly 

submitted updated bid, and  

• if a bidder’s updated bid submitted to replace its withdrawn bid is provisionally 

granted before any other submitted bids, then the bidder using PAP is not able to 

withdraw the bid for the second time. 

Proof: 

Task allocation with CNP-ext: 

Refer to the CNP-ext specification in section 4.5 (Figure 13), Definition 3 and Definition 

4. The auctioneer α  commences at step 1 by announcing the set of tasks T0, and the 

protocol proceeds to step 2. At time t1, the bidders Г  submit PreBids Bt1,0 in order to 

achieve T0 such that they are full bids, i.e. ∀k [bk,0 ∈ Bt1,0 ⇒ diff(T0, bk,0) = ∅], ignoring 

bidders that do not submit any bids (no communication). CNP-ext proceeds to step 3. 

The auctioneer α  selects its most preferred pre-bid, which is prefer(T0, Bt1,0) and sends the 
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bidder bidder(prefer(T0, Bt1,0)) a provisional grant, and the protocol proceeds to step 4 

for agents α  and bidder(prefer(T0, Bt1,0)). The other bidders Г \{bidder(prefer(T0, Bt1,0))} 

associated with the other pre-bids Bt1,0\{prefer(T0, Bt1,0)} are sent provisional reject 

messages, and the protocol proceeds to step 2 where these bidders may submit an updated 

pre-bid. The confirm reject at step 3 is used for bidders still at this step in the negotiation 

when the auctioneer α  finds a solution (a bid is confirm granted). In this case, 

negotiations to achieve the set of tasks T0 ends between these bidders and the auctioneer α  (discussed later). At step 4, the bidder bidder(prefer(T0, Bt1,0)) sends a definitive bid δ t1 

for provisionally granted pre-bid prefer(T0, Bt1,0), which may be different to the bid that 

was provisionally granted. From Definition 4, δ t1 replaces the pre-bid prefer(T0, Bt1,0) in 

the bid list Bt2,0 for t2 > t1. bidder(δ t1) = bidder(prefer(T0, Bt1,0)).  

At step 5, there are four situations: (i) The definitive bid δ t1 is the same as the 

provisionally granted pre-bid prefer(T0, Bt1,0) and no other bidder γ ∈ Г  where γ ≠ 

bidder(δ t1) sends an updated pre-bid by time t2 > t1 that is better than δ t1, i.e. prefer(T0, 

Bt1,0) = δ t1 = prefer(T0, Bt2,0), and prefer(T0, Bt1,0) ∈ Bt2,0. (ii) The definitive bid δ t1 is the 

same as the provisionally granted pre-bid prefer(T0, Bt1,0) but some other bidder γ ∈ Г  

where γ ≠ bidder(δ t1) submits a pre-bid by time t2 > t1 that is better than δ t1, i.e. 

prefer(T0, Bt1,0) = δ t1 ≠ prefer(T0, Bt2,0), and prefer(T0, Bt1,0) ∈ Bt2,0. (iii) The definitive bid δ t1  differs to that of the provisionally granted pre-bid prefer(T0, Bt1,0) 
15 but is still better 

than any other submitted pre-bids, including updated pre-bids, submitted by time t2 > t1 

by bidders γ ∈ Г  where γ ≠ bidder(δ t1), i.e. prefer(T0, Bt1,0) ≠ δ t1 = prefer(T0, Bt2,0), where 

prefer(T0, Bt1,0) ∉ Bt2,0, and hence prefer(T0, Bt1,0) is withdrawn. (iv) The definitive bid δ t1 

differs from the provisionally granted pre-bid prefer(T0, Bt1,0) 
16 and some other bidder γ 

∈ Г  where γ ≠ bidder(δ t1) submits a pre-bid by time t2 > t1 that is better than δ t1, i.e. 

prefer(T0, Bt1,0) ≠ δ t1 ≠ prefer(T0, Bt2,0) where prefer(T0, Bt1,0) ∉ Bt2,0, and hence prefer(T0, 

Bt1,0) is withdrawn. 

                                                    

15 This is equivalent to withdrawing the bid and submitting a new updated bid in the PAP. 

16 This is equivalent to withdrawing the bid and submitting a new updated bid in the PAP. 
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The confirm reject at step 5 is used primarily to eliminate the bidder bidder(δ t1) from 

future negotiations, as a means to discourage bidders from undesirable behaviour. This 

may occur, for example, if the bidder submits a definitive bid δ t1 much lower than its pre-

bid prefer(T0, Bt1,0). The confirm reject does not affect the proof, but results in a reduced 

set of bids Bt2,0\{δ t1} at time t2 > t1 for T0, from a reduced set of bidders Г \{bidder(δ t1)}. 

We now investigate all of the four situations described above. 

Situation (i): The auctioneer will send the bidder bidder(δ t1) a confirm grant for its 

definitive bid δ t1, and as mentioned above, all other bidders Г \{bidder(δ t1)} which are still 

at step 3 will receive a confirm reject for their unsuccessful pre-bids Bt2,0\{δ t1}. The 

auctioneer now has bid δ t1 = prefer(T0, Bt2,0) allocated for the set of tasks T0, where δ t1 = 

prefer(T0, Bt1,0). 

Situation (ii): The auctioneer sends the bidder bidder(δ t1) a provisionally reject message 

for its definitive bid δ t1, resulting in the protocol proceeding to step 2, allowing the bidder 

bidder(δ t1) to submit an updated pre-bid if it desires. The auctioneer α  who is at step 3 

with another bidder bidder(prefer(T0, Bt2,0)) ≠ bidder(δ t1) sends this bidder a provisional 

grant for its now preferred bid prefer(T0, Bt2,0). The protocol proceeds to step 4, and 

bidder(prefer(T0, Bt2,0)) submits a definitive bid δ t2 for its provisionally granted bid 

prefer(T0, Bt2,0). bidder(δ t2) = bidder(prefer(T0, Bt2,0)).  Again, there are four situations 

from step 5 as described above. Set t1 ←  t2 and select the situation (i), (ii), (iii) or (iv) as 

appropriate. 

Situation (iii): The auctioneer will send the bidder bidder(δ t1) a confirm grant for its 

definitive bid δ t1, and as mentioned above, all other bidders Г \{bidder(δ t1)} which are still 

at step 3 will receive a confirm reject for their unsuccessful pre-bids Bt2,0\{δ t1}. The 

auctioneer now has the bid δ t1 = prefer(T0, Bt2,0) allocated for the set of tasks T0, where δ t1 ≠ prefer(T0, Bt1,0). 

Situation (iv): The auctioneer sends the bidder bidder(δ t1) a provisionally reject message 

for its definitive bid δ t1, resulting in the protocol proceeding to step 2 for bidder 

bidder(δ t1) to submit an updated pre-bid if it desires. The auctioneer α  who is at step 3 

with another bidder bidder(prefer(T0, Bt2,0)) ≠ bidder(δ t1) sends this bidder a provisional 

grant for its now preferred bid prefer(T0, Bt2,0). The protocol proceeds to step 4, the 
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bidder bidder(prefer(T0, Bt2,0)) submits a definitive bid δ t2 for its provisionally granted 

bid prefer(T0, Bt2,0). bidder(δ t2) = bidder(prefer(T0, Bt2,0)). Again, there are four situations 

from step 5 as described above. Set t1 ←  t2 and select the situation (i), (ii), (iii) or (iv) as 

appropriate. 

Task allocation with PAP: 

Refer to the PAP specification in section 5.1 (Figure 21), and Definition 3. The 

auctioneer α  commences at step 1 by announcing the set of tasks T0, and the protocol 

proceeds to step 2. At time t1, the bidders Г  submit bids Bt1,0 in order to achieve T0 such 

that they are full bids, i.e. ∀k [bk,0 ∈ Bt1,0 ⇒ diff(T0, bk,0) = ∅], ignoring bidders that do 

not submit any bids (no communication). The protocol proceeds to step 3. Since we do 

not consider task withdrawals, rejection on bid submission and backtracking, in the 

context of the theorem, these speech acts or events (e.g. withdrawn, reject and 

backtracking) can be ignored at step 3. The auctioneer α  selects its most preferred bid, 

which is prefer(T0, Bt1,0) and sends the bidder bidder(prefer(T0, Bt1,0)) a provisional 

grant. The protocol proceeds to step 4 for α  and bidder(prefer(T0, Bt1,0)). Since bidders 

are not committed to their bids, the auctioneer does not need to reject the other bids 

Bt1,0\{prefer(T0, Bt1,0)} by bidders Г \{bidder(prefer(T0, Bt1,0))}. As a result of PAP’s 

bidding policy, bidders may submit updated better bids at time τ > t1 if they have an 

opportunity to submit a better bid than a previously submitted bid. Since we do not 

consider provisionally withdrawn bids (or can assume it is equivalent to withdrawn bids, 

indicating that a bid is not available), in the context of the theorem, this speech act can be 

ignored at step 4.  

At steps 4 and 5, there are three situations (i), (ii), and (iii) that are possible, which are 

analogous to those situations (i), (ii), and both (iii) and (iv) together, respectively, 

described above for CNP-ext: (i) At step 4 the bidder bidder(prefer(T0, Bt1,0)) sends a 

provisional grant accepted to commit to its bid prefer(T0, Bt1,0). The protocol proceeds 

to step 5. In this situation, no other bidder γ ∈ Г  where γ ≠ bidder(prefer(T0, Bt1,0)) has 

sent an updated better bid by time t2 > t1 that is better than the provisionally granted bid 

prefer(T0, Bt1,0), i.e. prefer(T0, Bt1,0) = prefer(T0, Bt2,0), and prefer(T0, Bt1,0) ∈ Bt2,0. The 

condition in the theorem for provisionally rejecting the provisionally granted bid 
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prefer(T0, Bt1,0) is not satisfied; (ii) At step 4 the bidder bidder(prefer(T0, Bt1,0)) sends a 

provisional grant accepted to commit to its bid prefer(T0, Bt1,0). The protocol proceeds 

to step 5. In this situation, some other bidder γ ∈ Г   where γ ≠ bidder(prefer(T0, Bt1,0)) 

submits an updated better bid by time t2 > t1 that is better than prefer(T0, Bt1,0), i.e. 

prefer(T0, Bt1,0) ≠ prefer(T0, Bt2,0), and prefer(T0, Bt1,0) ∈ Bt2,0. The condition for 

provisionally rejecting the provisionally granted bid prefer(T0, Bt1,0) is satisfied; (iii) At 

step 4 the bidder bidder(prefer(T0, Bt1,0)) sends a withdrawn message to withdraw the 

bid prefer(T0, Bt1,0). Therefore, prefer(T0, Bt1,0) ∉ Bt2,0 at time t2 > t1 since prefer(T0, 

Bt1,0) is withdrawn. 

Situation (i): The auctioneer sends the bidder bidder(prefer(T0, Bt1,0)) = bidder(prefer(T0, 

Bt2,0)) a confirm grant for its bid prefer(T0, Bt1,0) = prefer(T0, Bt2,0). Since bidders are not 

committed to their bids, the auctioneer does not need to reject the other bids 

Bt2,0\{prefer(T0, Bt2,0)} by bidders Г \{bidder(prefer(T0, Bt2,0))}. The auctioneer now has 

bid prefer(T0, Bt2,0) allocated for the set of tasks T0. 

Situation (ii): The auctioneer sends the bidder bidder(prefer(T0, Bt1,0)) a provisionally 

reject message for its bid prefer(T0, Bt1,0). The protocol proceeds to step 2, allowing the 

bidder bidder(prefer(T0, Bt1,0)) to submit an updated bid to replace its rejected bid 

prefer(T0, Bt1,0). The protocol proceeds to step 3. Again, in the context of the theorem, 

withdrawn, reject and backtracking speech acts can be ignored. The auctioneer α  sends 

the bidder bidder(prefer(T0, Bt2,0)) a provisional grant for its now preferred bid 

prefer(T0, Bt2,0). The protocol proceeds to step 4, and again, there are three situations 

from step 4 as described above. Set t1 ←  t2 and select the situation (i), (ii) or (iii) as 

appropriate. 

Situation (iii): The protocol proceeds to step 2, allowing the bidder bidder(prefer(T0, 

Bt1,0)) to send an updated bid to replace the withdrawn bid prefer(T0, Bt1,0). The protocol 

proceeds to step 3. Again, in the context of the theorem, withdrawn, reject and 

backtracking speech acts can be ignored. The auctioneer α  selects its most preferred bid, 

which is prefer(T0, Bt2,0) at time t2 > t1 and sends bidder bidder(prefer(T0, Bt2,0)) a 

provisional grant. The protocol proceeds to step 4, and again, there are three situations 

from step 4 as described above. Set t1 ←  t2 and select the situation (i), (ii) or (iii) as 
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appropriate. As mentioned above, bidder bidder(prefer(T0, Bt1,0)) that withdrew its bid 

prefer(T0, Bt1,0) sends an updated bid, which we will refer to as u, where bidder(u) = 

bidder(prefer(T0, Bt1,0)). We have:  

(iii-a) the updated bid u is the most preferred bid, i.e. u = prefer(T0, Bt2,0). u is then 

confirm granted at situation (i) after it is provisionally granted. We then have the 

same situation as situation (iii) in CNP-ext where a definitive bid that is submitted is 

different to the provisionally granted bid (which is effectively withdrawing the 

provisionally granted bid prefer(T0, Bt1,0) and submitting a new preferred bid u = 

prefer(T0, Bt2,0)) that is still better than other submitted bids at time t2. Thus this 

definitive bid u is confirm granted. 

(iii-b) In all other cases, which are: (1) The updated bid u is the preferred bid u = 

prefer(T0, Bτ,0)) at time t1 < τ < t2 and provisionally granted, but is not confirm 

granted due to situation (ii) where another updated better bid is submitted that is 

preferred, i.e. u ≠ prefer(T0, Bt2,0)). We then have situation (iv) in CNP-ext, where a 

definitive bid submitted is different to the provisionally granted bid (which is 

effectively withdrawing the provisionally granted bid prefer(T0, Bt1,0) and submitting 

a new bid u ≠ prefer(T0, Bt2,0)) which is not preferred at time t2. Thus u is 

provisionally rejected and prefer(T0, Bt2,0) by bidder bidder(prefer(T0, Bt2,0)) is 

provisionally granted; (2) The updated bid u is the preferred bid u = prefer(T0, Bτ,0)) 

at time t1 < τ < t2 and provisionally granted, but is not confirm granted due to 

situation (iii) where it is withdrawn again. In the context of the theorem, we ignore 

this situation because CNP-ext does not allow the situation where a bid is withdrawn 

more than once consecutively. CNP-ext only allows “withdrawn” bids when a bidder 

submits a different definitive bid to that which is provisionally granted (which is 

effectively withdrawing the provisionally granted bid prefer(T0, Bt1,0) and submitting 

a new definitive bid u). Since agents are committed to the updated definitive bid u, 

they cannot withdraw from it; (3) The updated bid u is the not the most preferred bid 

u ≠ prefer(T0, Bt2,0), then we have situation (iv) in CNP-ext, where a definitive bid 

submitted is different to the provisionally granted bid (which is effectively 

withdrawing the provisionally granted bid prefer(T0, Bt1,0) and submitting a new bid u 
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≠ prefer(T0, Bt2,0)) which is not preferred at time t2, and thus is u is not provisionally 

granted. Rather, prefer(T0, Bt2,0) by bidder bidder(prefer(T0, Bt2,0)) is provisionally 

granted. 

Final allocation for both protocols 

Both CNP-ext and PAP produce the same result from the same situations: 

• For situation (i) for both CNP-ext and PAP, the bid prefer(T0, Bt1,0) is 

provisionally granted at time t1, the same bid is confirm granted at time t2, such 

that the final allocation is prefer(T0, Bt1,0) = prefer(T0, Bt2,0). 

• For situation (iii) for CNP-ext and situation (iii-a) for PAP, after the bid prefer(T0, 

Bt1,0) is provisionally granted at time t1, it is withdrawn with a new bid b 

submitted, where b is the preferred bid at time t2. For CNP-ext, b is the definitive 

bid submitted that is different to prefer(T0, Bt1,0). For PAP, b is the updated bid 

send after the bidder withdraws the bid prefer(T0, Bt1,0). Thus b is confirm 

granted, and the final allocation is b = prefer(T0, Bt2,0) ≠ prefer(T0, Bt1,0), and 

bidder(b) = bidder(prefer(T0, Bt1,0)) = bidder(prefer(T0, Bt2,0)). 

• For situation (ii) for both CNP-ext and PAP, the after a bid prefer(T0, Bt1,0) is 

provisionally granted at time t1, another bid is preferred at time t2 before 

prefer(T0, Bt1,0) is confirm granted. So both protocols provisionally reject the bid 

prefer(T0, Bt1,0) and provisionally grant a new bid prefer(T0, Bt2,0). The protocol 

process continues until the situations corresponding to the first two dot points 

above arise and an allocation results. 

• For situation (iv) for CNP-ext and situation (iii-b) for PAP, after the bid prefer(T0, 

Bt1,0) is provisionally granted at time t1, it is withdrawn with a new bid b 

submitted where b is not the preferred bid prefer(T0, Bt2,0) at time t2. For CNP-

ext, b is the definitive bid submitted that is different to prefer(T0, Bt1,0). For PAP, 

b is the updated bid send after the bidder withdraws the bid prefer(T0, Bt1,0)). 

Therefore, the preferred bid prefer(T0, Bt2,0) ≠ b by bidder bidder(prefer(T0, Bt2,0)) 

is provisionally granted. The protocol process continues until the situations 

corresponding to the first two dot points above arise and an allocation results. 
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Therefore, both CNP-ext and PAP produce the same allocation, as indicated by the first 

two dot points above, for the set of tasks T0. 

Q.E.D. 

We have shown that PAP can solve planning problems that CNP, ECNP and CNP-ext are 

able to. The example in Definition 5 is used to show that CNP, ECNP and CNP-ext may 

not be able to solve planning problems that PAP is able to. 

Definition 5: An agent system consisting of a set of agents T     to solve a planning 

problem comprises an auctioneer α  ∈ T     and a set of bidders Г  = {γ1, γ2, γ3} ⊆ T     \ {α }. 

The auctioneer α  requires a set of tasks T0 achieved, such that T0 has two possible plans: 

T0 = {t1, t2, t3, t4} or T0 = {t5, t6}. The index j > 0 is used to denote new sets of tasks that 

are created in achieving T0 as the protocol (planning) proceeds. The three bidders γ1, γ2 

and γ3 are able to perform b1 = {t1, t3}, b2 = {t2, t4} and b3 = {t5}, respectively, for the 

auctioneer’s announced set of tasks T0. Therefore, only the plan T0 = {t1, t2, t3, t4} can be 

fully achieved with the available bids. The auctioneer’s preference among a set of 

submitted bids Bj for Tj is denoted prefer(Tj, Bj). In this example prefer(T0, {b1, b2, b3}) = 

b3 and prefer(T0, {b1, b2}) = b1. diff(Tj, bi) is a function that returns a set of tasks Tk where 

k > j which is the remaining set of tasks that the bid bi does not achieve from the set of 

tasks Tj. If Tk = ∅, then the bid bi fully achieves the set of tasks Tj. 

Lemma 1: PAP is able to solve the planning problem specified in Definition 5, if: 

• T     comprises a single auctioneer 

• PAP precludes withdrawals of bids and tasks (a static environment) and the 

rejection of bids on submission, and 

• the final plan found is suitable. 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21). PAP commences at step 1 

where the auctioneer α  announces the set of tasks T0 and proceeds to step 2. The bidders 

γ1, γ2 and γ3 submit bids b1, b2 and b3 to partially achieve the set of tasks T0. The protocol 

proceeds to step 3. Since we do not consider task withdrawals and rejection on bid 
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submission, in the context of the lemma, these speech acts (e.g. withdrawn and 

provisional reject) can be ignored at step 3. Since bids were submitted for the announced 

set of tasks T0, backtracking is not required. Therefore, the auctioneer α  selects its 

preferred bid, which is prefer(T0, {b1, b2, b3}) = b3, and sends bidder γ3 a provisional 

grant for its bid b3. The protocol proceeds to step 4 for the auctioneer α  and bidder γ3 – 

the other bidders γ1 and γ2 remain at step 3 in the negotiations with the auctioneer α . 

Since we do not consider bid withdrawals, in the context of the lemma, these speech acts 

(e.g. withdrawn and provisionally withdrawn) can be ignored at step 4. The bidder γ3 

accepts the provisional grant. Since the set of tasks T0 has not been completely 

achieved, the protocol takes control option (e) where the remaining set of tasks left to 

achieve T1 is re-announced back at step 1 in a new protocol process, where T1 = diff(T0, 

b3) = diff({t5, t6}, {t5}) = {t6}. The protocol proceeds to step 2, where no bidders are able 

to fully or partially perform the set of tasks T1, and therefore all bidders submit nothing – 

no communication. The protocol process for this set of tasks T1 therefore ends for the 

bidders (control option (a)). The protocol proceeds to step 3 for the auctioneer (control 

option (b)) and since no bids are available for the set of tasks T1, the auctioneer 

backtracks, and thus proceeds to step 5 of the protocol process for the set of tasks T0, 

and provisionally rejects b3 for T0. The protocol proceeds to step 2, allowing the bidder γ3 

to submit an updated bid for it rejected bid b3, where in the context of the lemma, bidder 

γ3 is unable to (b3 is its only bid). The protocol process for T0 ends for the bidder γ3 – no 

communication, control option (a). 

The auctioneer α  is still at step 3 with bidders γ1 and γ2, with bids b1 and b2, respectively. 

Again, since we do not consider task withdrawals and rejection on bid submission, in the 

context of the lemma, these speech acts (e.g. withdrawn and provisional reject) can be 

ignored at step 3. Since bids remain for the announced set of tasks T0, backtracking is not 

required. Therefore, the auctioneer α  selects its preferred bid, which is prefer(T0, {b1, b2}) 

= b1, and sends bidder γ1 a provisional grant for its bid b1. The protocol proceeds to step 

4 for the auctioneer α  and bidder γ1. Again, since we do not consider bid withdrawals, in 

the context of the lemma, these speech acts (e.g. withdrawn and provisionally withdrawn) 

can be ignored at step 4. The bidder γ1 accepts the provisional grant. Since the set of 
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tasks T0 has not been completely achieved, we task protocol control option (e) where the 

remaining set of tasks left to achieve T2 is re-announced back at step 1 in a new protocol 

process, where T2 = diff(T0, b1) = diff({t1, t2, t3, t4}, {t1, t3}) = {t2, t4}. The protocol 

proceeds to step 2 where the bidder γ2 submits bid b2 for T2, and the other bidders submit 

nothing – no communication, and task control option (a) to exit the protocol process for 

the set of tasks T2. The protocol proceeds to step 3. Again, since we do not consider task 

withdrawals and rejection on bid submission, in the context of the lemma, these speech 

acts (e.g. withdrawn and provisional reject) can be ignored at step 3. Since bids were 

submitted for the announced set of tasks T2, backtracking is not required. Therefore, the 

auctioneer α  selects its preferred bid, which is prefer(T2, {b2}) = b2, and sends bidder γ2 a 

provisional grant for its bid b2. The protocol proceeds to step 4 for the auctioneer α  and 

bidder γ2. Again, since we do not consider bid withdrawals, in the context of the lemma, 

these speech acts (e.g. withdrawn and provisionally withdrawn) can be ignored at step 4. 

The bidder γ2 accepts the provisional grant. 

At this stage, the set of tasks T2, and thus T0, has been completely achieved, i.e. diff(T2, 

b2) = diff({t2, t4}, {t2, t4}) =∅. Therefore, the protocol proceeds to step 5 of the protocol 

process for T2. In the context of the lemma, the final solution found is suitable, and 

therefore, the provisional reject speech act at step 5 can be ignored. The auctioneer α  can 

now confirm grant the provisionally granted bid b2 by bidder γ2 for the set of tasks T2. 

The protocol process then proceeds to step 5 of the previous protocol process for T0, 

where the auctioneer α  confirm grants the provisionally granted bid b1 by bidder γ1 for 

the set of tasks T0. Since there are no more previous protocol processes, the protocol 

exits, and a solution is found. 

Therefore, using PAP, we have found a solution to the planning and task allocation 

problem specified in Definition 5. The final plan for the set of tasks is T0 = {t1, t2, t3, t4}, 

with the plan of bids to achieve T0 is b1 = {t1, t3} and b2 = {t2, t4}, and thus the final 

allocation of bids b1 and b2 results. 

Q.E.D. 

Theorem 4: There exist planning problems that PAP is able to address which CNP and 

CNP-ext cannot. 
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Proof: 

Refer to the CNP and the CNP-ext specification in section 4.2, and Definition 5. At step 

1, the auctioneer α  announces a set of tasks T0, and the protocols proceed to step 2. At 

step 2 of both protocols, bidders must submit bids that fully achieve the set of tasks T0, 

which none of the bidders γ1, γ2 and γ3 are able to do. Therefore, the protocol exits with 

no task allocation for the set of tasks T0. 

According to Lemma 1, PAP is able to solve the planning (and task allocation) problem 

specified in Definition 5. 

Therefore PAP is able to address planning problems that CNP and CNP-ext are not. 

Note that in this proof, we have not considered examples of planning problems that 

require: 

1. Negotiations with multiple auctioneers simultaneously, withdrawals of tasks and 

bids, the updating of bids, rejection of bids and backtracking, which CNP does not 

allow and PAP does. 

2. Withdrawal of tasks, rejection of bids on submission, provisionally withdrawn 

bids, backtracking, and more than one consecutive withdrawal of bids by bidders, 

which CNP-ext does not allow and PAP does. 

Q.E.D. 

Theorem 5: There exists planning problems that PAP is able to address which ECNP 

cannot. 

Proof: 

Refer to the ECNP specification in section 4.7 (Figure 18), and Definition 5. At step 1, 

the auctioneer α  announces a set of tasks T0, and the protocols proceed to step 2. The 

bidders γ1, γ2 and γ3 submit bids b1, b2 and b3 to partially achieve the set of tasks T0. The 

protocol proceeds to step 3. The auctioneer α  selects its preferred bid, which is prefer(T0, 

{b1, b2, b3}) = b3, and sends bidder γ3 a provisional grant for its bid b3. The other bidders 

γ1 and γ2 receive a provisional reject for their bids b1 and b2, respectively. Since the set 

of tasks T0 has not been completely achieved, the protocol takes control option (a) where 
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the remaining set of tasks left to achieve T1 is re-announced back at step 1 in a new 

protocol process, where T1 = diff(T0, b3) = diff({t5, t6}, {t5}) = {t6}. The protocol proceeds 

to step 2, where no bidders are able to fully or partially perform the set of tasks T1. As 

ECNP does not allow backtracking at any stage in the planning (it only allows 

backtracking when a solution/plan is found and is deemed unsuitable) and expects a bid 

at step 2 in the protocol, ECNP is unable to continue with planning. Therefore, ECNP 

does not find a plan and task allocation for the set of tasks T0. 

According to Lemma 1, PAP is able to solve the planning (and task allocation) problem 

specified in Definition 5. 

Therefore PAP is able to address planning problems that ECNP is not. 

Note that in this proof, we have not considered examples of planning problems that 

require negotiations with multiple auctioneers simultaneously, withdrawals of tasks and 

bids, the updating of bids, and the rejection of bids on submission, which ECNP does not 

allow and PAP does. 

Q.E.D. 

5.3.4 Decentralised Depth-First Search with Dynamic Search Tree 

PAP allows auctioneers to perform a search equivalent to a centralised depth first search, 

i.e. selects the same bids/branches and passes through the same tasks/nodes,  where the 

search tree (the bids/branches available with each task/node) may change over time, 

except that PAP is able to perform it in a decentralised (distributed) fashion. 

Definition 6: An agent system consisting of a set of agents T     to solve a planning 

problem comprises an auctioneer α  ∈ T     and a set of bidders Г  ⊆ T     \ {α }. The 

auctioneer comprises a set of tasks Tj, where T0 is its initial set of tasks that it would like 

to achieve. The index j > 0 is used to denote new sets of tasks that are created in 

achieving T0 as the protocol (planning) proceeds. With the centralised planning case, the 

auctioneer α  at time τ has available a set of n suitable bids Bc
τ,j = {b1, …, bn} that it may 

use in order to achieve a set of tasks Tj. With the decentralised case, the auctioneer α  at 

time τ has the and same set of bids for Tj, except the bids are distributed among p bidders 
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Г τ = {γ1, …, γp}, i.e. bidder γi at time τ contains a set of suitable bids Bτ,j,i = {b1,i, …, bq,i}, 

q ≤ n, for the set of tasks Tj, where Bτ,j,1 ∪ Bτ,j,2 ∪ … ∪ Bτ,j,p = Bc
τ,j. At time τ, the 

auctioneer α  using PAP (decentralised case) contains a set of submitted bids Bs
τ,j by 

bidders Г τ', τ' ≤ τ for Tj, where Bs
τ,a excludes any previously withdrawn or rejected bids 

(the auctioneer α  discards these bids in our current implementation).  task_achieved(Tj, 

bi) is a predicate that is true if bid bi achieves the set of tasks Tj. diff(Tj, bi) is a function 

that returns a set of tasks Tk where k > j, which is the remaining set of tasks that the bid bi 

does achieve from the set of tasks Tj. plan_suitable is a predicate that is false if the 

current plan (selected bids) for T0 is not suitable (infeasible or bad solution), and hence 

backtracking is required. During the time that a bid bi is selected/granted for a set of tasks 

Tj, it cannot be withdrawn, i.e. if bi ∈ Bτ1,j was selected/granted at time τ1 for Tj, then 

∀y[bi ∈ By,j & τ1 ≤ i ≤ τ2] where τ2 is the time that bi is either rejected or executed to 

perform all or part of Tj. We assume that the bidding deadline in PAP is set large enough 

such that all bidding in the current bidding phase (step 2 of PAP) between bidders Г τ and 

the auctioneer α  are complete before PAP continues. Withdrawn bids and provisionally 

withdrawn bids are assumed equivalent, as in our current implementations. If bidders 

enter the system at time τe, we assume they acquire a list of all the previously announced 

tasks (if any) at time τ' < τe. 

Definition 7: order_bids(Tj, Bk) is a time independent function that will return a set of 

bids {b1, …, bm} from the set of bids Bk for the set of tasks Tj that are ordered from best to 

worse, which we denote b1 ≥ b2 ≥…≥ bm, where b1 is the most preferred bid and bm is the 

least preferred bid for the set of tasks Tj. B
r
τ,j,k is the set of rejected bids for bidder γk for 

the set of tasks Tj at time τ, such that Br
τ,j,k ⊆ «∀i≤τ Bi,j,k, and these bids are excluded from 

the ordered list of bids of Bτ,j,k for Tj, i.e. order_bids(Tj, Bτ,j,k) is equivalent to 

order_bids(Tj, Bτ,j,k\B
r
τ,j,k), but we will use the former notation. Similarly, Bwr

τ,j is the set 

of rejected or withdrawn bids by auctioneer α  for the set of tasks Tj at time τ, such that 

Bwr
τ,j ⊆ «∀i≤τ Bi,j,k, and these bids are excluded from the ordered list of bids of Bs

τ,j for Tj, 

i.e. order_bids(Tj, Bs
τ,j) is equivalent to order_bids(Tj, Bs

τ,j\B
wr

τ,j), but we will use the 

former notation. We assume the n bids in Bc
τ,j, and thus in Bτ,j,k and Bs

τ,j, all have unique 

preference values for any set of tasks Tj, i.e. b1 > b2 >…> bn, so there is always only one 



 157 

preferred bid for Tj at any time. The use of the function order_bids by the centralised 

auctioneer list of bids Bc
τ,j will return only a suitable and available ordered list of bids for 

Tj as the auctioneer has all information regarding bid suitability (e.g. selected bids and 

conflicts with other bids) and availability (e.g. if they are withdrawn). Therefore, the 

function order_bids used on a set of bidder’s bids Bτ,j,k will return a list of bids in the 

correct order, but may include “unsuitable” bids as additions, as they may be missing bid 

suitability information that the auctioneer possesses 17. Unsuitable bid b is a bid such that 

b ∉ order_bids(Tj, Bc
τ,j) & b ∈ order_bids(Tj, Bτ,j,k). Additionally, the function 

order_bids used on a set of auctioneer’s bids Bs
τ,j may include additional bids which are 

no longer available as the auctioneer does not have bidder information regarding the 

availability of the bids (due to the persistence policy). Unavailable bid b is a bid such that 

b ∉ order_bids(Tj, B
c
τ,j) & b ∈ order_bids(Tj, B

s
τ,j). 

Lemma 2: With PAP, if a bidder γk contains a set of bids at time τ for an auctioneer α ’s 

set of tasks Tj such that γk’s preferred bids, i.e. bid(s) on top of the ordered list 

order_bids(Tj, Bτ,j,k), are unsuitable, then the bidder γk will eventually submit either its 

best suitable bid b to the auctioneer α  for Tj or submit no suitable bid. 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21), and Definition 6 and Definition 

7.  In the context of the lemma, at time τ the bidder γk contains an ordered set of bids 

order_bids(Tj, Bτ,j,k) ={b1,k, b2,k, …, bq,k, b, bq+2,k, …, bu,k} for an auctioneer α ’s set of tasks 

Tj, where bids b1,k, …, bq,k, q≥1, are unsuitable, and u ≥ q where if u = q, no suitable bid b 

exists, and if u > q, then bid b is the best suitable bid for Tj. In the bidding phase for a set 

of tasks Tj for auctioneer α , each bidder γk must submit their best bid (if the task is 

initially announced) or next best bid (if arrived at step 2 after a bid was withdrawn or 

rejected the in following steps) at step 2 of PAP. According to the PAP specification, the 

bidder γk will submit its best bid for Tj, which is the bid at the top of the ordered list of 

                                                    

17 Ideally, the auctioneer should provide this information with the bid evaluation function which is used to 

determine the list order_bids, but this may not always be practicable. 
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bids for Tj, and hence γk submits bid b1,k at step 2 of the protocol, and the protocol 

proceeds to step 3. Since the bid b1,k is unsuitable, according to the PAP specification the 

auctioneer α  will provisionally reject the bid at step 3, resulting in the bidder proceeding 

back to step 2 to submit an updated bid to replace the rejected bid. The rejected bid is 

added to the list of rejected bids, b1,k ∈ Br
τ,j,k, and thus from Definition 7, the ordered list 

of bids for Tj now becomes order_bids(Tj, Bτ',j,k) ={b2,k, …, bq,k, b, bq+2,k, …, bu,k}, τ' > τ, 

which excludes the rejected bid b1,k. The bidder submits its next best bid, b2,k at step 2, 

and again the auctioneer α  will provisionally reject the bid at step 3, etc., until the bidder 

has bid bq,k provisionally rejected. At step 2, if no suitable bid exists, then the bidder will 

submit nothing (no communication), and thus no suitable bid would have been submitted 

for Tj by bidder γk. If a suitable bid b exists, then the bidder γk submits bid b at step 2 of 

the protocol. As the bid is now suitable, the auctioneer will not provisionally reject the 

bid at step 3, and will keep the bid as a possible option to achieve the set of tasks Tj. 

Therefore, bidder γk will submit the bid b, or no suitable bid, to the auctioneer α . 

Q.E.D. 

Lemma 3: If an auctioneer α  using PAP has a set of bids Bs
τ at time τ submitted for the 

set of tasks Tj, and its preferred bid(s) in this list, i.e. top most bid(s) in the list 

order_bids(Tj, Bs
τ,j), are withdrawn (no longer available), then the auctioneer will 

eventually arrive at either its most preferred and available bid bpa or no available bids for 

Tj. 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21), Definition 6 and Definition 7.  

In the context of the lemma, the auctioneer α  using PAP has a set of bids Bs
τ,j submitted 

from bidders Г τ', τ' ≤ τ, for the set of tasks Tj, such that the order of submitted bids are 

order_bids(Tj, B
s
τ,j) = {b1, …, bq, b

a, bq+2, …, bu}, where bids b1, …, bq are withdrawn (no 

longer available), and for u ≥ q, if u = q, then there are no available bids in the list, and if 

u > q, then ba is the next available bid in the list. The most preferred and available bid for 

Tj is either bpa, i.e. order_bids(Tj, B
c
τ,j) = { b

pa
, b2, b3, …}, or there are no available bids 

for Tj, i.e. order_bids(Tj, B
c
τ,j) = ∅. There are three cases, (i) ba

 = b
pa or (ii) ba

 ≠ b
pa or ba 
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does not exists but bpa does or (iii) bpa does not exists, and hence ba does not exist. With 

the set of bids Bs
τ,j at step 3 of PAP, in the context of the lemma, the auctioneer α  will 

attempt to provisionally grant a bid for Tj (the bidding deadline has passed, and all bids in 

the bidding phase are received, and hence withdrawn and provisionally reject speech acts 

can be ignored, and in the context of the lemma, Bs
τ,j ≠ ∅, so backtracking event can be 

ignored). The auctioneer α  will attempt to provisionally grant its preferred bid at step 3 of 

PAP, which is b1, and proceeds to step 4. Since the bid b1 is withdrawn, then the bidder 

associated with the bid (say γk) will send a withdrawn message, and the protocol proceeds 

to step 2 for the bidder γk to send an updated bid, which γk may not (no communication) 

or may submit its next best suitable bid bsb (from Lemma 2), and the protocol proceeds to 

step 3. 

Case (i): When ba = bpa is the most preferred bid, then there are no available bids that are 

better than b
a, and therefore b

a
 > b

sb. Also, the withdrawn bid is added to the list of 

rejected and withdrawn bids, b1 ∈ B
wr

τ,j, and thus from Definition 7, the ordered list of 

bids for Tj now becomes order_bids(Tj, B
s
τ',j) ={b2, …, bq, b

a, bq+2, …, bsb, …, bu}, if an 

updated bid bsb is sent or order_bids(Tj, Bsτ',j) ={b2, …, bq, b
a, bq+2, …, bu} if no updated 

bid bsb sent, for  τ' > τ, which excludes the (provisionally) withdrawn bid b1. The 

auctioneer α  will attempt to provisionally grant its next preferred bid, which is b2, and the 

same process as described above will occur until bq is withdrawn, and the auctioneer will 

be at step 3 with the list of bids order_bids(Tj, Bsτ,j) = { b
a
, bq+2, …, bu}. Therefore, the 

auctioneer α  has arrived at its most preferred bid and available bid ba
 = b

pa, which is at 

the top of the list of ordered bids for the set of tasks Tj, ready for the auctioneer to 

provisionally grant. 

Case (ii): When ba ≠ bpa or ba does not exist and bpa does, then the most preferred and 

available bid bpa has not been submitted by a bidder γz because at time ts < τ, there was 

another bid which was better than bpa, i.e. order_bids(Tj, Bts,j,z) ={b1,z, …, bq,z, b
pa, bq+2,z, 

…, bu,z}, or bpa did not exist then, so order_bids(Tj, Bts,j,z) ={b1,z, …, bu,z} (still, b1,z > bpa, 

because if bpa > b1,z, when bpa arrived in the set of possible bids Bta,j,z, ts < ta ≤ τ, from 

PAP’s bidding policy, bpa would be submitted to α  as an updated better bid, and thus we 

would have case (i) above). The bid b1,z would have been submitted for Tj at time ts, and 
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now the bid b1,z is withdrawn, so bidder γz now has order_bids(Tj, Bτ,j,z) ={ b
pa

, b2,z, …, 

bu,z}. Since b1,z > bpa and bpa > ba (if ba exists), then ∃y[by ∈ order_bids(Tj, B
s
τ,j) & by > 

ba & by = b1,z] if b
a exists, or ∃y[by ∈ order_bids(Tj, B

s
τ,j) & by = b1,z] if b

a does not exist. 

Therefore, one of the bids {b1, …, bq} in order_bids(Tj, B
s
τ,j) described above is from the 

bidder γz which submitted the withdrawn bid b1,z and has bid b
pa. So, continuing from 

above (step 3 and receiving an updated bid bsb or not), if the updated bid bsb is submitted 

and is from a bidder γj ≠ γz, then since bpa is the most preferred bid, bpa > bsb, and since 

b1,z > bpa, then b1,z > bsb, and therefore we will arrive at the withdrawn bid b1,z before the 

available updated bid bsb. If no updated bid bsb is submitted, then we will still arrive at the 

withdrawn bid b1,j before an available bid (if one exists). Also, the withdrawn bid is 

added to the list of rejected and withdrawn bids, b1 ∈ B
wr

τ,j, and thus from Definition 7, 

the ordered list of bids for Tj now becomes order_bids(Tj, B
s
τ',j) ={b2, …, bq, b

a
, bq+2, …, 

bu}, τ' > τ and u ≥ q, which excludes the withdrawn bid b1, where b1,z ∈ {b2, …, bq} and 

bsb ∈ {b1,z, …, bu}\{b1,z} (if bsb was sent). The auctioneer α  will attempt to provisionally 

grant its next preferred bid, which is b2, and the same process as described above will 

occur, until withdrawn bid be = b1,z, e ≤ q, is provisionally granted from bidder γz (this 

may occur with the first withdrawn bid b1). Therefore, the updated bid bsb by bidder γz 

will be the bid at the top of its preference order, and from above, order_bids(Tj, Bτ'',j,z) ={ 

b
pa, b2,z, …, bu,z}, τ'' > τ (assume bid bpa is still preferred at time τ''), and hence bsb = bpa. 

The auctioneer will be at step 3, and the withdrawn bid be will be added to the list of 

rejected and withdrawn bids, be ∈ Bwr
τ'',j. There are two possibilities: (a) the ordered list 

of bids for Tj now becomes order_bids(Tj, B
s
τ''',j) ={be+1, …, bpa, …, bu}, τ''' > τ, i.e. there 

are withdrawn bids preceding bid b
pa, which in this situation, we have case (i) above, 

which states that eventually the auctioneer α  will arrive at the available and preferred bid 

b
pa; (b) the ordered list of bids for Tj now becomes order_bids(Tj, B

s
τ''',j) ={ b

pa
, …, bu}, 

τ''' > τ, and thus the auctioneer α  has arrived at the available and preferred bid bpa. 

Case (iii): When there are no available bids, bidder γk is unable to submit an updated bid, 

and therefore, no updated bid bsb is sent at step 3. The withdrawn bid is added to the list 

of rejected and withdrawn bids, b1 ∈ B
wr

τ,j, and thus from Definition 7, the ordered list of 
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bids for Tj now becomes order_bids(Tj, B
s
τ',j) ={b2, …, bq}, as u = q. At step 3, the 

auctioneer will go through the same process with withdrawn bid b2, attempting to 

provisionally grant b2 at step 3, finding that b2 is withdrawn at step 4 and receiving no 

updated bid at step 2, etc., until it arrives at bid bq and provisionally grants bq. Auctioneer α  will receive a withdrawn message for bq and proceed to step 2 where no updated bid is 

submitted. The protocol proceeds to step 3 where the auctioneer has no remaining bids, 

and hence no available bids for its set of tasks Tj. 

Therefore, during provisionally granting a bid for an auctioneer α  set of tasks Tj, and α ’s 

most preferred bid(s) are withdrawn, the auctioneer will eventually arrive at either its 

most preferred and available bid bpa, or no bids, when using PAP. 

Q.E.D. 

Lemma 4: For any announced set of tasks Tj at time τ, an auctioneer using PAP will 

receive its preferred bid bpb
 for Tj, if one exists, from one of the available bidders during 

initial bidding, or will receive no bids for Tj. 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21), Definition 6 and Definition 7. 

For auctioneer α ’s announced set of tasks Tj at time τ, α ’s most preferred bid of the 

compete set of bids Bc
τ,j  is given by order_bids(Tj, B

c
τ,j) = { b

pb, b2 …, bw}, w ≤ n if an 

available bid exists, and by order_bids(Tj, B
c
τ,j) =∅ if no available bids exists. When a 

set of tasks Tj is received by a bidder γk ∈ Г τ, the protocol specification states that it will 

submit its best (preferred) bid for Tj. Therefore, each bidder γk will sort their bids Bτ,j,k, to 

obtain an ordered list of bids order_bids(Tj, Bτ,j,k) = {b1,k, b2,k, …, bu,k}, u  ≥ 0, and each 

bidder  γk will submit the bid at the top of the order, b1,k if u > 0 (bid exists) or will 

submit nothing if u = 0 (no available bid exists by bidder γk). 

If no available bid exists for Tj, i.e. order_bids(Tj, B
c
τ,j) =∅, then each bidder γk either (i) 

order_bids(Tj, Bτ,j,k) = ∅ or (ii) order_bids(Tj, Bτ,j,k) = {b1,k, b2,k, …, bu,k}, where all b1,k, 

…, bu,k are unsuitable. Therefore when the set of tasks Tj is announced at step 1 of PAP, 

then for bidders Γ(i) ⊆ Г τ with case (i) above, it is not able to submit any bids for Tj, and 

for the rest of the bidders Γ(ii) ⊆ Г τ that have case (ii) above, from Lemma 2, each bidder 
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γk ∈ Γ(ii) will submit all their unsuitable bids (which will be provisionally rejected) until 

they have no suitable bids to submit, effectively resulting in the submission of no bids. 

Therefore, the auctioneer α  will not have any available bids at step 3 for the set of tasks 

Tj. 

If an available bid does exist order_bids(Tj, Bc
τ,j) ≠ ∅, from Definition 6, Bτ,j,1 ∪ Bτ,j,2 

∪…∪ Bτ,j,p = Bc
τ,j, and since bpb ∈ Bc

τ,j, then ∃k[bpb ∈ Bτ,j,k], i.e. one of the bidders γk 

must hold bid bpb. bpb is preferred over all γk’s bids for Tj, i.e. ∀y[bpb ∈ order_bids(Tj, 

Bτ,j,k) &  by ∈ order_bids(Tj, B
c
τ,j) & by ∈ order_bids(Tj, Bτ,j,k) & bpb ≠ by ⇒ bpb > by]. 

There are two cases: 

(a) There are no additional “unsuitable” bids which appear in order_bids(Tj, Bτ,j,k), 

b
pb ∈ Bτ,j,k, that have a greater preference than b

pb, i.e. ∀y[by ∉ order_bids(Tj, 

Bc
τ,j) & by ∈ order_bids(Tj, Bτ,j,k) ⇒ bpb > by] where by are unsuitable bids. If this 

is the case, then the bid bpb is the at the top of the ordered list of bids for the set of 

tasks Tj (the best bid), i.e. ∀y[by ∈ order_bids(Tj, Bτ,j,k) & bpb ≠ by ⇒ bpb > by], 

and order_bids(Tj, Bτ,j,k) = {b
pb, b2,k, …, bu,k}. Therefore, bidder γk will send its 

best bid bpb to the auctioneer. 

(b) There are additional “unsuitable” bids which appear in order_bids(Tj, Bτ,j,k), b
pb ∈ 

Bτ,j,k, that have a greater preference than bpb, i.e. ∃y[by ∉ order_bids(Tj, B
c
τ,j) & by 

∈ order_bids(Tj, Bτ,j,k) & by > b
pb] where by are unsuitable bids. Therefore, we 

have order_bids(Tj, Bτ,j,k) ={b1,k, …, bq,k, b
pb, bq+2,k, …, bu,k}, q≥1, and q bids b1,k to 

bq,k are the unsuitable bids. According to Lemma 2, the bidder γk will eventually 

send the bid bpb to the auctioneer α  in the current bidding phase. 

Therefore, in both cases (a) and (b) above, the auctioneer will receive its preferred bid bpb 

for the initial announcement of the set of tasks Tj at time τ if a bid is available. Therefore, 

for the initial announcement of the set of tasks Tj at time τ, the auctioneer α  will receive 

its most preferred bid bpb or will receive no bids, at step 3 of PAP. 

Q.E.D. 
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Lemma 5: When an auctioneer backtracks to the set of tasks Tj at time τ using PAP, 

requiring it to provisionally reject its previously provisionally granted bid br from bidder 

γk, where b
r was the auctioneer’s most preferred bid for Tj at time 

ξ
 < τ, then the 

auctioneer will obtain (receive or have held) its next preferred available bid bp for the set 

of tasks Tj, or will have no further available bids for Tj. We assume the auctioneer allows 

enough time for bidders to process and submit their updated bids, if one exists, before 

proceeding with planning (i.e. bidding deadline is set conservatively). 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21), Definition 6 and Definition 7. 

At time τ bid br by bidder γk is provisionally rejected for the set of tasks Tj, therefore the 

rejected bid is added to the list of rejected bids for both the bidder γk and auctioneer α , i.e. 

b
r ∈ Br

τ,j,k and br ∈ Bwr
τ,j. In the centralised case, the auctioneer α ’s new preferred bid for 

set of tasks Tj at time τ of the compete set of bids Bc
τ,j if one is available is order_bids(Tj, 

Bc
τ,j) = {b

p, b2 …, bw}, w ≤ n-1, or is order_bids(Tj, B
c
τ,j) =∅ if no further bid for Tj is 

available, where the ordered lists now excludes bid br. 

If a bid is available, order_bids(Tj, B
c
τ,j) ≠ ∅, from Definition 6, Bτ,j,1 ∪ Bτ,j,2 ∪…∪ Bτ,j,p 

= B
c
τ,j, and since bp

 ∈ B
c
τ,j, ∃y[bp

 ∈ Bτ,j,y]. After the provisional rejection, which occurs at 

step 5 of PAP, the protocol proceeds to step 2 where the bidder γk is able to submit an 

updated bid, which we denote bu
, that is suitable (from Lemma 2) or submit nothing (no 

communication). The protocol then proceeds to step 3. There are three cases: 

Case (1): The bid bp was available at time 
ξ

, i.e. bp ∈ Bcξ
,j, but is not one of the bids held 

by the provisionally rejected bidder γk, i.e. b
p
 ∉ Bξ

,j,k & b
r
 ∈ Bξ

,j,k, but b
p is held by 

another bidder γz, where z ≠ k and  b
p
 ∈ Bξ

,j,z. A few situations are possible: (a) At time 
ξ

, 

the bid bp was at the top of the list of ordered bids for Tj by bidder γz, i.e. order_bids(Tj, 

Bξ
,j,z) = { b

p
, b2,z, …, bk,z}, and therefore, bp has been already sent by γz as bidders in PAP 

send their best bid for a task, and the auctioneer therefore already has bid bp. Note that at 

time 
ξ

, there could have been unsuitable bids above bp, i.e. order_bids(Tj, Bξ
,j,z) = {b1,z, 

…, bq,z, b
p, bq+2,z, …, bu,z}, where b1, …, bq are unsuitable for Tj, but from Lemma 2, bid bp 

will eventually be placed on top of the bid order and be submitted to the auctioneer α . If 
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the bid bp is not at the top of the auctioneer’s bid preference order order_bids(Tj, B
s
τ,j) = 

{b1, …, bq, b
p
, bq+2, …, bu}, then it is because the bids b1, …, bq that are above b

p are 

withdrawn (in the context of this lemma, bp is the most preferred available and suitable 

bid, hence any better bids held by the auctioneer, Bs
τ,j, are withdrawn), and from Lemma 

3, the auctioneer will eventually arrive at bid bp. (b) At time 
ξ

, the bid bp was not at the 

top of the list of ordered bids for Tj by bidder γz, i.e. order_bids(Tj, Bξ
,j,z) = {b1,z, …, bq,z, 

b
p
, b2,z, …, bu,z}, and bid b1,z was sent for Tj, but at time τ, b1,z is withdrawn (in the context 

of this theorem, bp is the most preferred available and suitable bid, hence any better bids 

by the auctioneer are withdrawn, and any better bids by the bidder are unsuitable), so b1,z 

∈ order_bids (Tj, B
s
τ,j), and ∀y[(by ∈ Bs

τ,j & by) > bp ⇒ withdrawn(by)], b1,z > bp, where 

withdrawn(by) signifies that bid by is withdrawn. Therefore, the top one or more preferred 

bids by the auctioneer, order_bids (Tj, Bs
τ,j), are withdrawn. From Lemma 3, the 

auctioneer will eventually arrive at bid b
p, sent by bidder γz, for either possible γz’s 

ordered list – order_bids(Tj, Bτ,j,z) = { b
p, b2,z, …, bu,z}, u ≥ 1, or order_bids(Tj, Bτ,j,z) = 

{b1,z, …, bq,z, b
p, bq+2,z, …, bu,z}, u ≥ q+1, where bids b1, …, bq are unsuitable for Tj. In 

both cases (a) and (b), since bp is the preferred bid, then bp > bu if an updated bid bu is 

submitted by bidder γk. 

Case (2): The bid bp was available at time 
ξ

, i.e. bp ∈ Bcξ
,j, and is one of the bids held by 

the provisionally rejected bidder γk, i.e. bp ∈ Bξ
,j,k & br ∈ Bξ

,j,k. Once the bid br is rejected, 

the bid order for γk becomes either: (a) order_bids(Tj, Bτ,j,k) = { b
p, b2,k, …, bu,k}, u ≥ 1, in 

which case the updated (next best) bid sent by γk is bp, i.e. bu = bp; (b) order_bids(Tj, 

Bτ,j,k) = {b1,k, …, bq,k, b
p, bq+2,k, …, bu,k}, u ≥ q+1, where bids b1, …, bq are unsuitable for 

Tj (in the context of this theorem, b
p is the most preferred available and suitable bid, 

hence any better bids by the bidder are unsuitable), therefore, the updated (next best) bid 

from bidder γk is b1,k, i.e. bu = b1,k, which is not suitable for Tj, and from Lemma 2, the 

bidder will eventually send bid bp. 

Case (3): The bid bp was not available at time 
ξ

, i.e. bp ∉ Bcξ
,j, but became available at a 

later time, bp ∈ Bc
τ',j, 

ξ
 < τ' ≤ τ. Therefore, a bidder γz acquired the bid bp at time τ'. There 

are three possible situations: (1) Bidder γz ≠ γk did not send any bids previously as it did 
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not have any bids to submit, therefore order_bids(Tj, Bt,j,z) = ∅, t < τ' and order_bids(Tj, 

Bt,j,z) = { b
p }, t ≥ τ'. According to PAP’s bidding policy, if a bid becomes available that is 

better than the worst previously sent bid, then the bidder should send this updated better 

bid. As no bids were sent previously, any bid is better than no bid. Hence bidder γz sends 

the bid b
p at time τ' < τ, and thus the auctioneer should already have the bid b

p. (2) 

Bidder γz acquired the bid b
p after it submitted a previous bid(s), which the worst 

submitted bid is bw, where bp > bw. According to PAP’s bidding policy, if a bid becomes 

available that is better than the worst previously sent bid, then the bidder should send this 

updated better bid. Hence bidder γz sends the bid bp at time τ' < τ, and thus the auctioneer 

should already have the bid bp; (3) Bidder γz ≠ γk acquired the bid bp after it submitted a 

previous bid(s), which is the worst submitted bid is bw, where bp
 < b

w, in which case bw is 

currently withdrawn at time τ (in the context of this lemma, b
p is the most preferred 

available and suitable bid, hence any better bids held by the auctioneer B
s
τ,j, are 

withdrawn), so bw ∈ order_bids (Tj, Bs
τ,j), and ∀y[(by ∈ Bs

τ,j & by > b
p) ⇒ 

withdrawn(by)], where withdrawn(by) signifies that bid by is withdrawn. Therefore, the 

top one or more preferred bids by the auctioneer, order_bids (Tj, B
s
τ,j), are withdrawn. 

From Lemma 3, the auctioneer will eventually arrive at bid b
p, sent by bidder γz, for 

either possible γz’s ordered list – order_bids(Tj, Bτ,j,z) = {b
p, b2,z, …, bu,z}, u ≥ 1, or 

order_bids(Tj, Bτ,j,z) = {b1,z, …, bq,z, b
p, bq+2,z, …, bu,z}, u ≥ q+1, where bids b1, …, bq are 

unsuitable for Tj. (4) Bidder γz = γk acquired the bid b
p after it submitted a previous 

bid(s), which the worst submitted bid is bw, where bp < bw, in which case bw is either the 

bid that was provisionally rejected, i.e. bw = br, or bw is another bid submitted in addition 

to br for Tj that must be currently withdrawn at time τ  (in the context of this lemma, bp is 

the most preferred available and suitable bid, hence any better bids held by the 

auctioneer Bs
τ,j, are withdrawn). If bw

 = b
r, we have case (2) above, ignoring the fact that 

bid bp arrived later. If bw
 ≠ b

r, then we have situation (3) above (in case (3)), ignoring the 

fact that γz ≠ γk. Therefore, the auctioneer will receive bid b
p for Tj. For all situations, 

since bp is the preferred bid, then bp
 > b

u if an updated bid bu
 ≠ bp is submitted by bidder 

γk. For situations (1) and (2), if the bid b
p is not at the top of the auctioneer’s bid 

preference order order_bids(Tj, B
s
τ,j) = {b1, …, bq, b

p
, bq+2, …, bu}, this is because the 
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bids b1, …, bq that are above bp are withdrawn (in the context of this lemma, bp is the 

most preferred available and suitable bid, hence any better bids held by the auctioneer, 

Bs
τ,j, are withdrawn), and from Lemma 3, the auctioneer will eventually arrive at bid bp. 

Therefore, in all three cases, the auctioneer using PAP will obtain its most preferred bid 

b
p for the set of tasks Tj at time τ when it backtracks to Tj, if an available bid exists for Tj. 

If no available bid exists for Tj, i.e. order_bids(Tj, B
c
τ,j) = ∅, then there are two cases: (i) 

order_bids(Tj, B
s
τ,j) = ∅, (ii) order_bids(Tj, B

s
τ,j) = {b1, …, bq} where bids b1 …, bq are 

withdrawn. After the provisional rejection of b
r, which occurs at step 5 of PAP, the 

protocol proceeds to step 2 where the bidder γk is able to submit an updated bid bu that is 

suitable (from Lemma 2) or submit nothing (no communication). Since there are no 

available bids for Tj, from Lemma 2, no suitable updated bid bu will be submitted by γk. 

The protocol then proceeds to step 3. For case (i), the auctioneer α  is left with no 

available bid for Tj. For case (ii), from Lemma 3, the auctioneer will eventually be left 

with no available bid for Tj. 

Therefore, when the auctioneer α  backtracks to the set of tasks Tj at time τ, it will either 

obtain its next preferred bid bp for Tj, or have no further bids available for Tj, at step 3 of 

PAP. 

Q.E.D. 

Theorem 6: PAP allows an auctioneer to produce the same plan (set of bids to achieve an 

auctioneer’s task) as a centralised depth-first search with a dynamic search tree. In the 

decentralised (PAP) case, the auctioneer acquires bids from a set of bidders to achieve its 

initial set of tasks T0. In the centralised case, the auctioneer holds all the possible bids that 

are available in the decentralised case, and can perform a depth-first search on the bids in 

order to achieve its initial set of tasks T0. In both cases, the bids, and hence the branches 

in the search tree that the auctioneer is performing the depth first search on, may change 

with time (except for selected/granted bids/branches). 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21), Definition 6 and Definition 7. 
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Centralised Depth First Search 

Stages in depth first search: 

(1) Condition: 

a. If Tj is a new set of tasks (or node in search tree, initially Tj 
←  T0), find the 

list of bids order_bids(Tj, B
c
τ,j) = {bp, b2, …, bn}, n ≥ 0 (these bids are the 

branches of the search tree from the node Tj) to obtain the auctioneer α ’s 

most preferred (available and suitable) bid bp for Tj at time τ. 

b. Else (arrive from backtracking at stage 2.b or 2.a.ii.2, and thus bid br is 

deselected for Tj) find the new list of bids order_bids(Tj, B
c
τ,j) = {bp, b2, 

…, bn}, n ≥ 0, excluding the backtracked bid br (br is discarded), i.e. br ∉ 

order_bids(Tj, B
c
t,j) for t ≥ τ, to obtain the auctioneer’s α  most preferred 

(available and suitable) bid bp for Tj at time τ. 

(2) Condition: 

a. If bids are available for selection (n ≥ 1) for Tj AND plan_suitable: 

i. Select the bid bp. 

ii. Condition: 

1. If task_achieved(Tj, b
p
) & plan_suitable, then exit (success) 

– the plan for the set of tasks T0 consists of the selected 

bids. 

2. Else, if task_achieved(Tj, bp) & ¬ plan_suitable, then 

backtrack to Tj by deselecting bid br = bp for Tj, i.e. 

backtracked back to Tj. Go to stage (1). 

3. Else, the new set of tasks that must be achieved in order to 

achieve T0 is Tj 
←  diff(Tj, bp), i.e. the child node of 

bid/branch bp. Go to step (1) 

b. Else no bids are available for Tj (n = 0, an infeasible solution) or 

¬plan_suitable: 

i. Backtracking required. Condition: 

1. If Tj = T0 (initial/root task/node), then backtracking from 

root node, so exit (failure, no solution found). 
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2. Else, backtrack to previous set of tasks Tc by deselecting 

bid br for Tc (with Tc as parent node of branch/bid br) and 

discard Tj (child node of branch/bid br). Tj 
←  Tc, go to 

stage (1). 

PAP Performing the Depth-First Search 

We will show that PAP performs equivalent stages that the centralised depth first search 

performs. Note that the dynamic bids can simulate bidders negotiating with other 

auctioneers at the same time as negotiating with auctioneer α  – i.e. bids are withdrawn 

due to bids being provisionally/confirm granted by other auctioneers. Additionally, if 

bidders during PAP submit bids for a set of tasks Tj that was involved in backtracking, 

the auctioneer will send the bidder a withdrawn message to inform the bidder that the 

task is no longer available. In the following proof, we ignore any occurrences of this, as it 

does not affect the planning. 

 

(1) Condition: 

a. [Start – achieve initial task T0] PAP commences at step 1 at time τ with 

the task announcement of the initial set of tasks T0. From Lemma 4, the 

auctioneer will receive its most preferred (available and suitable) bid bp 

from the set of bidders Г τ for T0, or will receive no bids for T0, and arrives 

at step 3 of PAP. 

[New set of tasks Tj to achieve, from stage 2.a.ii.3] For any following 

tasks Tj that need to be achieved, because a bid was selected for a previous 

task that did not achieve the complete task, then a new PAP protocol 

process is started to achieve Tj, which commences at step 1 at time τ with 

the task announcement of Tj. From Lemma 4, the auctioneer will obtain its 

most preferred (available and suitable) bid bp from the set of bidders Г τ for 

Tj, or will have no bids for Tj, and arrives at step 3 of PAP. 

b. [Backtrack to Tj, from stage 2.b or 2.a.ii.2 below] After backtracking at 

time τ (bid br is provisionally rejected, and discarded, for Tj at step 5), 

from Lemma 5, the auctioneer α  will obtain its next best/preferred 
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(available and suitable) bid bp for task Tj, or will have no bids remaining 

for Tj, and arrives at step 3 of PAP. 

(2) Condition: 

a. [Bid b
p
 available for Tj  AND plan_suitable]: 

i. At step 3 of PAP, bid bp by bidder γk is provisionally granted, and 

the Protocol proceeds to step 4. Since the bid bp is available, it is 

not withdrawn, and hence bidder γk should not send a withdrawn or 

provisionally withdrawn message. Therefore, at step 4, the bidder 

γk should accept the provisional grant for its bid bp. 

ii. Condition: 

1. If task_achieved(Tj, bp) & plan_suitable, then the 

auctioneer α  has found a suitable plan for the set of tasks T0 

which consists of the provisionally granted bids. PAP will 

proceed to step 5 (control path (f)), where all the 

provisionally granted bids are confirm granted. The 

protocol exits (successfully). 

2. Else, if task_achieved(Tj, bp) & ¬ plan_suitable, then the 

current plan that fully achieves T0 is not suitable. The 

protocol proceeds to step 5 (control path (f)) and the bid br 

= bp for Tj by bidder γk is provisionally rejected, i.e. 

backtracked back to Tj. The protocol proceeds to step 2 (for 

task Tj). Go to stage (1). 

3. Else, the new set of tasks that must be achieved in order to 

achieve T0 is Tj 
←  diff(Tj, b

p
). Since the task is not 

completely achieved, then take control option (e) back to 

step 1 of a new protocol process for new task Tj, go to step 

(1). 

b. [Bid b
p
 not available for Tj  OR  ¬¬¬¬plan_suitable]: 

i. Backtracking required at step 3 of PAP. Condition: 
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1. If Tj = T0 (auctioneer α ’s initial set of tasks), then PAP 

specification states that the protocol takes control path (c) 

and exits the protocol (failure, no solution found). 

2. Else, take control option (d) and proceed to step 5 of the 

previous protocol process, for the set of tasks Tc. 

Provisionally reject bid br for Tc, and discard br and Tj. 

Proceed to step 2 of Tc’s protocol process, make Tj 
←  Tc, 

and go to step (1). 

Therefore, PAP performs the equivalent stages as the centralised depth first search, and 

thus, PAP performs a decentralised (distributed) depth first search on a dynamic search 

tree (where the branches/bids change with time). 

Q.E.D. 

5.3.5 Time Complexity 

PAP allows an auctioneer to perform a depth-first search (Theorem 6) in order to find a 

plan and task allocation to achieve its set of tasks. The worse case time complexity for a 

depth-first search is exponential. If br is the branching factor, which is the maximum 

number of bids per set of tasks, and m is the depth of the tree, which is the maximum 

number of bids required to achieve the auctioneer’s set of tasks, the maximum number of 

bids that must be considered (e.g. searched) before a solution is found is given by 

(Russell and Norvig 1995) 

Eq 4: Maximum number of bids to consider =∑
=

m

i

ibr
1

 

and therefore, the time complexity is of order (Russell and Norvig 1995) 

Eq 5: Time complexity = ( )mbrO   

A depth first search is only likely to get close to the worst case time complexity if it is 

used in a domain where there are few possible solutions (Russell and Norvig 1995). 

Therefore, if PAP is used in a domain where there are many possible solutions that could 

be arrived at, and since a depth first search uses minimal backtracking (usually only if an 
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infeasible solution is encountered, and therefore a fairly greedy planning approach), a 

solution should be found relatively quickly, but most likely at the expense of the quality 

of the solution. 

∆τ = di + pgadi, is the sum of the bidding deadline di and the provisional grant 

acceptance deadline pgadi, which is the maximum time duration that must pass for the 

planning to progress in PAP 18. The auctioneer waits less than ∆τ before either: selecting 

a bid for a task, initially or during backtracking; when backtracking, as the auctioneer 

creates a new task and waits less than ∆τ before backtracking; or when bids are 

provisionally rejected 19 or (provisionally) withdrawn, to wait for an updated bid to be 

sent to replace the rejected or withdrawn bid. For each branch that requires backtracking, 

the auctioneer must wait 2 � ∆τ. The actual time for the auctioneer to find a plan to achieve 

its set of tasks is therefore: 

Eq 6: Planning time ≤ ττττ ∆⋅−⋅+=∆⋅−∆⋅⋅+∆⋅ )2(2 cswcsw brbrbrbrbrbr  

where brw is the total number of bids (or branches in the search tree) that were 

provisionally rejected or withdrawn, brs is the total number of bids searched in the 

planning tree, and brc (≤ m) is the total number of bids in the path of the final plan (hence 

are searched but did not require backtracking as they are confirm granted). Using Eq 4 

and Eq 6, the worst case planning time is when all the bids except the final plan (confirm 

granted bids) are backtracked, i.e. no withdrawn or rejected bids, as backtracked bids 

consume twice the time, therefore we have: 

Eq 7: Worst case planning time = mbr
m

i

i ⋅∆−⋅∆⋅ ∑
=

ττ
1

2
≈

 ∑
=

⋅∆⋅
m

i

ibr
1

2 τ  

                                                    

18 Assume that di commences at the beginning of the task announcement at step 1, and pgadi commences at 

the beginning of the provisional grant at step 3 of the PAP. Assume time to confirm grant or provisionally 

reject bids at step 5 is negligible compared to the overall planning time. 

19 This only includes bids that are provisionally rejected for the current set of tasks (i.e. the current protocol 

process) since bids can be sent anytime for another (previous) set of tasks and rejected. 
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where br = brs is the total number of bids that are searched, rejected or withdrawn in the 

planning tree. 

The planning time is dependent on the size of the planning tree, and hence the amount of 

backtracking required, and the duration ∆τ. ∆τ should consider: (i) communication time 

to send tasks, bids, the provisional grant and the provisional grant acceptance; (ii) the 

computation time for bidders to form, process and find its best bid for the auctioneer, and 

to decide whether it will, or can, accept the provisional grant and commit to the bid. 

Ideally, to minimise planning time, ∆τ should be as small as possible such that there is 

just enough time for agents to communicate and complete their computation.  

5.3.6 Communication Requirements 

In order to calculate the worst case communication requirements (send and receive) to 

achieve an auctioneer’s task using PAP, we consider the tasks, bids, and speech acts 

(grants, rejects and withdrawals) that are communicated among all the agents in the worst 

case planning scenario. Eq 4 provides the worst case number of bids that must be 

considered to find a solution, which is also equivalent to the maximum number of set of 

tasks (or nodes) in the search tree that are considered (includes the initial/root set of tasks, 

but not the last set of tasks associated with the final bid that is searched/granted to 

produce the final plan, as the set of tasks is empty/achieved). Therefore, 

Eq 8: Max number of set of tasks considered = ∑
=

m

i

ibr
1

 

The set of tasks that need to be announced could contain separate independent sub-tasks 

which can be bid for separately, and therefore it may be more appropriate to announce the 

sub-tasks separately. This occurs in our transportation implementation that is discussed in 

the next chapter. Let 
λ

 be the maximum number of tasks for every set of tasks that need 

to be announced separately, κ  is the maximum number of bidders that the auctioneer 

announces the set of tasks to, then from Eq 8 the maximum number of task 

announcements mta( ) sent by the auctioneer α  will be: 

Eq 9: ∑
=

⋅⋅=
m

i

ibrmta
1

)( λκα  
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and thus, the maximum number of set of tasks received each bidder γ is 

Eq 10: ∑
=

⋅=
m

i

ibrmta
1

)( λγ  

For each announced set of tasks, bidders may send a maximum of β  bids, where 

Eq 11: br=⋅⋅ κλβ  

but bidders only send bids for all set of tasks (nodes) in the search tree except for the leaf 

nodes, where the auctioneer backtracks due to an infeasible solution (no bids), so  The 

number of announced set of tasks that bidders submit bids for (ω ) is (add one for the 

initial/root set of tasks): 

Eq 12: 






 +⋅= ∑
−

=

1
1

1

m

i

ibrλω  

Therefore, the maximum number of bids mb( ) that bidders γ may submit during the 

planning process is (using Eq 12) is 

Eq 13: 






 +⋅⋅=⋅= ∑
−

=

1)(
1

1

m

i

ibrmb λβωβγ  

The maximum number of bids that the auctioneer α  may receive is given by Eq 4, 

Eq 14: ∑
=

=
m

i

ibrmb
1

)(α  

During planning with PAP, in the worst case, every bid searched may require a maximum 

of three speech acts – provisional grant, provisional grant accepted, and either provisional 

reject (for all backtracked bids) or confirm grant (for bids in the final plan). The 

auctioneer must send these negotiating speech acts for each branch in the planning tree, 

therefore, the maximum number of negotiating speech acts mns( ) that the auctioneer α  

must send or receive is 

Eq 15: ∑
=

⋅=
m

i

ibrmns
1

3)(α  
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where (2/3)⋅mns(α ) is the maximum number of speech acts that the auctioneer sends, and 

(1/3)⋅mns(α ) is the maximum number of speech acts that the auctioneer receives. The 

bidder also communicates, in the worst case, a maximum of three speech acts for every 

bid that it submits to the auctioneer. The maximum number of speech acts that the 

bidders γ must send or receive is (using Eq 13):  

Eq 16: 






 +⋅⋅⋅=⋅= ∑
−

=

13)(3)(
1

1

m

i

ibrmbmns λβγγ  

where (2/3)⋅mns(γ) is the number of speech acts that the bidder receives, and (1/3)⋅mns(γ) 

is the number of speech acts that the bidder sends. 

The total maximum communication requirements tc( ) for the auctioneer α  is (using Eq 9, 

Eq 14 and Eq 15) 

Eq 17:   )()()()( ααα mnsmbmtaactc ++=  

( ) ∑

∑∑∑

=

===

⋅+⋅=

⋅++⋅⋅=

m

i

i

m

i

i
m

i

i
m

i

i

br

brbrbr

1

111

4

3

λκ

λκ
 

and the total maximum communication requirements for the bidder γ is (using Eq 10, Eq 

13 and Eq 16) 

Eq 18:   )()()()( γγγγ mnsmbmtatc ++=  
















 +⋅⋅+⋅=








 +⋅⋅⋅+






 +⋅⋅+⋅=

∑∑

∑∑∑

−

==

−

=

−

==

14

131

1

11

1

1

1

11

m

i

i
m

i

i

m

i

i
m

i

i
m

i

i

brbr

brbrbr

βλ

λβλβλ
 

In many application domains, 
λ

 = 1, i.e. the auctioneer announces its complete set of 

tasks once rather than announce components (sub-tasks) of the set of tasks separately. 

This is the case with our combinatorial auction application discussed in the next section. 

If this is the case, then Eq 17 and Eq 18 become 
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Eq 19: ( ) ∑
=

⋅+=
m

i

ibrtc
1

4)( κα  

Eq 20: 






 +⋅⋅+= ∑∑
−

==

14)(
1

11

m

i

i
m

i

i brbrtc βγ  

It is unlikely that agents will reach the worst case communication using PAP for many 

applications domains. As mentioned in the previous section, PAP is not likely to reach 

the worst case communication if applied to a domain with many possible solutions. Not 

all bids in the search tree with PAP may be searched (granted), and therefore, due to the 

persistence policy, auctioneers do not require a (provisional) reject message to be 

communicated in order to inform the bidders that their bids are not being used. Due to 

this, we show below that PAP requires less communication that CNP, CNP-ext and 

ECNP under certain circumstances. Bidders in PAP only send one bid at a time, of its 

maximum of β  bids, for each sub-task in a set of tasks. Only if a bid is used and then 

provisionally rejected or withdrawn, does the bidder send another bid. Therefore, a 

bidder’s complete β  number of bids will only be communicated if all of its first (β  – 1) 

bids are provisionally rejected or withdrawn. The auctioneer need not send its task 

announcements to all bidders. Using domain knowledge, it may send its sets of tasks to 

the most suitable candidates, minimising communication. Not all the bidders that receive 

the task announcement may submit bids, as they may not have suitable bids for the set of 

tasks. 

5.3.7 Communication Compared with CNP, ECNP and CNP-ext 

Below we show that PAP requires less communication than CNP, CNP-ext and ECNP, in 

the worst case20 and when used in the same manner as these protocols (i.e. solving 

simpler planning and task allocation problems than PAP is able to). The reduction in 

communication is predominantly due to PAP’s persistence policy and the removal of the 

requirement to reject unused bids (see section 5.2.7). The saving in communication 

                                                    

20 PAP’s worst case communication versus CNP, CNP-ext and ECNP’s best case communication. In the 

normal case, PAP is likely to save more communication. 
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compared with CNP, CNP-ext and ECNP occurs when bids submitted for a set of tasks is 

greater than 3, 5 and 2, respectively. We believe that there are many real world 

applications where this would be the case. With the combinatorial auction application in 

the next chapter, up to 100 bids were submitted for each set of tasks, and with the 

transportation scheduling application in chapter 7, up to 10 bids were submitted. 

Note that since CNP and CNP-ext require bids that fully achieve the auctioneer’s set of 

tasks, and each sub-task in the set of tasks require one bid to be granted for it, then the 

number of sub-tasks 
λ

 = 1. Since ECNP does not allow for multiple auctioneers, and thus 

multiple tasks, simultaneously, then 
λ

 = 1 also. 

Communication Requirements of PAP compared to CNP  

The best case communication requirements for CNP were presented in section 4.4.2, Eq 

1. We now formulate the communication requirements for PAP, when PAP is used in the 

same manner as CNP, i.e. a single auctioneer, only allows bids that can fully achieve the 

auctioneer’s announced set of tasks, and precludes withdrawals, the updating of bids, 

rejection of bids and backtracking. 

Refer to the PAP specification in section 5.1 (Figure 21). Assume a maximum of κ  

bidders and a maximum of br bids received per task announcement. At step 1, the 

auctioneer sends out a task announcement to each of the κ  bidders, therefore 

communicates κ  messages. The protocol proceeds to step 2, where bidders submit 

(communicate) br bids that fully achieved the announced task. The protocol proceeds to 

step 3. Since we do not consider withdrawals and backtracking in the context of the 

analysis, these speech acts or events (e.g. withdrawn, provisionally reject and 

backtracking) can be ignored at steps 3. The auctioneer will grant its most preferred bid, 

and therefore communicates 1 provisional grant message. PAP proceeds to step 4 where 

1 provisional grant accepted message is communicated since the bidder is unable to 

(provisionally) withdraw the bid in the context of the analysis. As the bid fully achieves 

the announced task, the protocol proceed to step 5 (take control option (f)). In the context 

of the analysis, rejection of bids are precluded, and therefore 1 confirm grant message is 

communicated. Therefore, the total communication required by PAP for a task allocation 

is the sum of the number of messages communicated: 
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Eq 21: Total communication for PAP = κ  + br + 1 + 1 + 1 = κ  + br + 3 

Conditions for reduced communication compared with CNP 

Using Eq 1 and Eq 21, PAP requires less communication than CNP if br > 3. This 

follows because: 

Total communication for PAP < Total communication for CNP 

if κ  + br + 3 < κ  + 2 � br 

∴ br > 3 

Saving in communication compared with CNP 

Using Eq 1 and Eq 21, the saving in communication by using PAP over CNP is: 

Saving in comms = Total comms for CNP - Total comms for PAP 

∴ Saving in comms = κ  + 2 � br - (κ  + br + 3) 

∴ Saving in comms = br - 3 

Communication Requirements  of PAP compared to ECNP  

The best case communication requirements for ECNP were presented in section 4.8.2, Eq 

3. We now formulate the communication requirements for PAP, when PAP is used in the 

same manner as ECNP, i.e. a single auctioneer that precludes withdrawals, the updating 

of bids, the rejection of bids on submission, and backtracking only when a plan is found 

and deemed unsuitable. 

Refer to the PAP specification in section 5.1 (Figure 21). Assume a maximum of κ  

bidders, a maximum of br bids received per task announcement, and m is the depth of the 

search (number of bids to achieve the initial set of tasks). At step 1, the auctioneer sends 

out a task announcement to each of the κ  bidders, and therefore communicates κ  

messages. The protocol proceeds to step 2, where bidders submit (communicate) br bids. 

PAP proceeds to step 3. Since we do not consider withdrawals, rejection on bid 

submission and backtracking until the end, in the context of the analysis, these speech 

acts or events (e.g. withdrawn, reject and backtracking) can be ignored at step 3. The 

auctioneer will grant its most preferred bid, and therefore communicates 1 provisional 
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grant message. PAP proceeds to step 4 where 1 provisional grant accepted message is 

communicated since the bidder is unable to (provisionally) withdraw the bid in the 

context of the analysis. If the bid does not fully achieve the set of tasks announced by the 

auctioneer, then PAP proceeds to step 1 (control option (e)) to announce the remaining 

set of tasks that the bid did not achieve, and the same process is repeated until the mth 

bid’s provisional grant is accepted at step 4 which does fully achieve the set of tasks 

announced by the auctioneer. Therefore, PAP has performed step 1 to step 4 m times, and 

thus the total communication at this point is (κ  + br + 1 + 1) � m. The protocol proceeds to 

step 5 (take control option (f)) where the auctioneer will either send all m provisionally 

granted bids a confirm grant (if the plan is suitable) or a provisional reject (if the plan 

is unsuitable – refer to Theorem 2 proof for detailed discussion on how this occurs), and 

thus communicates m messages. The total communication required by PAP to plan and 

allocate tasks is the sum of the number of messages communicated: 

Eq 22: Total communication for PAP = (κ  + br+ 2) � m + m 

Conditions for reduced communication compared with ECNP 

Using Eq 3 and Eq 22, PAP requires less communication than ECNP if br > 2. This 

follows because: 

Total communication for PAP < Total communication for ECNP 

if (κ  + br+ 2) � m + m < (κ  + 2 � br) � m + m 

∴ br > 2 

Saving in communication compared with ECNP 

Using Eq 3 and Eq 22, the saving in communication by using PAP over ECNP is: 

Saving in comms = Total comms for ECNP - Total comms for PAP 

∴ Saving in comms = (κ  + 2 � br) � m + m - ((κ  + br+ 2) � m + m) 

∴ Saving in comms = (br – 2) � m 

Communication Requirements  of PAP compared to CNP-ext  
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The best case communication requirements for CNP-ext were presented in section 4.6.2, 

Eq 2. We now formulate the communication requirements for PAP, when PAP is used in 

the same manner as CNP-ext, i.e. PAP only allows bids that can fully achieve the 

auctioneer’s announced set of tasks, precludes withdrawal of tasks, rejection of bids on 

submission, provisionally withdrawn bids, and backtracking, and the condition used for 

provisionally rejecting a provisionally granted bid in PAP is that the provisionally 

granted bid is no longer preferred over a newly submitted updated bid, and if a bidder’s 

updated bid submitted to replace its withdrawn bid is provisionally granted before any 

other submitted bids, then the bidder in PAP is not able to withdraw the bid for the 

second time. 

Refer to the PAP specification in section 5.1 (Figure 21). Assume a maximum of κ  

bidders, a maximum of br bids received per task announcement, and η  is the number of 

repeated negotiations (a provisionally granted bid is rejected to select another bid) before 

a bid is confirm granted. At step 1, the auctioneer sends out a task announcement to 

each of the κ  bidders, and therefore communicates κ  messages. The protocol proceeds to 

step 2, where bidders submit (communicate) br bids. PAP proceeds to step 3. Since we 

do not consider task withdrawals, rejection on bid submission and backtracking, in the 

context of the analysis, these speech acts or events (e.g. withdrawn, reject and 

backtracking) can be ignored at step 3. The auctioneer provisionally grants its most 

preferred bid, and thus communicates 1 message, and the protocol proceeds to step 4, 

which is the point where the negotiation repeating commences (see below). In order to be 

consistent with CNP-ext having a different definitive bid submitted for the provisionally 

granted bid, the bid that is first provisionally granted in PAP is withdrawn and a new bid 

submitted and committed to by the same bidder. Therefore, in order to do this, the bidder 

withdraws (or provisionally withdraws) the provisional grant for its bid, then proceeds to 

step 2 and submits an updated bid, proceeds to step 3 and the auctioneer provisionally 

grants the updated bid, and then the bidder accepts the provisional grant of its bid (in 

the context of the analysis, a bidder cannot withdraw a bid consecutively more than once) 

– requiring 4 messages to be communicated. The protocol proceeds to step 5 because in 

the context of the analysis, the bid fully achieves the task, and therefore, take control 

option (f). To be consistent with CNP-ext (and for the worst case PAP communication), 
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all other bidders submit updated (better) bids 21 (due to PAP’s bidding policy, bidders 

may submit updated better bids at any time), and thus they will submit br – 1 bids at step 

2, and proceed to step 3. In the context of the analysis, there are η  negotiations before the 

provisionally granted bid is confirm granted. Therefore, one of the updated bids is better 

than the provisionally granted bid (as with CNP-ext), and therefore, the auctioneer will 

provisionally reject the provisionally granted bid at step 5, PAP will proceed to step 2 

allowing the bidder to submit an updated bid, and the new preferred bid is provisionally 

granted – requiring 3 messages to be communicated. This takes PAP back to the 

commencement of the negotiation repeating process. If this process repeats η  times, the 

number of messages communicated is (4 + br – 1 + 3) � η . At the η th repeated negotiation 

(at step 4 after the provisional grant), the bidder will accept the provisional grant (the 

process does not repeat) and since in the context of the analysis, the bid fully achieves the 

task, then it takes control option (f) to step 5. The auctioneer will then confirm grant the 

bid. Therefore, 2 further messages are communicated to finally confirm grant the bid. The 

total communication required by PAP to allocate a task is the sum of the number of 

messages communicated: 

Eq 23: Total communication for PAP = κ  + br + 1 + (4 + br – 1 + 3) � η  + 2 

Conditions for reduced communication compared with CNP-ext 

Using Eq 2 and Eq 23, PAP requires less communication than CNP-ext if (i) br ≥ 6; or 

(ii) br = 5 & η  ≤ 1; or (iii) br = 4 & η  = 0. This follows because: 

Total communication for PAP < Total communication for CNP-ext 

∴ κ  + br + 3 + (6 + br) � η   < κ  + 2 � br + 2 � br � η  

∴ (br-6) � η  + br > 3 

Therefore, the equation above is satisfied if (i) br ≥ 6; or (ii) br = 5 & η  ≤ 1; or (iii) br = 

4 & η  = 0. 

                                                    

21  Note that the PAP does not usually operate like this. With the PAP, bidders submit their best bid first, so 

only need to send an update if their bids are rejected or withdrawn. With CNP-ext, bidders may not send 

their best bid, so when they their bid is provisionally rejected, they may submit a better bid. 
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Saving in communication compared with CNP-ext 

Using Eq 2 and Eq 23, the saving in communication by using PAP over CNP-ext is: 

Saving in comms = Total comms for CNP-ext - Total comms for PAP 

∴ Saving in comms = κ  + 2 � br + 2 � br � η  - (κ  + br + 3 + (6 + br) � η  ) 

∴ Saving in comms = br + br � η  - 6 � η  – 3 

5.3.8 Memory Requirements 

PAP allows an auctioneer to perform a depth-first search (Theorem 6), and as with a 

depth-first search (Russell and Norvig 1995), at any time, the auctioneer must store a 

single path in the search tree from the initial set of tasks (root node) to the current set of 

tasks that it is trying to achieve (leaf node), along with the remaining unexpanded bids 

(branches). If br is the maximum number of bids for a set of tasks and m is the depth of 

the search (number of bids required to achieve the initial set of tasks), then 

Eq 24: Max number of bids stored by the auctioneer = br⋅m 

Eq 25: Max number of set of tasks stored by the auctioneer = m + 1 

where Eq 25 includes the initial set of tasks (root node) and the final set of tasks, which 

may not be empty (not fully achieved) and hence must be stored. As mentioned in section 

5.3.6, each set of tasks may contain a collection of independent sub-tasks. Let 
λ

 be the 

maximum number of independent sub-tasks for every set of tasks, then the total number 

of subtasks that need to be stored is: 

Eq 26: Max number of sub-tasks stored by the auctioneer = (m+1) � λ
 

The number of bids submitted with PAP is restricted. The auctioneer receives only one 

bid from each bidder for its set of tasks (or each of its sub-task if 
λ

 > 1), unless an 

updated better bid becomes available, which for many domains may not occur often. If a 

bidder’s bid is withdrawn or rejected, and thus deleted by the auctioneer, the bidder might 

submit an updated (replacement) bid. Hence, if κ  is the number of bidders (that submit 

bids), then 

Eq 27: Number of bids stored by the auctioneer 
≈

 κ � m � λ
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Eq 27 will approach that of Eq 24 if κ � λ
 approaches br, i.e. each of the κ  bidders contain 

only one bid per sub-task (or set of tasks if 
λ

 = 1), and thus all possible br bids are 

submitted for the set of tasks after the task announcement.  

Therefore, the memory requirements to store the auctioneer’s complete search tree to 

achieve its initial set of tasks increases with: the number of bidders (that submit bids); the 

number of bids required to achieve the initial set of tasks; and the number of independent 

sub-tasks for each set of tasks. 

Bidders using PAP store a set of tasks (or its sub-tasks if 
λ

 > 1) and bids submitted for 

the sub-tasks. This enables bidders, for example, to: keep track of bids that are submitted 

for a sub-task so that they do not submit the same bid again; refer to bids and its 

associated sub-task if a bid is granted or rejected; check if it is possible to submit a bid 

for a sub-task that is better than previously submitted bids. If β  is the maximum number 

of bids that a bidder may submit for each sub-task received, and ε  is the maximum 

number of subtasks considered (and thus stored) by bidders at any one time, then the 

maximum memory requirement to store bids for bidders is 

Eq 28: Maximum number of bids stored by bidders = β � ε  ε  considers sub-tasks received by a bidder from all auctioneers that it is negotiating with 

at the time. For a single auctioneer, Eq 26 provides the number of sub-tasks sent by the 

single auctioneer, and thus stored by bidders. Therefore, memory requirements for a 

bidder to store bids for a single auctioneer is 

Eq 29: Max number of bids stored by bidders for a single auctioneer = β � (m + 1) � λ
 

Bidder memory requirements grow with the number of sets of tasks (or sub-tasks) 

received and bids sent. As sub-tasks are withdrawn by the auctioneer, expired (become 

very old), or a bid for a sub-task is confirm granted (ending negotiations for the sub-task), 

the sub-task and its associated bids can be deleted, restoring memory. If there is a 

constant flow of sub-tasks over time, replacing deleted sub-tasks, the memory 

requirements should remain relatively static. If not, bidders may set aside a fixed memory 

limit, deleting the oldest sub-tasks and bids when the limit is reached. 
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5.3.9 Memory Compared with CNP, ECNP and CNP-ext 

As shown below, the memory requirements for agents using PAP is greater than CNP-ext 

and ECNP. Memory requirements for PAP are the same as CNP, but bidders may need to 

hold on to the sub-task and its bid for a longer duration. The increased or prolonged 

memory requirements with PAP are due to: (i) bidders not receiving a rejection message 

informing them that the bid is not required for the sub-task; and (ii) the auctioneer storing 

unused bids in case they are required later during backtracking, where CNP, CNP-ext and 

ECNP do not allow backtracking of individual bids in order to grant a replacement bid. If 

agents using PAP are aware that they are performing planning and task allocation in the 

same manner as CNP, CNP-ext or ECNP, then auctioneers may delete bids if not required 

and bidders can remove tasks and bids submitted that are not provisionally granted soon 

after the deadline, indicating the bid was not required. 

Memory Requirements  of PAP compared to CNP  

The best case memory requirements for CNP were presented in section 4.4.3. We now 

formulate the memory requirements for PAP, when PAP is used in the same manner as 

CNP, i.e. a single auctioneer that only allows bids that can fully achieve the auctioneer’s 

announced set of tasks and precludes withdrawals, the updating of bids, rejection of bids 

and backtracking. 

Refer to the PAP specification in section 5.1 (Figure 21). Assume a maximum of κ  

bidders and a maximum of br bids received per task announcement. At step 1, the 

auctioneer sends out a task announcement to each of the κ  bidders. Therefore, the 

auctioneer and each bidder must store 1 set of tasks. The protocol proceeds to step 2, 

where bidders submit br bids that fully achieve the announced task, and therefore, the 

auctioneer must store br bids and the bidders must store their 1 submitted bid. The 

protocol proceeds to step 3. Since we do not consider withdrawals and backtracking in 

the context of the analysis, these speech acts or events (e.g. withdrawn, provisionally 

reject and backtracking) can be ignored at step 3. The auctioneer will provisionally 

grant its most preferred bid, and PAP proceeds to step 4. Unlike CNP, no rejection 

messages are sent to the bidders of the unselected bids, and hence these bidders keep the 

set of tasks and its bid stored in memory (until some prolonged duration of time that the 
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bidder believes the set of tasks is no longer available, i.e. expired). The provisional 

grant is accepted because the bidder is unable to (provisionally) withdraw the bid in the 

context of the analysis. As the bid fully achieves the announced task, the protocol 

proceed to step 5 (take control option (f)). In the context of the analysis, rejection of bids 

are precluded, and therefore provisionally granted bid is confirm granted. The 

auctioneer may delete all the br - 1 unused bids. The total memory requirement for the 

auctioneer is 1 set of tasks and br bids, and for the bidders are 1 set of tasks and 1 bid, 

which will remain in memory (until expired) if the bid is not used. 

The total memory requirement with CNP for the auctioneer is 1 set of tasks and br bids, 

and for the bidders are 1 set of tasks and 1 bid, which is deleted if/when their bid is 

rejected. Therefore, both CNP and PAP require the same amount of memory if applied in 

the same way, except that the bidders that do not have their bid granted in PAP and will 

have to keep the set of tasks and its bid stored in memory for a longer period of time. 

Memory Requirements  of PAP compared to ECNP  

The best case memory requirements for ECNP were presented in section 4.8.3. We now 

formulate the memory requirements for PAP, when PAP is used in the same manner as 

ECNP, i.e. a single auctioneer that precludes withdrawals, the updating of bids, the 

rejection of bids on submission, and backtracking only when a plan is found and deemed 

unsuitable. 

Refer to the PAP specification in section 5.1 (Figure 21). Assume br is the maximum 

number of bids submitted for each announced set of tasks, κ  is the number of bidders that 

submit bids and m is the depth of the search (number of bids required to achieve the 

auctioneer’s initial set of tasks). At step 1, the auctioneer announces its set of tasks to 

each of the κ  bidders. Therefore, the auctioneer and the κ  bidders store the 1 set of tasks. 

The protocol proceeds to step 2, where bidders submit br bids, and hence the auctioneer 

stores br received bids and the bidders store their 1 submitted bid. PAP proceeds to step 

3. Since we do not consider withdrawals, rejection on bid submission and backtracking 

until the end, in the context of the analysis, these speech acts or events (e.g. withdrawn, 

reject and backtracking) can be ignored at step 3. The auctioneer will provisionally 

grant its most preferred bid. Since there are no rejection messages in PAP, and due to the 
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persistence policy, bidders and the auctioneer keep unused bids and set of tasks in 

memory. Therefore, at this stage, the κ  bidders have a total maximum of κ  set of tasks 

and κ  bids stored in memory. PAP proceeds to step 4 where the provisional grant is 

accepted because the bidder is unable to (provisionally) withdraw the bid in the context 

of the analysis. If the bid does not fully achieve the set of tasks announced by the 

auctioneer, then PAP proceeds to step 1 (control option (e)) to announce the remaining 

set of tasks that the bid did not achieve, and the same process is repeated. For the next 

announced set of tasks, again the auctioneer will send its set of tasks, receive br bids, and 

therefore the auctioneer will have 2 sets of tasks and 2 � br bids in memory (includes 

previous unused bids). The bidders will have stored the new sets of tasks and its bids, in 

addition to their previous set of tasks and its bid (which are not deleted). Therefore, the 

bidders have stored together 2 � κ  set of tasks and 2 � κ  bids. Again, if the bid does not fully 

achieve the set of tasks, the process repeats, until the mth bid’s provisional grant is 

accepted at step 4 which does fully achieve the set of tasks announced by the auctioneer. 

The auctioneer would have a maximum of m sets of tasks and br � m bids stored in 

memory. The total maximum memory required for all the κ  bidders together is κ � m sets of 

tasks and κ � m bids. The protocol proceeds to step 5 (take control option (f)) where the 

auctioneer will either send all m provisionally granted bids a confirm grant (if the plan is 

suitable) or a provisional reject (if the plan is unsuitable – refer to Theorem 2 proof for 

detailed discussion on how this occurs). Therefore, the total maximum memory required 

for the auctioneer is m sets of tasks and br � m bids, and the total maximum memory 

requirements for all the κ  bidders together is κ � m sets of tasks and κ � m bids. 

Memory differences 

The auctioneer using PAP stores the same number of set of tasks as an auctioneer using 

ECNP, which is m set of tasks. An auctioneer using PAP must store br � m bids, which is 

greater than the br – m + 1 bids that the auctioneer using ECNP must store. The extra 

bids that must be stored is: 

Eq 30: Extra bids auctioneers must store = br � m – (br – m + 1) = (br + 1) � (m – 1) 
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In total, bidders using PAP must store, all together, κ � m set of tasks and κ � m bids, which 

is greater than the κ  + m – 1 set of tasks and κ  + m – 1 bids stored by bidders using 

ECNP (as κ  > 0 and m > 0). The extra set of tasks and bids that must be stored is: 

Eq 31: Extra set of tasks and bids stored by bidders = κ � m – (κ  + m – 1)  

= (κ  + 1) � (m – 1) 

The auctioneer and bidders using PAP require more memory than the auctioneer and 

bidders using ECNP. Therefore, PAP requires more memory than ECNP. 

Memory Requirements  of PAP compared to CNP -ext 

The best case memory requirements for CNP-ext were presented in section 4.6.3. We 

now formulate the memory requirements for PAP, when PAP is used in the same manner 

as CNP-ext, i.e. PAP only allows bids that can fully achieve the auctioneer’s announced 

set of tasks and precludes withdrawal of tasks, rejection of bids on submission, 

provisionally withdrawn bids, and backtracking, and the condition used for provisionally 

rejecting a provisionally granted bid in PAP is that the provisionally granted bid is no 

longer preferred over a newly submitted updated bid, and if a bidder’s updated bid 

submitted to replace its withdrawn bid is provisionally granted before any other 

submitted bids, then the bidder in PAP is not able to withdraw the bid for the second 

time. We define c1 as the number of bids that are withdrawn and its updated bid 

provisionally granted in PAP and c2 as the number of times a provisionally granted bid is 

provisionally rejected and another bid selected. 

Refer to PAP specification in section 5.1 (Figure 21). Assume a maximum of κ  bidders 

and a maximum of br bids received per task announcement. At step 1, the auctioneer 

sends out a task announcement to each of the κ  bidders. Therefore, the auctioneer and 

the κ  bidders store 1 set of tasks. The protocol proceeds to step 2, where bidders submit 

br bids, and hence the auctioneer stores br received bids and the bidders store their 1 

submitted bid. PAP proceeds to step 3. Since we do not consider task withdrawals, 

rejection on bid submission and backtracking, in the context of the analysis, these speech 

acts or events (e.g. withdrawn, reject and backtracking) can be ignored at step 3. The 

auctioneer provisionally grants its most preferred bid, and the protocol proceeds to step 
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4. To be consistent with CNP-ext, all other bidders associated with the br – 1 bids that 

were not provisionally granted, send br - 1 updated (better) bids 22 (due to PAP’s bidding 

policy, bidders may submit updated better bids at any time). At this stage, the auctioneer 

has 1 set of tasks and 2 � br – 1 bids, and the bidders together, have a total of 1 set of tasks 

and 2 � br – 1 bids. There are three options: (i) the provisionally granted bid is withdrawn 

at step 4; (ii) the provisional grant is accepted at step 4, but there exists an updated bid 

which is better than the provisionally granted bid; and (iii) the provisional grant is 

accepted at step 4 and the provisionally granted bid is better than all updated bids. 

Case (i): The protocol will proceed to step 2 for the bidder that withdrew its bid to send 

an updated bid. The auctioneer and bidder store the extra 1 bid. The auctioneer then 

provisionally grants its new preferred (updated) bid at step 3, and then the bidder 

accepts the provisional grant (in the context of the analysis, a bidder cannot withdrawn 

a bid consecutively more than once). Now we have case (ii) and (iii) above, and the 

number of bids increased for the auctioneer and all the bidders by 1. 

Case (ii): After the provisional grant is accepted, because in the context of the analysis 

the bid fully achieves the task, the protocol will proceed to step 5. The auctioneer will 

provisionally reject the provisionally granted bid, and proceed to step 2 for the rejected 

bidder to send 1 updated bid. The auctioneer will then provisionally grant its new 

preferred updated bid at step 3, and proceed to step 4. Again, the bidders of the br – 1 

bids that did not get a provisional grant will send br – 1 updated bids. We now have case 

(i), (ii) or (iii) above, and the number of bids increased for the auctioneer and all the 

bidders by br. 

Case (iii): After the provisional grant is accepted, because in the context of the analysis 

the bid fully achieves the task, the protocol will proceed to step 5. The auctioneer will 

confirm grant the provisionally granted bid, which is still its preferred bid. The protocol 

completes. No extra bids of set of tasks are stored. 

                                                    

22  Note that the PAP does not usually operate like this. With the PAP, bidders submit their best bid first, so 

only need to send an update if their bids are rejected or withdrawn. With CNP-ext, bidders may not send 

their best bid, so when they their bid is provisionally rejected, they may submit a better bid. 
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If c1 represents the number of times case (i) occurs and c2 represents the number of times 

that case (ii) occurs, then the auctioneer stores 1 set of tasks and 2 � br – 1 + c1 + c2 � br, 

and the bidders store together, in total, 1 set of tasks and 2 � br – 1 + c1 + c2 � br.  

Memory differences 

The auctioneer using PAP stores the same number of set of tasks as an auctioneer using 

CNP-ext, which is 1 set of tasks. An auctioneer using PAP must store 2 � br – 1 + c1 + 

c2 � br bids, which is greater than the br + 1 bids that the auctioneer using CNP-ext must 

store. The extra bids that must be stored is: 

Eq 32: Extra bids auctioneers must store = 2 � br – 1 + c1 + c2 � br – (br + 1)  

       = br + c1 + c2 � br – 2 

In total, bidders using PAP store, all together, the same number of set of tasks as CNP-

ext, which is 1 set of tasks, but the number of bids for PAP is 2 � br – 1 + c1 + c2 � br, 

which is greater than the br + 1 bids stored by bidders using CNP-ext. The extra bids that 

must be stored is: 

Eq 33: Extra bids bidders must store = 2 � br – 1 + c1 + c2 � br – (br + 1)  

     = br + c1 + c2 � br – 2 

The auctioneer and bidders using PAP require more memory than the auctioneer and 

bidders using CNP-ext. Therefore, PAP requires more memory than CNP-ext. 

5.3.10 Convergence and Livelock 

Theorem 7 below presents the two conditions required for PAP to terminate (assuming no 

agent failures or lost messages), and thus PAP will converge to either a solution or no 

solution, and prevent livelock. The first condition is that the auctioneer should grant each 

bid a finite number of times. As discussed previously, in our current PAP 

implementation, we only allow bids to be provisionally granted once, and therefore once 

a bid is provisionally rejected or (provisionally) withdrawn, they are discarded and not 

used again. This allows PAP to perform the same planning as a depth-first search. As will 

be discussed in following sections, there may be benefits in allowing the auctioneer to 

provisionally grant a bid more than once. This is the subject of future work. 
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The second condition requires the number of bids sent or received to be finite. Our two 

application domains that we will discuss contain finite bids, and therefore this condition 

is satisfied. This may not be the case for all domains, for example, a bidder could supply 

infinite bids for services of duration ds in an empty schedule from time zero to infinity. If 

this occurs, then we could place two restrictions on receiving bids. We could limit the 

number of bids received for each individual set of tasks announced, and limit the overall 

number of bids received for all the auctioneer’s set of tasks used to achieve its initial set 

of tasks. If the limit is reached, the auctioneer is not able to accept any more bids and a 

solution must be found with the bids already submitted. Both limits effectively places a 

restriction on the depth of the (depth-first) search that PAP can perform, which is a 

commonly known termination problem with the depth-first search (Russell and Norvig 

1995). 

Theorem 7: PAP will guarantee to terminate, and thus converge to either a solution or no 

solution and prevent livelock, if (a) there are a finite number of bids that may be sent or 

received and (b) the auctioneer provisionally grants each bid for a set of tasks only a 

finite number of times. We assume no agent failures or lost messages. 

Proof: 

Refer to the PAP specification in section 5.1 (Figure 21). The three control flows in PAP 

that are of concern for convergence are: (1) the rejecting or withdrawing of bids in steps 

3, 4 and 5, moving the protocol process back to step 2; (2) the provisional grant in step 4, 

where the bid does not achieve a complete task, starting a new protocol process (e); (3) 

backtracking in step 3 that moves the protocol execution back to the previous protocol 

process. Other speech acts either exit the protocol process, or move the protocol process 

to a subsequent step, and thus will eventually cause the protocol to complete (confirm 

grant in step 5). 

Convergence for conditions (1), (2) and (3) above is as follows: 

Case (1): The two conditions that ensure an infinite loop does not occur between step 2 

and steps 3, 4, and 5 is: 
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(a) Only a finite number of bids should be sent or received at step 2, thus only a 

finite number of new bids can be rejected (particularly at step 3) or 

withdrawn. 

(b) The auctioneer should grant each of the finite number of bids a finite number 

of times, otherwise, the auctioneer may indefinitely persist in granting the 

same bid(s), which will be consequently rejected or withdrawn. 

Case (2): It may be possible that bids are granted indefinitely at step 4, never completely 

achieving the task (a search tree of infinite depth), resulting in an infinite sequence of 

protocol processes. This is more likely if bids are selected that move the auctioneer 

further away from its set of tasks 23. Convergence can be ensured if either: 

(a) Only provisionally granted bids that move the auctioneer closer (not 

infinitesimally closer) to achieving its set of tasks. Therefore, eventually, the 

auctioneers set of tasks will be achieved. 

(b) There are a finite number of bids (or resources) that could be sent or received 

for the set of tasks. Once bids are depleted, then PAP will need to either 

accept the current plan or backtrack. 

(c) Limit the number of bids that can be provisionally granted for a set of tasks, 

i.e. limit the depth of the search tree. 

Case (3): PAP may alternate between protocol processes indefinitely – if the auctioneer 

continually backtracks, and then selects the same bid in the previous protocol process that 

caused backtracking. This can be prevented if the same bid is only granted a finite 

number of times. 

If sfb is true if there is a finite number of bids submitted, gfb is true if the auctioneer 

grants each bid a finite number of times, mc is true if only bids are selected that move the 

                                                    

23 For example, in our transportation domain, bids may be selected that move resources further away from 

its required destination (which may be required for a solution). If this occurs indefinitely, then the resources 

will move further and further away from its destination (the achievement of the task), and never reach it. 
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auctioneer closer to its set of tasks, and ld is true of the depth if the search is limited, then 

from cases (i) to (iii) above, which all must be satisfied, we have: 

Eq 34: (sfb ∧ gfb) ∧ (mc ∨ sfb ∨ ld) ∧ gfb  

= (sfb ∧ gfb ∧ mc) ∨ (sfb ∧ gfb) ∨ (sfb ∧ gfb ∧ ld)  

= sfb ∧∧∧∧ gfb 

Therefore, from Eq 34, the conditions for convergence, and hence termination and 

livelock prevention, is to have a finite number of bids sent or received and provisionally 

grant each bid only a finite number of times. 

Q.E.D. 

5.3.11 Deadlock 

Theorem 8 below shows that PAP will not get caught in deadlock. If any agent fails or 

messages between agents are lost during PAP, the protocol will either proceed or exit or 

not commence at all. No agent will be bound to PAP negotiation/process indefinitely 

such that they need to wait indefinitely for a message to be submitted in order to continue 

or be released from negotiations. 

Although PAP does not deadlock, a bidder may fail just before a final confirm grant 

message is sent for its provisionally granted bid, or the confirm grant message may be 

lost. The auctioneer will exit the protocol assuming that the bidder will perform its bid, 

which it may not. CNP-ext is able to detect such cases, but requires extra communication 

overhead as each bidder must communicate with all other bidders regarding the 

auctioneer’s decisions on their tasks. This may not be possible as bidders may not want to 

release this information, the auctioneer may not want to release information regarding 

other bidders it is negotiating with or the system may be very large requiring many 

messages to be communicated. The bidder could have failed after the confirm grant was 

received, resulting in the bidder also not performing its task. Therefore, in order to ensure 

a bidder receives the message, a suitable network level communication protocol (e.g. 

TCP/IP) should be used to send the confirm grant message and acknowledge that the 

message was received by the bidder. To ensure an agent is able to respond if the other 
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agent fails to perform or achieve its bid, another protocol (or extension to PAP) may be 

required to inform the auctioneer of the execution, progress and/or completion of a 

granted bid, and to perform replanning when failure does occur. PAP is currently only 

concerned with the planning and task allocation problem. 

Theorem 8: PAP does not fall into deadlock if an agent fails or a message is lost during 

the negotiation. 

Proof: 

In order to prove that deadlock does not occur, we show that for the auctioneer and 

bidder involved in negotiations that if the other fails or a message is lost, then they will 

proceed to another step in PAP or exit or not commence PAP at all, and will not be bound 

to PAP negotiations indefinitely (i.e. not waiting indefinitely for a message from another 

agent in order to be released from negotiations). 

Refer to the PAP specification in section 5.1 (Figure 21). 

Step 1: 

• Bidders: If the auctioneer fails, then there is no task announcement, and 

therefore, no negotiation takes place and PAP does not commence. If the task 

announcement message is lost to one or more bidders, then these bidders will not 

be involved in the negotiation and the auctioneer will only receive bids (enter into 

negotiations) from those that receive the task announcement and submit bids 

(bidders using PAP do not need to submit bids or require any communication with 

the auctioneer after a task announcement – no communication at step 2). PAP 

proceeds to step 2 with bidders that did receive the task announcement. If all the 

auctioneer’s task announcement messages are lost, then no bidder will receive the 

message and no bids will be received by the auctioneer at step 2 (see step 2). 

• Auctioneer: If messages are lost to one or more bidders, or they fail, then they are 

not able to accept the task announcement. As a result, negotiations (PAP) do not 

commence for these bidders. 

Step 2: 
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• Bidders: If messages to the auctioneer are lost or the auctioneer fails, then the all 

the bidders’ bids will not be received by the auctioneer, but will still be sent by 

the bidders. The bidders will proceed to step 3. Due to PAP’s commitment policy, 

bidders are not committed to their bids, and therefore are not bound in any way to 

the negotiation at this step. At step 3 all bidders will exit the protocol with the no 

communication event, assuming that the auctioneer is not interested in their bids. 

• Auctioneer: If messages from the bidders are lost or one or more bidders fails, 

then the auctioneer will not receive bids (or updated bids if arrived at this step 

from a following step) from these bidders. The auctioneer still proceeds to step 3 

after the bidding deadline. If all messages are lost or all bidders fail in the initial 

task announcement, then the auctioneer will receive no bids and proceed to step 3 

(no communication event and control option (b) at step 2) after the bidding 

deadline and backtrack at step 3, resulting in the auctioneer assuming the task is 

unachievable. The auctioneer therefore exits if the set of tasks it is trying to 

backtrack from is the initial set of tasks, or proceeds to step 5 of the previous 

protocol process. 

Step 3: 

• Bidders: If the auctioneer fails or messages (provisional grant, provisional reject, 

or withdrawn messages) to the bidders are lost, then we have a similar case to step 

2. Bidders have a bid submitted but since bidders are not committed to their 

submitted bids, they are not bound in any way to the negotiation at this step. 

Hence they may exit the protocol using the no communication event at step 3 if 

no further messages are received regarding their bid. 

• Auctioneer: If bidders other than those that are having their bid provisionally 

granted, withdrawn or provisionally rejected fails, then the auctioneer will 

proceed with the protocol as it does not send messages for (or use) these bids. A 

lost message or failure of a bidder which is sent a provisional reject message 

results in PAP for the auctioneer to proceed to step 2 and not receive an updated 

bid from the bidder, in which case the auctioneer will proceed to step 3 (no 

communication, control option (b) at step 2) and continue with its current 



 194 

submitted bids. A lost message or failure of a bidder which is sent a withdrawn 

message has no effect on the auctioneer because a withdrawn message is sent 

when the negotiation (protocol process) has already exited for the auctioneer. A 

lost message or failure of a bidder which is sent a provisional grant message 

results in the protocol proceeding to step 4 where the auctioneer waits for a 

response from the bidder before the provisional grant acceptance deadline (pgad). 

When no messages are received from the bidder by pgad, then the auctioneer 

assumes that the bid is withdrawn and proceeds back to step 2, where again, no 

update is sent by the bidder and the auctioneer proceeds to step 3 with its current 

bids. If all bidders fail or all provisional grant messages are lost, then the 

auctioneer will try to provisionally grant all its submitted bids, and receive no 

response by pgad, and hence assume they are withdrawn. After provisionally 

granting its last bid, the auctioneer will proceed to step 2 and receive no updates 

before proceeding to step 3. The auctioneer will assume no bids are available for 

its set of tasks and backtrack at step 3. 

Step 4: 

• Bidders: If the auctioneer fails or does not receive messages, then the auctioneer 

would not receive a provisional grant acceptance message or (provisional) 

withdrawn message from the bidder that had its bid provisionally granted. If a 

(provisional) withdrawn message is sent, then the bidder is informing the 

auctioneer that its bid is not available. Thus, the bidder is not committed to the bid 

or bound to the negotiation in any way. The bidder will proceed to step 2 where it 

may send an updated bid (see step 2). If a provisional grant accepted message is 

sent, then according to PAP’s commitment policy, the bidder is committed to the 

bid, and proceeds to step 5 of the protocol. The bidder waits for a confirm grant 

or provisional reject message, but will only wait as long as the confirm grant 

deadline (cgd). Therefore, when the auctioneer does not send one of the required 

messages to the bidder by cgd, the bidder assumes the auctioneer provisionally 

rejects the bid and proceeds to step 2 where it may send an updated bid (see step 

2). 
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• Auctioneer: If the bidder that has its bid provisionally granted fails or has its 

messages lost, then as with the previous step, the auctioneer waits for a response 

from the bidder before the provisional grant acceptance deadline (pgad). When no 

messages are received from the bidder by pgad, then the auctioneer assumes that 

the bid is withdrawn and proceeds back to step 2 (see step 2). 

 

Step 5: 

• Bidders: If the auctioneer fails or has its messages lost, then as with the previous 

step, the bidder waits for a confirm grant or provisional reject message, but will 

only wait as long as the confirm grant deadline (cgd). Therefore, when the bidder 

does not receive one of the required messages by cgd, the bidder assumes the 

auctioneer provisionally rejects the bid and proceeds to step 2, where it may send 

an updated bid (see step 2). 

• Auctioneer: If the bidder with the provisionally granted bid fails while a 

provisional reject message is sent, or the message is lost, then because the 

auctioneer did not require the bid from the bidder anyway, it proceeds to step 2 

(see step 2) and continues negotiations. If the bidder with the provisionally 

granted bid fails while a confirm grant message is sent, or the message is lost, 

then there is no effect on PAP for the auctioneer because after a confirm grant is 

sent, the negotiation (protocol process) for this set of tasks exits for the 

auctioneer. 

We have shown that at each step in PAP, if an auctioneer or bidder fails or loses 

messages, they will proceed to another step in PAP or exit or not commence PAP at all, 

and will not be bound to PAP negotiations indefinitely (i.e. not waiting indefinitely for a 

message from another agent in order to be released from negotiations). Therefore, there is 

no deadlock with PAP. 

Q.E.D. 
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5.4 Summary 

This chapter presented PAP, its features and formal analysis of the protocol24. PAP is 

able to overcome shortfalls with ECNP by allowing backtracking, multiple auctioneers 

(facilitating planning and task allocation in a many-to-many agent setting) and planning 

and task allocation a dynamic environment where bids and tasks may come and go during 

the planning process. Therefore, PAP facilitates planning and task allocation in 

decentralised, open and dynamic environment with a many-to-many setting (many 

auctioneers and many bidders interacting simultaneously). 

PAP has greater flexibility with planning and task allocation than CNP, CNP-ext and 

ECNP, as it is able to perform the planning and task allocation that they are able to, but 

the converse is not true. PAP is able to facilitate a decentralised depth-first search (with a 

dynamic search tree), which from our knowledge, has not been previously done. PAP has 

reduced communication than CNP, CNP-ext and ECNP if bids submitted for each 

announced set of tasks are greater than 3, 2, and 6, respectively. We believe this 

condition is satisfied in many real world applications, such as the two applications we 

present in the next two chapters. Although PAP requires less communication than these 

protocols, PAP requires more memory. Therefore, PAP would be the protocol of choice if 

communication costs are high and memory costs are low. PAP is able to take advantage 

of distributed processing, is predominantly consistent with (legal) contracting, and 

reduces broken contracts. We have also presented the conditions for PAP to converge and 

thus prevent livelock, and showed that PAP does fall into deadlock. 

In the next two chapters, we have applied PAP to the combinatorial auction domain and 

to the transportation scheduling domain. Applying PAP to two different domains shows 

the protocol generality. 

Other domains for which PAP is suited are coalition formation and virtual enterprises 

(see chapter 2). Each task ti in the set of tasks Tj = {t1, …, tn} announced by an auctioneer 

                                                    

24 The proofs of protocol properties could also have been carried out using formal logical tools, which is the 

subject of future work. 
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can refer to services required to achieve some business goal Tj. PAP enables a reverse 

auction to find a set (coalition) of agents that can provide suitable services in order to 

achieve the goal, within the complexity of an open market, which is decentralised, 

dynamic, open, and has a many-to-many setting. In the transportation application 

discussed in chapter 7 and (Perugini, Lambert et al. 2003; Perugini, Lambert et al. 2004; 

Perugini, Lambert et al. 2004), the services ti to achieve the goal Tj are not known, and 

thus PAP can be used to solve the planning problem of what services are required to 

achieve the business goal (which is dependent on the services available at the time), in 

addition to the allocation problem of who should perform the services. 

Note that Simulation Trading (ST) (see section 4.7.3) could be used in addition to PAP to 

further optimise the solution found by PAP (similar to how ST is used in addition to 

ECNP to further optimise the solution found by ECNP). Although ST was developed for 

cooperative agents where TA would accept any proposal for the redistribution of tasks 

from the MA, ST can be extended to the non-cooperative setting (a characteristic of our 

domain) when side payments are introduced. 
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Chapter 6 

6 Combinatorial Auctions 

The development of PAP initially evolved from addressing the (MALT’s) transportation 

scheduling problem. Due to the transportation scheduling application’s complexity, it was 

difficult to separate the protocol from the application in order to experimentally evaluate 

the protocol on its own. In this chapter, we use combinatorial auctions as an application 

to evaluate PAP (Perugini, Lambert et al. 2005), before discussing the transportation 

scheduling application in the next chapter. In addition to experimentally evaluating the 

behaviour of the protocol, we present benefits that PAP has over current one-shot 

(centralised single auctioneer) combinatorial auction approaches, and PAP’s ability to 

facilitate the novel multiple simultaneous combinatorial auction problem. 

6.1 Combinatorial Auctions Domain 

6.1.1 Problem Description 

In the typical combinatorial auctions domain (Nisan 2000; Sandholm 2002; Cramton, 

Shoham et al. 2006) an auctioneer α  must allocate a set of non-identical goods G = {g1, 

…, gn} to bidders γj ∈ Г , which contain a set of bids bids(γj) = {b1, …, bm}, and bidders 

may submit bids bj for a portion of the goods (bj ⊆ G) for price pj. Typically there is free 

disposal, so not all goods need to be allocated, and each good can only be allocated once. 

The aim is for the auctioneer to find an allocation of bids that maximises its price. This 

problem is equivalent to the set packing problem, and this optimisation problem is known 

to be NP-complete (Garey and Johnson 1979). 

The problem description above we refer to as the (well-known) single auction with static 

bids problem. Only one auction occurs at a time and the bidder’s bids that are available 

for the auctioneer does not change throughout the auction (planning) process. There are 

two other problems which we implemented solutions to using PAP, which from the 

literature on combinatorial auctions using agents that we have are aware of, has not been 
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investigated (see related work at the end of the chapter). The first is a single auction with 

dynamic bids. Using the problem description given above, we have a set of bidders (and 

thus their bids) which may come and go throughout the auction process, so γj ∈ Г τ, where 

τ represents time, and we also have bidders bids (at times τ when they are available) 

changing with time, bids(γj, τ) = {b1, …, bm}. Therefore, from the auctions (or 

auctioneers) perspective, bids are dynamic – new bids arrive and old bids are withdrawn 

while the auction is performed. 

The second unique problem we investigate is multiple simultaneous combinatorial 

auctions (many-to-many auction setting, Figure 30), which is inherently dynamic because 

during any one particular auction, bids may be accepted by other auctioneers. Therefore, 

the problem description above changes to: α i ∈ 
Λ

τ, where 
Λ

τ represents the set of 

auctioneers that perform a combinatorial auction simultaneously at time τ, in which they 

are auctioning goods Gτ,i = {g1, …, gn}, and bidders γj ∈ Г τ, are used to allocate the goods 

using bids bids(γj, τ) = {b1, …, bm}, where bidders may submit bid bτ,j at time τ for a 

portion of the goods (bτ,j ⊆ Gτ,i) for price pτ,j. 

In auctions, a bidder may have a large quantity of bids to communicate, or it may not 

want to release all its bids as this may release private information about its intentions. 

Bids may have complex dependencies that may not be easily described with the OR-of-

XOR language (Nisan 2000). With multiple auctions, it is not clear how to deal with 

dependencies between bids in different auctions, e.g. if a bid in one auction is allocated, 

then a bid in another auction cannot be. Therefore, it may not be practicable for bidders to 

submit all their bids, and the dependencies between them, to auctions for processing, 

which is assumed in much of the current (one-shot auction) literature (Andersson, 

Tenhunen et al. 2000; Hunsberger and Grosz 2000; Nisan 2000; Walsh, Wellman et al. 

2000; Collins, Bilot et al. 2001; Collins, Ketter et al. 2002; Sandholm 2002; Sandholm, 

Suri et al. 2005). We discuss in the next section how PAP addresses these issues. 
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Figure 30. Many-to-many interaction with Multiple Simultaneous Combinatorial 

Auctions. 

6.1.2 PAP with Combinatorial Auctions 

In applying PAP to the combinatorial auction problems discussed in the previous section, 

the auctioneer’s task announcement is the set of goods that the auctioneer is trying to 

achieve. For example, a task announcement could be G = {1, 2, 3, 4, 5, 6}, where the 

auctioneer is trying to allocate (or sell) non-identical goods labelled 1 to 6. The 

auctioneer also submits its bid evaluation function f, informing the bidders of how it will 

evaluate the bids, and thus allows bidders to submit their single best bid. Bidders in PAP 

may respond with bids to fully achieve or partially achieve the task. For example, a 

bidder γj may submit bid bj = {1, 2, 3, 4, 5, 6} for price pj = $100 to fully achieve the 

task, or bj = {1, 4, 6} for price pj = $35 to partially achieve the task. If the auctioneer 

provisionally grants a partial bid for the allocation of its task, then the remaining task (set 

of goods) that is not achieved is re-announced in a new protocol process. For example, if 

bid bj = {1, 4, 6} was selected for G, then the remaining task that will be announced is {2, 

3, 5}, and the PAP process continues. 

Allowing the auctioneer to provide details to the bidder regarding how the bids will be 

evaluated has a few benefits over single-shot combinatorial auctions. Since bidders are 

able to determine which bid will be preferred by the auctioneer, and understand the 

(potentially complex) dependencies between its own bids, they can process the bids 

themselves, and only need to submit the one best bid. Therefore, this eliminates the need 
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for the bidder to send all of its bids and their dependencies, as required in single-shot 

combinatorial auctions, where the dependencies can be complex, difficult to define and 

involve private information. PAP also pushes the bid processing onto the many 

distributed bidders, rather then one centralised agent (auctioneer), improving scalability 

with the number of bidders (see section 6.3.1). 

6.2 PAP Implementation  

The auctioneer and bidder agents were implemented in the ATTITUDE multi-agent 

architecture. Up to 10 auctioneers and 100 bidder agents were executed in a scenario. 

Due to limited resources, each scenario was executed on a single computer (Pentium 

3.6GHz), and over 1000 scenarios were executed. To minimise the time to execute each 

scenario, rather than fix a bidding deadline d, the auctioneer continued with planning 

once all bids and updates were received by bidders. We assume perfect communication, 

and communication time (latency) in our experiments is negligible. Since there is free 

disposal, for the scenarios without backtracking, the first (greedy) solution found in 

which no more bids can be allocated is taken as the final solution, whether all the goods 

in the task are allocated or not. 

The data we used was extracted from the Combinatorial Auction Test Suite (CATS) 

software (Leyton-Brown, Pearson et al. 2000). CATS produced various types of data. 

Paths and scheduling data were arbitrarily selected. Paths data aims to simulate bidding 

on paths in space, such as truck routes and network bandwidth allocation. Scheduling 

data aims to simulate bidding in job-shop scheduling domain. The data generated had 

between 10 to 1000 goods, and 10 to 1000 bids. A bidder may have more than one bid, 

and can have allocated at most only one of each good. Bids contain dummy goods, which 

are imaginary goods primarily used to define XOR relationships between generated bids. 

If a bidder has a bid allocated by an auctioneer which contains a dummy good, then the 

bidder is unable to use (or submit) any other bids it has with that dummy good as it has 

already been allocated. 

The auctioneers used a simple heuristic for f, which is similar to the heuristic that Dang 

and Jennings used for combinatorial auctions (Dang and Jennings 2002). 
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f = 
bidofprice

bidingoodsofnumber
 

It was not our intention to focus on the heuristics and how well they performed (at the 

moment). We instead focused on the behaviour of the protocol and its benefits, by 

altering certain variables and performing comparisons. 

6.3 Single Auction, Static Bids 

Single auction with static bids comprised one auctioneer and bids distributed between a 

number of bidders. Updated better bids are not sent with static bids. 

6.3.1 Scalability with Time 

Formally, the time for an auctioneer to find an allocation with PAP, without 

backtracking, depends on the number of iterations of PAP, or the depth of the search, 

which is at most equal to the number of goods g in the initial goal G (g bids of one good 

are selected to achieve the complete goal), and the bidding deadline d for each iteration. 

The worst case time is twc = g⋅d. d depends on the time taken for a bidder to process its β 

candidate bids (is O(β) in our implementation to calculate f for each bid) plus 

communication time tc to send/receive the bids. κ  bidders send a bid of length l bits to an 

auctioneer with bandwidth w bits/sec, thus  tc = l⋅κ /w sec (assume communication travel 

time, or latency, is constant), hence tc is dependent on κ . The time complexity is therefore 

O(g⋅β ⋅κ ), which is not exponential. 

Results from Figure 31 and Figure 32 show that time scales linearly with the number of 

bids and goods in our experiments, as expected. Figure 31 assumes that deadline d 

increases with the number of bids to process, which in our experiments with one 

processor and a deadline equal to the time for all bids to be processed, this is the case. In 

an ideal distributed setting, d should remain constant, as more bids may be the result of 

more bidders with the same number of bids, so it will take the same time to process the 

bids, and thus the graph in Figure 31 would be flat. 
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Figure 31. Scalability of time with PAP implementation with the number of bids (20 

goods). 
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Figure 32. Scalability of time with PAP implementation with the number of goods (1000 

bids). Could not obtain scheduling data with 1000 goods. 

We experimented with different numbers of bidders. Since communication costs in our 

experiments are negligible, PAP was not affected by the bandwidth or delay. Since the 

bidders were all running on one processor, there was extra computational overhead as we 

increased the number of agents, as shown in Figure 33. Ideally, the time should decrease, 

because if the same number of bids are distributed among more agents, then it is likely 

that each agent will have less bids to process, and therefore the auctioneer can reduce d. 
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Figure 33. Scalability of time with PAP implementation with number of agents (50 goods 

and 1000 bids). 

6.3.2 Scalability with Memory 

The worst case number of bids that the auctioneer must hold in memory is mb = g⋅κ , 

where κ  bidders submit one bid for each of the g iterations of the protocol, which is 

linear. Figure 34 and Figure 35 show our experimental results. Figure 35 flattens out as 

the number of goods increase because the depth of the search remained constant, due to 

bids with greater number of goods and more goods in the goal unallocated in the final 

solution (or plan). If ∑
=

=Β
κ

β
1p

p , is the total number of bids held by all κ  bidders, in 

current one-shot (centralised) approaches to combinatorial auctions, all bids are 

submitted to the auctioneer. Therefore PAP guarantees to use less memory if g⋅κ  < B. 



 205 

Scalability - max bids stored

0

1000

2000

3000

4000

0 50 100 150

Number of Bidders

M
a
x
 B

id
s
 S

to
re

d

Paths

Scheduling

 

Figure 34. Scalability of memory with PAP with the number of bidders (50 goods, 1000 

bids). 
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Figure 35. Scalability of memory with PAP with the number of goods (250 bids, 10 

bidders). 

6.3.3 Communication 

The amount of communication required in PAP, without backtracking and assuming all 

bids received are suitable (not rejected), is g⋅κ  + g⋅κ  + g + g + g for the task 

announcement, bids received, provisional grant, provisional grant accepted, and confirm 

grant, respectively, which is g⋅(2⋅κ +3). Current one-shot combinatorial auction 

approaches require all Β bids (see previous section) from all κ  bidders to be received and 

assume that all bids need to be either granted or rejected after the auction completes. PAP 

requires less communication if g⋅(2⋅κ +3) < 2⋅Β. Therefore, in particular, PAP requires 
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less communication if each bidder possesses a large number of bids. In our transportation 

application discussed in the next chapter, bidders bid for transportation along routes. 

There are many routes and each route has many start times. Therefore, the number of 

potential bids for each bidder is extremely large. PAP in such a case would be beneficial 

over one-shot approaches. 

Figure 36, Figure 37 and Figure 38 show our experimental results for paths data, which is 

consistent with the theory. PAP communication improves over centralised when: Figure 

36, the number of bidders decrease for the same number of bids; Figure 37, as goods 

decrease (once again, the graph flattens as goods increase because the search depth 

remains constant); Figure 38, the number of bids increases for the same number of 

bidders. 
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Figure 36. Communication – PAP versus one-shot (centralised) approaches to 

combinatorial auction – varying the number of bidders (250 bids, 50 goods). 
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Figure 37. Communication – PAP versus one-shot (centralised) approaches to 

combinatorial auction – varying the number of goods (250 bids, 10 bidders). 
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Figure 38. Communication – PAP versus one-shot (centralised) approaches to 

combinatorial auction – varying the number of bids (10 goods, 10 bidders). 

Figure 39, Figure 40 and Figure 41 show results of comparing PAP with ECNP when 

applied to the combinatorial auction domain with a single auctioneer, static bids and no 

backtracking, as required by ECNP. We also allowed ECNP to submit the bid evaluation 

function so that one bid for each bidder is submitted per task. As shown in the previous 

chapter, PAP requires less communication than ECNP if the number of bids br for each 

task is greater than 2, and the saving in communication is (br – 2) � m, where is the depth 

of the search (number of bids required in the final solution). Therefore, savings in 

communication increases with the depth of the search or the number of bids submitted.  
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Figure 39 and Figure 40 illustrates the total communication required for paths and 

scheduling data, respectively, for varying goods and number of bidders. As the number of 

goods and bidders increases, so too does the saving in communication by using PAP, 

where the saving in communication is shown by the gap between each of the two lines 

with the same number of goods. The reason is that the number of goods is proportional to 

the depth of the search (m) as a greater set of goods to achieve required more bids to 

achieve it in our experiments. Additionally, the number of bidders is proportional to the 

number of bids submitted because each bidder will usually submit one bid each (if 

possible) for the task. Therefore, a greater number of bidders results in more bids being 

submitted for each task. Note that the 100 goods results in Figure 40 could not be 

distributed among 50 bidders. Bids with the same dummy goods were distributed to the 

same bidders, and there were not enough dummy goods in the data to be distributed 

among the 50 bidders. 
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Figure 39. Communication – PAP versus ECNP (paths data, 250 bids). 
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Figure 40. Communication – PAP versus ECNP (scheduling data, 1000 bids) 

In Figure 41, we show the total communication for PAP and ECNP as the number of bids 

and bidders varied, keeping the depth m relatively constant. We only used paths data 

because the scheduling data had varying depths for the different experiments. The saving 

in communication remained relatively constant for the same number of bidders. 

Increasing the number of bids did not usually result in an increase in the number of bids 

submitted for each task because each bidder only submits a maximum of one bid per task, 

regardless of how many bids they have. The saving in communication did increase 

slightly with a greater number of bids because there was a slight increase in the number 

of bids submitted. When each bidder had less bids, some ran out of bids to submit when 

they had other bids allocated by the auctioneer (as bidders cannot submit other bids 

containing goods that are allocated). Therefore, not all bidders submitted a bid for each 

announced task when they had less bids. 
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Figure 41. Communication – PAP versus ECNP (paths data, 10 goods). 

6.3.4 Performing Decentralised Depth-First Search 

We ran 8 data sets using both a centralised depth first search and PAP with backtracking. 

The data was modified to allow the bids to have unique bid evaluations (which was not 

the case for two datasets). Therefore, for every announced task, the auctioneer would 

always prefer one bid over all others, rather than having two bids with the same bid 

evaluation and selecting one at random. This made it easy to compare the two algorithms. 

The first 100 tasks (or nodes) and selected bids (or branches) of the search tree produced 

by both PAP and the centralised depth-first search were used in the comparison. In both 

cases, the search tree was the same, which is consistent with the theoretical results that 

PAP will run a decentralised depth first search. Note that the two datasets with bids that 

did not have unique bid evaluations before the first 100 tasks and bids were checked up to 

that point. 

6.3.5 Backtracking 

Backtracking was used on the datasets, using the heuristic that backtrack until a solution 

is found that is a greater allocation than the initial solution: if < 70%, 70% - 79%, 80% - 

89% or 90% - 99% allocation is found initially, then backtrack until a > 70%, > 80%, > 

90% or 100% allocation is found, respectively, or some time limit is reached. 
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In our results, out of 41 scenarios which successfully completed, 37 (90.2%) produced a 

better solution by backtracking, which on average, was 9.4% better. Of the 4 (9.8%) 

which produced a worse solution, it was only 2% worse. From our results, backtracking 

was useful, was likely to produce a better solution, and if not, the solution was not 

significantly worse. 

Rather than focus on the suitability of the heuristic employed, we are examining the case 

of a heuristic that utilises backtracking and how PAP supports this. In the case of no free 

disposal, backtracking can be used until a solution is found such that all goods are 

allocated. 

Note that there is a communication and time overhead with backtracking, which depends 

on the amount of backtracking required to find a suitable solution. We also found that in 

some cases, there were no solutions which provided a greater allocation. Therefore, in 

trying to find a better solution, the auctioneer was left with the worst solution, no 

allocation of goods. In such a situation, it may be beneficial for the auctioneer to revert 

back to provisionally rejected bids, which are currently discarded. This issue is under 

investigation. 

6.4 Single Auction, Dynamic Bids 

In order to simulate dynamic bids, we ran 16 scenarios where up to 50% of the bidders’ 

bids were delayed, and hence became available after depth 1, 2, 5 and 10 in the auction 

using PAP with no backtracking (see Table 2 – values are percentage of the optimal 

solution with all bids available). We ran centralised auctions without delayed bids, to 

simulate current one-shot approaches that collect bids once and process them. Greedy 

centralised runs the same heuristic, and hence search, as PAP with no backtracking. 
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Table 2. PAP versus One-shot (centralised) approaches with delayed bids. 

On average, solutions for PAP were better (greater) than centralised greedy. This 

indicates that PAP’s ability to interact with the environment and take advantage of new 

(potentially better) bids introduced during the auction (planning) can improve the final 

solution. As expected, the later in planning (increasing depth) the bids become available, 

the smaller the improvement. The average solution for PAP with delayed bids available at 

depth 1 was better than the centralised optimal, indicating that even a greedy search that 

takes advantage of a changing environment can produce a better solution than the optimal 

solution which does not. 

It was not necessary to perform experiments with bids being retracted because if the 

centralised approach found a solution that contained a retracted bid, then the solution 

would be infeasible. PAP allows bids to be retracted. Bidders are sent a (provisionally) 

withdrawn message if the auctioneer tries to provisionally grant a retracted bid. 

Therefore, PAP’s ability for auctions to interact with the changing environment, taking 

advantage of new bids and acknowledging retracted bids, can improve the quality of 

solutions over current one-shot approaches. 

6.5 Multiple Simultaneous Combinatorial Auctions 

6.5.1 Without Backtracking 

Multiple auction scenarios comprise up to 10 auctioneers with the same goal and up to 50 

bidders. Note that PAP aims to optimise each auction’s local solution, and not the global 

solution. We examine the behaviour of PAP as bidders and auctioneers change. Figure 42 

shows results comparing global price, or the sum of prices obtained from all auctions, 

Centralised PAP – delayed bids at depth:  

Optimal Greedy 1 2 5 10 

Mean 83.2 78.0 83.9 82.9 79.6 79.5 

Std Dev 13.0 15.4 12.2 14.6 14.3 15.6 



 213 

versus number of bidders for datasets using paths data, 100 goods and 250 bids. 

Increasing the number of bidders in this case is equivalent to increasing the number of 

bids, and hence resources available to auctioneers. Even if a bidder has many bids, it can 

only be allocated at most one of each good, and hence any of its other bids comprising 

that good are no longer available. 
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Figure 42. Global price versus number of bidders (paths data, 100 goods). 

From Figure 42, as resources increase, auctioneers approach their globally, and thus 

locally, optimal price, but as resources become scarce, the global price decreases 25. This 

occurs for two reasons. Firstly, due to the lack of bids, auctioneers may only get a small, 

or no, allocation of bids. Secondly, competition increases with decreasing resources as 

auctioneers must fight for the same bids. Competition increases the chances that an 

auctioneer’s locally optimal allocation of bids conflicts with others, reducing its chances 

of obtaining the optimal. Additionally, a major problem with increasing competition is 

that it may result in a globally inefficient allocation of resources as one auctioneer may 

obtain a bid that another requires, and vice versa. This phenomena is known as the 

tragedy of the commons, whereby each agent in trying to maximise their local utility 

results collective behaviour that minimises each agent’s utility, and thus minimises the 

global utility (Hardin 1968). This phenomenon in our situation decreases with a large 

amount of resources because resources required to achieve individual agents’ goals do 

                                                    

25 The global price does not necessarily increase proportionally with the number of auctioneers because once high value bids are 

allocated, lower value bids are used, leaving many auctioneers with little price improvement. 

Scarce  

Resources 
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not conflict. Therefore, PAP is likely to perform better locally and globally when 

resources are plentiful, reducing the chances of conflicts between required bids. 

It is often said that “auctions are used to allocate scarce resources”. Note that we 

underline resources in this context to avoid confusion because its meaning differs to what 

we mean by resources. Resources in the traditional auction context are the good(s) that 

the auctioneer is auctioning. Therefore, scarce resources imply that there are many bids 

for the auctioneer’s good(s), and so auctions are used to find the most appropriate bidder 

to have the resource allocated to. Hence, PAP is likely to perform well when applied to 

auctions in this context as there are likely to be many bids. 
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Figure 43. Environment dynamics versus resources (paths data, 100 goods). 

In Figure 43, as resources become scarce, the number of (provisionally) withdrawn 

messages per total allocation increases, indicating that the environment is more dynamic 

(bids are being retracted). We divide withdrawn messages by the total allocation (sum of 

bids allocated by all auctioneers) because the number of withdrawn messages should 

increase as planning time and depth increases. Increasing auctions with the same number 

of bids increases withdrawals, and thus dynamics, because increasing the number of 

auctions reduces resources as there are less bids available per auctioneer. 

6.5.2 With Backtracking 

In section 6.3.5, we showed that backtracking to obtain a greater allocation in a single 

auction case (with our datasets) was likely to improve the solution. Our aim is to 

Scarce  

Resources 
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investigate if the same applies to the multiple auction case. We ran experiments, varying 

the number of auctioneers and bids. Auctioneers backtracked to find an allocation that 

has one or more goods than the initial solution. The heuristic differs to that in section 6.2 

to increase the chances of finding a solution with minimal backtracking. 

The results are shown in Figure 44 (paths data, 100 goods), displaying the number of 

auctioneers who fail to find a solution versus the quantity of resources. As resources 

become scarce, a greater number of auctioneers did not find an allocation. There are four 

reasons. Firstly, there may not be a solution with a better allocation, and less resources 

implies less possible solutions. Due to partial observability (do not have all bids), the 

auctioneer does not know if a better solution exists. Secondly, there may not be enough 

bids for all the auctioneers, and therefore it is inevitable that some will not obtain a 

solution. Thirdly, due to increased dynamism as a result of scarce resources, ungranted 

bids that could potentially provide a better solution may no longer be available when 

backtracking. Fourthly, auctioneers hold bids by provisionally granting them, and thus 

preventing bidders from sending the bid to other auctioneers, or allow other auctioneers 

to grant the bid, which is later released. Therefore, by the time the bidder sends the bid to 

other auctioneers for their tasks, the auctioneers may have already given up on achieving 

the task believing no solution was possible (as no bids were submitted before the bidding 

deadline). Additionally, if the held bid was already sent, and an auctioneer tried to 

provisionally grant it, the bidder will provisionally withdraw the bid. This causes the 

auctioneers to discard that option, which they could have used soon after. This is also 

detrimental to the bidder as it prevents the bidder from having its bid accepted. Allowing 

auctioneers to reconsider provisionally withdrawn bids, and the vulnerability of bidders 

having resources held, is the subject of future work. 

Figure 45 shows the result of scenarios where only half of the auctioneers backtracked 

(paths data, 100 goods, 10 auctioneers). Auctioneers that did not backtrack when 

resources were scarce were better off than those that did backtrack, since they all found a 

solution. Once (or if) they obtained (provisionally granted) scarce bids, they held on to 

them. Auctioneers that backtracked released the resources and were usually unable to 

find a better, or any, replacement (for reasons explained above). Thus, backtracking with 

scarce resources can be detrimental, and a greedy approach is more suited. A priori, this 
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seems counter intuitive as one would generally expect backtracking to provide a better 

solution. 
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Figure 44. Multiple auctions with backtracking (paths data, 100 goods) 
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Figure 45. Backtracking versus without backtracking (paths data, 100 goods, 10 

auctioneers) 

6.6 Summary 

In this chapter we applied PAP to the combinatorial auction problem in order to 

empirically evaluate PAP, demonstrate the benefits of PAP over current one-shot 
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combinatorial auction approaches and show that PAP can facilitate the novel multiple 

simultaneous combinatorial auction. 

One-shot combinatorial auction approaches, such as (Andersson, Tenhunen et al. 2000; 

Hunsberger and Grosz 2000; Nisan 2000; Walsh, Wellman et al. 2000; Collins, Bilot et 

al. 2001; Collins, Ketter et al. 2002; Sandholm 2002; Sandholm, Suri et al. 2005) require 

all bids and their dependencies to be submitted to the auctioneer for processing. This may 

not always be possible as there may be many bids with complex dependencies. The PAP 

approach is decentralised so bidders process their bids themselves and submit their single 

best bid. Therefore, each bidder does not need to submit all bids and their dependencies. 

PAP has communication benefits over one-shot combinatorial auctions if bidders possess 

many bids. This is the case in many real world applications, such as our transportation 

domain presented in the next chapter. Additionally, we have shown that PAP may 

produce a better solution in a dynamic environment than one-shot auctions approaches 

that find an optimal solution due to PAP’s ability for auctions (or the auctioneer) to 

interact with the changing environment during the auction process. Dang and Jennings 

(Dang and Jennings 2002) uses a greedy approach to combinatorial auctions, like PAP, 

but is also centralised and does not consider backtracking. Similar to Dang and Jennings 

approach, PAP, when applied in a greedy manner (no backtracking), scales well. We 

showed that PAP’s backtracking facility can be used in a static environment, with a 

suitable heuristic, to obtain a better solution than the first (greedy) solution found. 

Experiments were performed that showed that the saving in communication for PAP 

compared with ECNP increased with the number of bidders or the depth of the search 

(number of bids to achieve the auctioneer’s task), but remains relatively constant as the 

number of bids increase. Empirical results are consistent with the fact that PAP performs 

a decentralised depth-first search. 

PAP was able to facilitate the multiple simultaneous combinatorial auctions. We found 

that as resources (bids per auctioneer) became scarce, dynamism and competition (and 

thus the tragedy of the commons phenomenon) increased. Therefore PAP is likely to 

perform better locally and globally when resources are plentiful, which are when typical 

auctions are useful anyway. Although PAP’s backtracking facility allowed a better 
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solution in a static environment, it can be detrimental with multiple auctions when 

resources are scarce. This is primarily due to the increase in dynamism and ability for 

auctioneers to hold on to resources that they later release, preventing others from using 

them. Auctioneers in our scenarios are better off holding on to bids they have obtained 

rather than releasing them and attempting to obtain other bids that appear to be better. 

The potentially better bid that the auctioneer is trying to replace its current bid with may 

no longer be available or may be held by other auctioneers, which PAP currently discards 

this potential future option. Backtracking being detrimental seems counter intuitive as a 

better solution is always expected with backtracking. In our domain, due to partial 

observability and dynamism, this is not always the case. Due to partial observability 

(auctioneer does not have all bids – as with single auctions with static and dynamic bids, 

and multiple auctions), it may not be possible to determine whether a better solution is 

available, and how to get there. This makes it difficult to know when to backtrack and 

which bids to select. Even if the auctioneer is aware of a better solution, it may no longer 

be available by the time the auctioneer backtracks and attempts to secure it. The solution 

that was given up as a result of backtracking may also become unavailable when an 

auctioneer tries to regain it. 

The issue of auctioneers holding on to, and later releasing, bids is also detrimental to 

bidders. Bidders that are committed to a provisionally granted bid are (currently) unable 

to accept provisional grants for any other conflicting bids they have submitted. Therefore, 

if the provisionally granted bid is later withdrawn, it prevents potential contracts with the 

previously granted conflicting bid. Sen and Durfee (Sen and Durfee 1994; Sen and 

Durfee 1998) investigate the issue of commitment strategies – whether to commit to a bid 

and block other conflicting bids, or to not commit to a bid until a full agreement is 

reached. The latter prevents the problem of blocked resources that become available 

again blocking potential bids from being made. In our domain, strict contractual 

obligations force commitment when a provisional grant is accepted for a bid. Any 

decommitment requires a penalty to be paid. Allowing auctioneers to reconsider 

provisionally withdrawn bids in case they become available again, and the vulnerability 

of bidders having resources held, is the subject of future work. 
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From our knowledge of the current literature, the multiple simultaneous combinatorial 

auction problem that we describe have not been addressed. Other combinatorial 

approaches, such as iBundle, use ascending auctions (Parkes and Ungar 2000; Wurman 

and Wellman 2000; Walsh and Wellman 2003; Ausubel and Cramton 2004). These are 

suited to domains where bids for auctioned items are dynamically priced. In our domain, 

bidders have fixed (true) valuations (or prices) for their bids – as is the case in many 

reverse auctions (e.g. our transportation domain) – and therefore is a problem of 

allocation rather than price determination. The auctioneer or bidders may not want others 

to see bid prices, as it may be private information. Additionally, they do not consider the 

multiple auction case, where each auctioneer allocates multiple goods. Double auctions 

(Wurman, Walsh et al. 1998; Park, Durfee et al. 2000; Tesauro and Das 2001; He, Leung 

et al. 2003; Babaioff and Nisan 2004; Vytelingum, Dash et al. 2004), which have a many-

to-many setting, require both auctioneers and bidders to submit goals and bids to a 

mediator that matches them (e.g. stock market). This may not always be practicable as a 

bidder may have many bids, they may not know what they want until a goal is presented, 

or particularly in reverse auctions, bids (services offered) are tailored to suit the goal at 

hand. This is the case in the transportation scheduling application discussed in the next 

section. Additionally, with a mediator, agents may not have control over who receives 

their sensitive information. Therefore, we focus on single sided auctions in a many-to-

many setting. (Priest 2000; Byde, Priest et al. 2002; Shehory 2002; Airiau and Sen 2003; 

Anthony and Jennings 2003; He, Leung et al. 2003; Cheng, Leung et al. 2005; Greenwald 

and Boyan 2005; Reeves, Wellman et al. 2005) investigates the problem of which 

auctions bidders should bid in, and at what price, in order to obtain a good at the best 

price. Again, they assume dynamically priced bids. In PAP, bidders are allowed to bid in 

all auctions at a fixed price until the bid is allocated. 

Mechanism design aims at finding protocols for agents to optimise the global welfare 

(Mas-Colell, Whinston et al. 1995; Varian 1995; Nisan 1999; Parsons and Wooldridge 

2002; Cramton, Shoham et al. 2006). PAP does not aim at maximising the global price 

(sum of individual agent’s prices) for the multiple auction case. Our aim is to provide a 

protocol to facilitate interaction that is present in many real world situations – self-

interested agents (organisations) finding themselves a suitable plan and allocating tasks, 
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using contracting, in a complex and dynamic environment, in the presence of other agents 

that it must compete with for bids. As in many real world situations, our protocol is also 

susceptible to the tragedy of the commons (Hardin 1968), where individuals trying to 

greedily maximise their own local utility may worsen their local and the global solution. 

It may be socially desirable if organisations do act towards increasing the global welfare 

– which organisations will most likely be reluctant to do so. Research in COllective 

INtelligence (COIN) attempts to address the tragedy of the commons by setting agents’ 

local goals/behaviours such that maximising their own utility results in agents 

maximising the global utility (Tumer and Wolpert 2000; Wolpert, Wheeler et al. 2000). 

In our domain, we cannot directly control agents’ goals in our domain. Incentives can be 

placed so that agents redirect their goals in order to exhibit more global behaviour. 

Current incentives include social law (e.g. anti-trust laws), where breaking them results in 

penalties. It may not be practical to devise incentives that require the creation of new 

laws. In mechanism design, for example, payments may be made to agents in order to 

provide incentives for them to act towards a social goal. Devising protocols such that 

agents can exhibit global behaviour, in our particular multiple simultaneous 

combinatorial auction scenario, is the subject of future work. In devising protocols, one 

must consider that organisations may be reluctant to use a protocol that attempts to 

maximise a utility other than their own and one which is not consistent with 

organisational interactions (e.g. must involve contracting and be decentralised). 

There may be situations in which multiple auctions using PAP obtains an inefficient 

allocation, due to tragedy of the commons, and there exists an allocation which is both 

globally and individually superior – i.e. the solution is not Pareto optimal. This brings to 

a light a dilemma in the multiple auction case. On the one hand, using a protocol which 

acts selfishly (such as PAP) ensures that decisions made are in the agent’s self-interest, 

but acting selfishly may result in a worse allocation than if they acted cooperatively 

towards a global utility. On the other hand, using a protocol that acts toward a global 

utility may cause the agents to not act in their own interests and obtain a worse solution 

than if they were selfish. 

This dilemma is analogous to our own variation of the famous prisoner’s dilemma game 

from game theory, shown in Table 3 – the example is taken from (Sandholm and Lesser 
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2002) 26. In the original prisoner’s dilemma problem, there are two players A and B in 

separate rooms. Each one can press one of two buttons: (1) cooperate or (2) defect. Based 

on which buttons the agents press, they receive payoffs according to Table 3. In relation 

to our multi-auction problem, there are two auctioneers (or auctions) A and B. Defect 

implies that the player greedily tries to acquire resources in order to achieve its own local 

goal. Cooperate implies that the player attempts to cooperate and share resources in order 

to maximise their shared goal. The situations in Table 3 where one player defects (and 

receives a payoff of 5) and the other cooperates (and receives a payoff of 0) are 

interpreted differently in our domain. There are two cases: (i) the same as in the 

traditional prisoner’s dilemma game, where one player decides to cooperate and the other 

defects, somehow resulting in a greater payoff for the defector 27 and/or (ii) the defecting 

player greedily achieves its own goal and successfully obtains a greater number of 

resources than the other player, regardless of whether the other player decides to 

cooperate or defect 28. 

 

Player A  

Cooperate Defect 

Cooperate 3, 3 0, 5 Player 

B Defect 5, 0 1, 1 

Table 3. Prisoner’s Dilemma Game – in each square, player B’s payoff is listed first. 

                                                    

26 Relating our tradegy of the commons dilemma observed in multiple combinatorial auctions to the well 

known Prisoner’s dilemma may provide insight to addressing/understanding our problem. 

27 How this could occur in our domain (in the real world), and how likely is it occur, is an open question. 

28 This is a realistic scenario in our domain where deciding to act selfishly may produce a better result. This 

case differs from the traditional prisoner’s dilemma game as the output for the defecting player is not 

dependent on the choice of the other player, but on other factors (e.g. chance – the cooperative player here 

should be labeled the unlucky player). As in the traditional prisoner’s dilemma game, the defector player 

does not have full control of the output – it’s dependent on other factors (e.g. the other player and chance). 
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In the traditional prisoner’s dilemma game, the dominant strategy for each player is to 

defect, having a global utility of 1 + 1 = 2 (Sandholm and Lesser 2002), even though if 

they cooperated they could increase both the global and their local utility. Is the dominant 

strategy in our variation of the game to also defect? If so, then is PAP (and many real 

world organisational interactions) performing the dominant strategy – act selfishly and 

hope that the maximum payoff is obtained? What mechanisms, information and situations 

are required so that agents act cooperatively? In the prisoner’s dilemma problem, each 

player knows the existence of the other player and the payoffs as a result of both their 

decisions. In a real world situation, can agents identify this information? How do agents 

identify other agents whose actions (acquiring common resources) will conflict with its 

own actions, particularly in a decentralised domain which is typically partially 

observable? If agents do identify other agents that they may conflict with, how can they 

determine the payoffs of cooperating and defecting in a partially observable 

environment? Therefore, is cooperation possible among auctioneers? 

In future work, we intend to investigate protocols (or PAP extensions) which can address 

issues of producing a Pareto optimal solution, that is, when to act selfishly or cooperative 

to obtain individually better solutions, or how to recover from a non-Pareto optimal 

solution. In our domain, a suitable protocol that allows a pareto optimal solution is 

necessary. A suitable protocol that enables a globally optimal solution is the Holy Grail. 

 



 223 

Chapter 7 

7 Global Transportation Scheduling 

Having presented PAP in previous chapters, we now apply PAP to our global 

transportation scheduling domain (Perugini, Lambert et al. 2003; Perugini, Lambert et al. 

2004; Perugini, Lambert et al. 2004), as required for our Multi-Agent Logistics Tool 

(MALT) (Perugini, Lambert et al. 2002; Perugini, Wark et al. 2003). The global 

transportation scheduling framework we present extends Fischer’s transportation 

scheduling framework, which uses ECNP. Fischer’s framework is not intended to allow 

partial route, in addition to partial quantity bids, and inherits the limitations of the 

protocol (ECNP) used to facilitate the scheduling. The flexibility our transportation 

scheduling framework allows us to address a wide range of transportation problems, such 

as Fischer’s transportation problem (Fischer and Kuhn 1993; Fischer, Muller et al. 1996), 

multi-commodity, multi-modal network flow problem with time windows (Haghani and 

Oh 1996), the dial-a-ride problem and Pickup and Delivery Problem with Time Windows 

(PDPTW) (Savelsbergh and Sol 1995), and the greyhound scheduling problem (Dean and 

Greenwald 1992; Dean and Greenwald 1992). To follow, we present details of the global 

transportation scheduling framework, its implementation and experimental results in 

addressing real world scenarios taken from military logistics exercises. Our 

implementation was able to automatically form transportation schedules for scenarios 

which are currently performed manually through a complex, tedious and time consuming 

process. Therefore, logistics planners could benefit from the automation and potential 

speed of our implementation. We demonstrate the flexibility of our implementation by 

applying it to the multi-commodity, multi-modal network flow problem (disaster relief) 

and the PDPTW. Finally, we discuss some issues regarding our transportation 

implementation, and thus the general type of planning and task allocation problems that 

PAP is aimed at addressing. 
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7.1 Global Transportation Scheduling Specification 

7.1.1 Overview 

In our global transportation problem, there are a set of Manager Agents (MA, or 

auctioneers) that must transport a large quantity of resources over a large distance 

(potentially on a global scale). They transport the resources using the services of 

Transport Agents (TA, or bidders). Due the to large quantity and distance required in the 

transportation, each TA may only be able to transport a partial quantity of the resources 

only a part of the distance (or route). Each MA must obtain and assemble these services 

from various TA in order to achieve its transportation goal. The MA and TA are 

operating in a complex environment that is characteristic of an open market, and thus is 

decentralised, dynamic and open, and all are interacting simultaneously in a many-to-

many setting (many MA interacting with many TA at the same time). Figure 46 

illustrates the agent interaction and Figure 47 provides an illustrative example of 

transportation. 

Although this transportation problem evolved from the (Australian) military, it may not 

be specific to the military.  Globalisation and deregulation are increasing in the 

commercial sector. Therefore, the commercial sector may also have an increasing 

requirement for the global transportation scheduling problem described above. 

 

 

tasks
bids

Manager
Agents 

(MA)

Transport

Agents

(TA)
 

Figure 46. Agent interaction in global transportation scheduling. 
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Figure 47. Example of transportation in global transportation scheduling, showing the 

path and mode of transport of the three military resources at the bottom of the figure to 

get to their destination at the top of the figure. 

7.1.2 Problem Definition 

There are a set of MA at time τ, denoted 
Λ

τ, and each MA α  ∈ 
Λ

τ has set of (root) 

transportation tasks Tα
τ that must be achieved. Each task t ∈ Tα

τ is defined as t = <n, q, 

est, lft, src, dst>, where quantity q of package n is to be transported from source location 

src to destination dst, with earliest start time est and latest delivery time lft. There are a 

set of TA (or transportation assets) at time τ, denoted Г τ which can be used to achieve 

Tα
τ. Each TA γ ∈ Г τ is defined as γ = <cap, R, lp> has capacity cap, set of routes R that 

it can service, and a local plan that contains a time ordered sequence of actions, lp. Each 

action a ∈ lp is defined as a = <tsa, tfa, lsa, lfa, inv>, where tsa and tfa are the action 

start and finish times (dependent on the γ’s speed, loading time, etc.), respectively, lsa 

and lfa are the action start and finish locations (end points of the route r ∈ R), 

respectively, and inv is the set of inventory items. Each inventory item i ∈ inv is defined 

as i = <m, c, p>, where the inventory item carries quantity c of package m at price p. We 

define capacity(a) as the sum of all the quantities c in all the inventory items i within the 
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action inventory inv ∈ a. The capacity transported in each action must be smaller than the 

capacity that γ can carry, i.e. capacity(a) ≤ cap. There must be enough time for the TA to 

get from the end location lfa of one action to start location lsa of the next action. An 

action may transport partial quantity and route of a task t, therefore, if m = n for m ∈ i 

and n ∈ t, then 0 < c ≤ q, and lsa and lfa may or may not be equal to src and dst, 

respectively. Packages may be picked up and delivered at any location, and all locations 

are assumed to have infinite storage capacity. 

A distributed transportation plan plan(Tα
τ) = {<γ, a, inv> |γ ∈ Г  & a ∈ lp & inv ∈ a} to 

achieve Tα
τ  consists of the set of actions and inventories by TA γ that are associated with 

Tα
τ. If tdel is the delivery time of package m in plan(Tα

τ), then tdel ≤ lft. The price to 

deliver package m is pr, which is the sum of all inventory prices p in plan(Tα
τ) associated 

with m. The plan plan(Tα
τ) has a cost value cv associated with it, which is a function of 

tdel and pr. We assume that the earlier the delivery time tdel, and the lower the price pr, 

for all tasks in Tα
τ, then the better the plan plan(Tα

τ), and hence the lower the cv. The aim 

of transportation planning is to find a plan(Tα
τ) such that cv is minimised. 

7.1.3 Complexity & Depth-First Search Approach 

Dean and Greenwald (Dean and Greenwald 1992; Dean and Greenwald 1992) have 

investigated a similar problem, called the grey-hound package scheduling problem. It 

allows TA to perform part of the route of transporting a package. They make the 

restriction that the TA schedules are fixed, simplifying the problem (Dean and Greenwald 

1992; Dean and Greenwald 1992). They show that the optimisation problem is still NP-

complete (Dean and Greenwald 1992). In our transportation domain, this restriction is not 

made, allowing TA to perform any transportation action at any time. Additionally, the 

global transportation problem is equivalent to the (multiple vehicle) Pickup and Delivery 

Problem (PDP) with time constraints, without the restrictions that transport assets must 

depart and return to a central depot and no drop-and-swap between transport assets. The 

PDP is known to be NP-hard (Savelsbergh and Sol 1995), without considering the 

additional complexity of drop-and-swap, i.e. cannot just assign a transportation task to a 
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single transportation asset. Therefore, an optimal solution to most global transportation 

planning problems (scenarios) will be intractable. 

In order to deal with the computational complexity, we use a depth-first search to address 

this problem – a greedy approach with backtracking if an infeasible solution encountered. 

Hence, we use PAP to facilitate the required depth-first search planning and task 

allocation, allowing a solution to be found in a reasonable amount of time. Additionally, 

PAP is also able to deal with other domain complexities, such as planning in a 

decentralised, dynamic and open environment, in a many-to-many setting. 

7.2 Applying PAP to Global Transportation Scheduling 

We provide a simple example of some of the operational details of our implementation 

using PAP, and illustrate the complex search tree that is created during planning. Refer to 

PAP specification in section 5.1, and the problem definition in section 7.1.2.  

Figure 48 illustrates the search tree, and thus the planning process, from a single MA’s 

perspective. In Figure 48 (a), the MA announces two root transportation tasks t1 and t2 

(announced separately, as they are achieved independently), which are considered the 

root node, i.e. Troot = {t1, t2}. t = <n, q, est, lft, src, dst, dl, f >29 where dl is the bidding 

deadline and f is the bid evaluation function used by the TA to determine the cost value 

cv that the MA will use to evaluate the bids. Each TA sends their bid with the smallest 

cv, and which each believes can fully or partially achieve the quantity and route of the 

transportation task. We discuss f and cv in detail in section 7.3.5. Say t2 = <fuel, 110 Kg, 

20 hrs, 50 hrs, Adelaide, Cairns, now+5, f >. TA submit bids b1, b2, b3, b4, which are the 

branches in the search tree from the root node. Each bi is of the form b = <n, c, tsa, tfa, 

lsa, lfa, p>30. Say b4 = <fuel, 50 Kg, 30 hrs, 38 hrs, Melbourne, Sydney, $1000>. 

                                                    

29 dl and f do not appear in the problem description in section 7.1.2 because they are specific to our solution to address the problem 

(the use of PAP for transportation scheduling) rather than a component of the problem itself. 

30 Bids are conveniently respresented as a conglomeration of actions and inventories presented in section 7.1.2 because a bid 

corresponds to a single inventory item i ∈ inv in an action a in the TA’s local plan. Again, the representation of bids here is specific to 

our solution to address the problem rather than the problem itself (e.g. bids are not specified in the problem definition in section 7.1.2). 
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MA decides to provisionally grant b1, which has the lowest cv, but the bid was 

provisionally withdrawn (?×). An updated bid for t1 is not sent. MA then tries to 

provisionally grant b3, but the bid is withdrawn (×). 
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Figure 48. Transportation scheduling planning process. 

b4 is provisionally granted ( ? ) and the provisional grant is accepted. The new task 

(node) Tnew to achieve is the difference between the root node and b4, which is essentially 

Tnew = {t1} ∪ diff(t2, b4). Up to three new tasks can be created (see Figure 49), to transport 

the package the remainder of the route (if b4 is a partial route bid): at the beginning <n, c, 

est, tsa, src, lsa, dlnew, f1>; end <n, c, tfa, lft, lfa, dst, dlnew, f2>; and to transport the left 

over quantity the complete route (if b4 is a partial quantity bid) <n, (q-c), est, lft, src, dst, 

dlnew, f3>. In our example, the left over tasks are (beginning route) t3 = <fuel, 50 Kg, 20 

hrs, 30 hrs, Adelaide, Melbourne, now+5, f1>, (end route) t4 = <fuel, 50 Kg, 38 hrs, 50 

hrs, Sydney, Cairns, now+5, f2>, and (left over quantity) t5 = <fuel, 60 Kg, 20 hrs, 50 hrs, 

Adelaide, Cairns, now+5, f3>. The new tasks, in addition to all tasks that are not 

associated with the granted bid (b4), become the new node. Only new tasks (t3, t4 and t5) 

are announced, since bids for tasks in the previous node are carried over. This is only 

allowed if the cost value has certain properties, which will be discussed in section 7.3.5. 

The MA in this example then receives bids b5, b6, b7, b8, b9. 
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Figure 49. Spacial representation of the transportation task, bid and remaining 

transportation tasks (beginning, end and left over quantity route), and their 

corresponding quantities that must be transported (c, q or q – c). 

b5 is then provisionally granted. The newly created task is t6, which is announced. The 

other tasks and their bids are carried over to the node, and therefore the new node 

contains tasks t1, t4, t5 and t6. After the bidding deadline d, no bids are received. The MA 

assumes there is no solution to achieve t6, and thus has encountered an infeasible 

solution. In our implementation, backtracking (only) occurs when an infeasible solution 

is encountered, and thus b5 is provisionally rejected, and b9 is provisionally granted, as 

shown in Figure 48 (b). The PAP process continues until all the tasks in the current node 

are achieved. The transportation plan, which consists of the provisionally granted bids 

(b4, b9, …) are given a confirm grant ( ) to secure the plan (individual bids) into the 

TAs’ local plans, as illustrated in Figure 48 (c). If a feasible solution does not exist, then 

the protocol will exit in failure after backtracking at the root node. 

The behaviour of the MA is reasonably straight forward, as described above. The 

behaviour of the TA is more complicated, which is discussed in the next section. 

7.3 Transport Agent Bidding 

Allowing partial bids and the provisional granting of bids can complicate TA bidding. 

Partial bids are problematic as any bid, that meets the task constraints, can potentially be 

part of the solution (plan) to achieve a transportation task. For example, for a task to 

move resources between Melbourne and Sydney, a partial bid to transport the resources 

from New York to London could potentially be part of a feasible solution. A rational 

individual is unlikely to consider such an option, unless it was the only or best option. 
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Therefore, the TA have the dilemma of deciding which bids (route, time and capacity) is 

likely to be a suitable bid to achieve the task. It takes computational time to form and 

check each bid for its suitability (e.g. calculating the bid price and cost value), and there 

is likely to be an extremely large number of possible bids, e.g. for each of the many 

possible routes, the TA can transport various quantities, at many different times. Hence, 

the TA must constrain the search for bids so that it limits the vast possibilities, allowing 

them to form a suitable bid within a reasonable timeframe. 

Provisional granting in PAP complicates bid pricing. If a bid is provisionally granted, the 

TA enters the bid (the action) into its local plan, as it must commit to the bid. The price 

of new bids is dependent on actions currently in TA’s local plan. The TA may need to 

travel (or deviate) from locations of transport actions currently in its initial plan to the 

(pick up and delivery) locations of the new transport bid (or action). These deviations 

must be included in the price of the new bid. Therefore, where the TA is expected to be 

located before and after the new bid influences the price of the bid. If actions in the TA’s 

local plan are provisionally granted, and can be rejected, then the TA does not know with 

certainty exactly where it will be before and after the new bid, making pricing difficult. 

To follow, we discuss how we address these issues. Additionally, we discuss the TA 

updating and withdrawal of bids, and the bid evaluation function f (i.e. cost value cv). 

7.3.1 Partial Bids 

Figure 50 illustrates the TA’s local plan, containing transport actions (granted bids) along 

a timeline. 

Definition 8: Similar to section 7.1.2, in our implementation each action is represented 

by am = <tsam, tfam, lsam, lfam, invm>, where tsam and tfam are the action start and finish 

times, respectively, lsam and lfam are the action start and finish locations, respectively, 

and invm is the inventory, invm = {i1, i2, …, iw}, where ik = <nk, ck, stk, pik>. There is one 

ik for each bid that attempts to achieve a transportation task, and thus an action achieves 

w transportation tasks in the single transport, where nk provides details about the 

transportation task (the type of packages to be transported, the MA that requires the 

transport, and details regarding the price of the transport), ck is the quantity that is being 
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transported, stk specifies whether the inventory item is provisionally granted or confirm 

granted, and pik is the price only of the transport (not including any deviation price to get 

to and from adjacent actions to this action – see below). If the maximum capacity that the 

TA can carry is cap, and capacity(an) = c1 + c2 + … + cw, then  capacity(a) ≤ cap. The 

finish location of one action (lfam) may not be the same as the start location of the next 

action (lsam+1), and thus there must be enough time between actions (gap) for the TA to 

travel between the locations of the two actions. 
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Figure 50. TA’s local plan – boxes are transport actions/bids. Bids can be made 

“piggybacking” with other actions that have free capacity, or in the gaps. 

Bids can be made either in with conjunction with existing actions, if there is free capacity 

available in that transport journey, which we called a piggyback bid, or by creating a new 

action between gaps of existing actions, which we call a gap bid. Piggyback bids are 

easier to check for as the route (lsam to lfam) and time interval (tsam to tfam) are fixed. The 

capacity of the bid must be determined, which is dependent on the left over capacity of 

the piggybacked action, and the task time constraints and the suitability of the route for 

the task must be checked. Gap bids are computationally harder to check for since the TA 

can consider potentially many suitable routes, range of times within the gap time interval, 

and a range of capacities, all for which the price and a cost value needs to be calculated. 

To simplify the bidding process in our implementation, the TA always bids for the largest 

capacity that it can carry. Thus, the TA are not travelling under full capacity and wasting 

resources, and achieves as much of the transportation task (in terms of quantity to 

transport) as possible. Additionally, the TA schedule gap bids as early as possible 

because the cost value (quality of the bid) is dependent on time, and therefore the earlier 

the delivery, the better the resulting transportation plan. The time that the bid can be 
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performed not only depends on the time constraints of the transportation task and gap, but 

if the bid is to perform part of the task’s route, then the TA must ensure that there is 

sufficient time before and after the bid for other TA to perform the rest of the route 

within the task time constraints. If too much time is left before the bid, then the package 

may be delivered later than is possible, resulting in a worse plan. If insufficient time is 

provided before and after the bid, a solution may not be found and the bid will likely be 

rejected (if granted). Knowledge about the type of TA that can service routes could be 

used assist in determining the amount of time required before and after the bid. 

The final issue with gap bids are selecting the routes that the TA should consider for bids, 

assuming the TA has a finite set of routes that it can service. Consider a TA that can 

transport a package from Melbourne to Sydney and Melbourne to London. Say a 

transportation task was received by the TA to transport a package from Melbourne to 

Brisbane. A rational choice for the TA would be to select the route Melbourne to Sydney 

when checking for bids for the task since it moves the MA closer to its goal, i.e. reduces 

the remaining distance that the package must travel, after the bid is performed, to achieve 

the task. The route Melbourne to London actually moves the MA further away from its 

destination goal, i.e. the remaining distance that must be travelled to achieve the task, 

after the bid is performed, is significantly greater than the original distance required by 

the task. The Melbourne to London route is less likely to produce a better plan than the 

Melbourne to Sydney route. Therefore, a rational approach is for TA to select the routes 

that move the MA as close to its goal as the TA possibly can, i.e. select routes that 

minimise the remaining distance that must be travelled to achieve the task after the bid 

(route) is performed. The TA have a route threshold rth where if the route does not 

achieve a certain portion of the task (or moves away from the task by a certain amount), 

then the route will not be considered for a bid, saving computational time. 

The route that achieves the greatest amount of MA’s task is not necessarily the best route 

to check for bids in a particular gap. The route may require a large deviation, which is the 

movement for the TA to get to and from the route (in the bid), from locations in the 

previous and following actions, respectively. Selecting routes that minimise the deviation 

in the gap will likely save time and price, and thus resulting in a better bid. Therefore, 

extra priority is given to routes that require less deviation in the specific gap. 
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Definition 9: The quantity rq that a route achieves of a transportation task is given by  

distancetask 

 selected route if  travel todistance remaining=rq  

and rq < 1 if the route moves the MA closer to its task. 

The TA’s algorithm for bidding for an announced transportation task is: 

1. Sort routes in list ls, in order of quantity rq that the route achieves of the task, 

removing routes that are above the route threshold rth. 

2. Check all actions in TA’s local plan, that are within the task’s time window, for 

piggyback bids. Only check actions with routes that are in ls, and those that have 

spare capacity. Form any bids and store them with their associated cost value. 

3. For each gap in the plan, that is within the task’s time window: 

3.1. Sort routes from list ls into a new list lg, in order of the quantity of deviation that 

is required by the route in the gap. Routes will a smaller deviation are at the top 

of the list. 

3.2. Combine the two lists (see below) to form sorted list lc, where routes at the top of 

the list achieve a large portion of the task and requires minimal deviation in the 

gap. 

3.3. Determine bids for the top N routes in lc, and store any bids with their associated 

cost values. 

4. Sort the bids in a list lb based on their cost values, where bids with lower cost values 

are on top of the list. 

5. If the bid at the top of the list lb has not been previously sent, then send it to the MA, 

and go to step 6. Otherwise, remove the bid from lb and go to step 5. If the list is 

empty, exit, as no suitable bids can be made for the task – keep the task stored as an 

opportunity may arise later to submit a bid. 

6. If a provisional reject message is received from the MA, remove the bid from lb, and 

go to 5. If a withdrawn message is received from the MA, then delete the task and all 

its dependencies, and then exit. Otherwise, the bid submission was successful, so exit. 
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In step 3.2 of the algorithm, for our particular implementation the TA combine the two 

lists ls and lg by giving the route at the top and bottom of the lists (ls and lg) a scaling 

value of 1 and 0, respectively. Other routes are given scaling values between 0 and 1 

depending their relative separation from the values (rq and deviation distance) of the top 

and bottom routes. For each route in lists ls and lg, the TA takes the sum of the two 

scaling values, and adds the route to the new list lc, where the greater the scaling value, 

the better the route. 

Making rth too high, or N too low, may result in too few routes being checked for bids, 

and thus a possible solution that might be available may be overlooked. Making these 

values too low will result in the TA spending too much time computing bids with little 

benefit. In our prototype, these values were set manually for the specific experiments. 

Ideally, both rth and N should automatically adjust, depending on the available time for 

bidding (bidding deadline), and the number of other received tasks that the TA may bid 

for. 

7.3.2 Bid Pricing 

The price p of a new gap bid, which becomes an action in the TA’s local plan with one 

inventory item, is calculated using  

Eq 35: eft ppppip −++=  

where (refer to Figure 51 and Definition 8) pi is the price of only the transport for a 

newly entered bid b in the local plan, and pt and pf are deviation prices for the TA to get 

to the new bid from a preceding action in the local plan and from the new bid to the 

succeeding action respectively. This is shown as p(ap,1,b) (the subscript p refers to 

preceding) and p(b,as,1) (the subscript s refers to succeeding)  respectively, where p(x,y) 

is the deviation price to get from x to y, where x and y are bids or actions. pe is the price 

for the existing deviation from the preceding bid action to the succeeding bid action, 

shown as p(ap,1,as,1). p
e has been paid when the actions were previously entered in the 

TA’s local plan and is no longer required, and can therefore be removed from the price of 

the new bid. 
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Figure 51. Deviations in the TA’s local plan used to calculate a new bid’s price. (a) b is a 

new gap bid that a price must be calculated, which is dependent on current actions aj 

(their routes) in TA’s local plan. (b) Illustrates the path (and hence deviations) taken by 

the TA with and without the bid. 

Calculations for pt, pf and pe are complicated because actions, which are actually bid(s), 

in TA’s local plan may be provisional, and hence may be rejected. Therefore, if ap,1 or as,1 

are rejected, the actual deviation prices pt, pf and pe may be different than that calculated 

and charged for the bid b. Thus, the price the MA was charged for the bid b may not be 

equal to the actual price to execute the plan, and hence the TA may have over or under 

charged. 

Sandholm refers to a similar problem in his TRAnsportation COoperation NET 

(TRACONET) system (Sandholm 1993). He defines a maximum and minimum price that 

could be charged for the bid by considering the price of the bid with all the possible 

combinations of actions being rejected or accepted. Setting the price to the minimum is 

opportunistic and setting the price to the maximum is a safe approach. The prices of the 

bid if all actions remain (premain) and all actions are rejected (preject) are between this 

maximum and minimum price. Sandholm uses the price preject such that all of the bids are 

rejected, because it is computationally easier, providing a semi-opportunistic approach. 

In our pricing approach, when accepting a new bid, each TA needs to charge a price that 

is likely to cover its cost, given that some provisionally granted bids may be rejected. The 

price that needs to be charged will therefore vary with the price associated with each 

action and the probability of that action remaining.  The effect on the deviation prices pt, 

pf and pe can therefore be calculated as the mathematical expectation, with price as the 
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value function. Our approach aims at making a better informed choice for bid prices than 

the approach used by Sandholm, and thus is likely to result in a more accurate bid 

pricing. 

Pr(a) is the probability that action a will remain, and hence will not be rejected. We 

assume that each action is independent, and hence the probability of one action being 

rejected does not affect the probability of another action being rejected31. This simplifies 

the pricing calculation as conditional probabilities do not need to be calculated. The 

price, for example, for pt = Pr(ap,1).p(ap,1, b) + Pr(ap,2).(1 – Pr(ap,1)).p(ap,2, b) + … + 

Pr(ap,k).(1 – Pr(ap,(k-1))…(1 – Pr(ap,1)).p(ap,k, b), where Pr(ap,k).(1 – Pr(ap,(k-1))…(1 – 

Pr(ap,1)) is the probability that all actions ap,1 to ap,(k-1) will be rejected and ap,k remains, 

and this probability is multiplied by the deviation price p(ap,k, b) from the action ap,k to 

the bid b. Even if the (or more than one immediate) preceding and/or succeeding bid 

action(s) are rejected, resulting in new deviation prices that should have been used in the 

bid b quoted overall price, the TA has taken this into account in its calculation of the 

deviations prices, contributing to that deviation price by the amount of its likelihood of 

occurring. 

There are two issues with the calculation of pt that require further elaboration. Firstly, we 

do not consider the case where all the actions (ap,1 to ap,k) are rejected. If there is no 

action that the TA must travel from, we assume it commences at the location specified at 

start of the bid. In most situations, the TA will have originated from somewhere (e.g. 

from a depot). This can be specified by an action ap,k with the destination set to its 

originating location, and the finish time set to the earliest time that the TA may 

commence transport. In this case, the probability of action ap,k being rejected is zero. 

Secondly, we do not need to calculate the probabilities of all combinations of actions 

remaining and being rejected preceding the first action before the bid that we consider 

remaining. For example, consider two actions ap,1 and ap,2. We define price(x ∩ y, b) to 

be the deviation price between bid b and actions x, y, where x/y implies the action 

                                                    

31 We believe this is valid in many situations, particulary in a large open market with many independent (and decoupled) agents 

aquiring transport. For example, scheduling then cancelling a parcel to be delivered by truck may not affect the cancellation of other 

(potentially many) parcels being delivered by the truck by indeterminate agents in the open market. 
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remains and –x/-y implies that the action is rejected. The expectation value can be written 

as pt = Pr(ap,1 ∩ ap,2).price(ap,1 ∩ ap,2, b) + Pr(ap,1 ∩ -ap,2).price(ap,1 ∩ -ap,2, b) + Pr(-ap,1 

∩ ap,2).price( -ap,1 ∩ ap,2, b) + Pr(-ap,1 ∩ -ap,2).price(-ap,1 ∩ -ap,2, b). As discussed above, 

we do not consider the situation where all actions are rejected, and therefore the last term 

can be eliminated. With the first two terms, it is clear that price(ap,1 ∩ ap,2, b) = price(ap,1 

∩ -ap,2, b) = p(ap,1, b), i.e. regardless of whether action ap,2 remains or is rejected, the 

deviation price is dependent only on the first remaining preceding action ap,1. Therefore, 

the first two terms become Pr(ap,1 ∩ ap,2). p(ap,1, b) + Pr(ap,1 ∩ -ap,2). p(ap,1, b) = Pr(ap,1). 

p(ap,1, b). The result is the same even if three or more actions preceed the remaining 

action ap,1. As a result, the computation to calculate the expectation value is reduced by 2j 

for each action ap,k that we are calculating the expectation value for, where j is the 

number of actions preceding the first remaining action ap,k before the bid. The saving in 

computation can be extensive if there are many actions in the local plan. A similar 

argument of the two points above applies for pf, and thus pe. 
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If there are no previous or following bid actions, then pt = 0 or pf = 0 respectively, and in 

both cases   pe = 0. 

Remember that each action in TA’s local plan may have many inventories. After the first 

initial gap bid, and thus inventory item, is created, additional inventory items may be 

created from piggyback bids. In order for an action to be rejected, every inventory item 

contained in the action must be rejected. If �  is the probability of an inventory item 

remaining, and assume each inventory item, and hence each bid, have the same 

probability of being rejected, then the probability Pr(a) of an action a remaining, which 

contains m inventory items, is one minus the probability that all inventory items (or their 

associated bids) are rejected, thus: 

Eq 42: ma ) 1(1)Pr( Ω−−=  

The price of the actual transport of a quantity c of resources along the specific route for a 

gap bid is: pi ≥ pmin 

 

Eq 43: pi =        
cap

c
p full  if  pb ≥ pmin 

      minp   otherwise 

where pmin is the minimum price the TA requires to transport resources along the 

particular route, and pfull is the price of transporting resources, at full capacity 

(transporting a quantity of cap), along the particular route. 

For a piggyback bid, the price of deviations and minimum price of the trip have already 

been paid when the gap bid that it is piggybacking with was first was entered into the 

local plan. If the bid is only charged the price for the transport (pi from Eq 45) and the 

initial inventory item (associated with the gap bid) in the action that it is piggybacking 

with (the piggybacked action) is rejected, then the TA will need to execute the bid 

without paying any of the deviation or minimum bid price. Therefore, a piggyback bid 

must also contribute to the deviation price and minimum price of the transport by the 

amount of likelihood that all the current inventory items in the piggybacked action are 
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rejected.  Using Eq 42, the probability that all m inventory items in piggybacked action a 

are rejected is (1 – Pr(a)) = (1 – � )m, and thus the price p for the piggyback bid is: 

Eq 44:   p =  ))(() 1( min beftm ppppppi −+−+Ω−+  if pb < pmin 

  )() 1( eftm ppppi −+Ω−+    otherwise 

where the price pi for the piggyback bid alone (without deviation prices) is 

Eq 45: 
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where pi z and cz refer to the cost and quantity of the zth inventory item in the piggybacked 

action (does not include pi and c of the piggyback bid). 

The price p for gap and piggyback bids can be computationally intensive if there are 

many actions in the local plan that need to be considered for deviations prices. The 

calculation is simplified with confirm granted bids (inventory items) and using a 

probability threshold pth. If an action contains an inventory item that is confirm granted, 

then the probability that it will be rejected is assumed to be zero. Therefore, for 

deviations prices pt, pf and pe, any preceding/succeeding actions after the confirmed 

action do not need to be considered, and for piggyback bids, only pi needs to be 

calculated. The probability threshold pth is used such that if the probability falls below 

pth, then the TA assumes the bid is confirmed and will not be rejected. pth should be set 

small enough such the price p is not significantly different to the price if pth was not used 

(this depends on what is considered as an acceptable margin of error, and the range of 

prices that are possible/expected). Therefore, the bid pricing computation can be 

constrained using pth, but still allow informed bid pricing. 

With our current experiments, we did not want to focus on the issue of determining an 

accurate value for � . This may not be a trivial task or possible, particularly with the 

scenarios used. The scenarios used did not allow the TA to receive a large sample of bids 

and bid rejections over a reasonable time period to obtain a suitable � . Based on the 
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rejection rate of test scenarios, we manually set �  to a value we believed was a 

reasonable estimate, and used this value for all TA for all simulations that were executed. 

7.3.3 Withdrawn Bids 

As bids are entered into the TA’s local plan, then these bids may conflict with other bids 

that the TA has previously sent. When the MA tries to provisionally grant a bid, the TA 

will check if the bid is still available. If the bid has a conflict with other actions (or bids) 

in the TA’s local plan, then the TA sends a withdrawn or provisionally withdrawn 

message, and may send an updated bid to replace the withdrawn bid. If the bid conflicts 

with another provisionally granted bid, but not a confirm granted bid, then the bid is 

provisionally withdrawn.  If the bid conflicts with a confirm granted bid, then the bid is 

withdrawn. 

A bid conflicts with another if the times that the bids occur overlap or if the finish 

location and time of one bid and the start location and time of the other bid are spaced 

such that the TA cannot move between the two locations in the time required. If we have 

two bids, <n1, c1, tsa1, tfa1, lsa1, lfa1, p1> and < n2, c2, tsa2, tfa2, lsa2, lfa2,  p2>, then they 

are in conflict if either of the following conditions are true: 

Condition 1: ( ) ( )1221 tsatfatsatfa >∧>                     

Condition 2: ( ) ( ) ( )( )122121 tfatsalsalfatimetsatfa −>→∧≤      

Condition 3: ( ) ( ) ( )( )211212 tfatsalsalfatimetsatfa −>→∧≤     

where time(l1→l2) is the time required for the TA to get from location l1 to location l2. 

7.3.4 Updating Bids 

If the TA’s worst submitted bid (based on cost value) for a task is rejected or withdrawn, 

the TA will search for an updated bid, which is its next best bid, to replace the bid. This 

is done using the same methods discussed in the previous sections. 

An updated better bid is sent if an opportunity arises to send a bid that is better than the 

worst bid currently sent. This may occur, for example, if a bid in the local plan is 

provisionally rejected, making available resources for the TA to bid for other tasks. 
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Updated better bids are checked for whenever an “event” occurs in TA’s local plan, 

which is when a bid is provisional granted, provisional rejected or confirm granted. A 

provisional grant enters an action in to the local plan, creating up to two new gaps to 

allow two gap bids, and allowing a piggyback bid with the newly entered action. 

Although the same bids could have been made before the new action was entered into the 

TA’s local plan, the price of deviations with the action in place could be greatly reduced, 

producing a better bid. Additionally, with a piggyback bid, the newly entered action 

would have paid the minimum transportation price (see 

Eq 43). Thus a piggyback bid to transport a small quantity along that route can now be 

made cheaper, charging only (or predominantly – see Eq 44) for the small portion of the 

quantity transported, without the additional minimum transport price. A provisional reject 

either removes an action from the local plan, thus creating a new gap for gap bids, or it 

removes an inventory item from the action, and thus creates an opportunity to make a 

piggyback bid with a larger capacity. 

A confirm grant does not change the TA’s local plan, but it secures an action into the 

local plan. Since the probability of the bid, or action, remaining (not being rejected) is 

now 100% (we assume they are not rejected after a confirm grant, and if they are, any 

losses are recovered), the price of existing bids in proximity to the action may have 

changed, and hence, may have been reduced to allow a better bid. Similarly, when actions 

or inventory items are added or removed from the local plan, due to grants or rejects, 

respectively, the price of bids in proximity to the event may change. How close to an 

event a bid must be in order for its price to change depends on the probability of a bid 

remaining �  (see section 7.3.2). If �  is small, then a bid’s price may change even if the 

event is a considerable distance in the plan from the bid (i.e. many actions between the 

bid and the event). This increases the computation because rather than check for updated 

better bids in a narrow time window in the local plan directly where the event occurs, the 

TA may need to check for updated better bids in a wider time window in case the event 

had an impact on bid prices a number of actions away from the event. The TA can restrict 

the width of the time window either side of the event (to search for updated better bids) 

such that bids past the edge of the time window have a probability in Eq 39, Eq 40 and 

Eq 41 for the action at/adjacent-to the event that is below some threshold pcth, and 
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therefore, the event will have minimal effect on the pricing of bids outside of the time 

window. 

Ideally, the TA should check all the tasks that it has stored for updated better bids. If the 

TA has many tasks stored, then checking for updated better bids becomes 

computationally intensive. This becomes progressively worse as the TA receives more 

tasks over time. To overcome this problem, the latest tasks that are used (announced, 

provisionally granted or rejected) are stored at the top of a stack. The tasks on the stack 

are checked, one by one, until some time limit is reached. Tasks that have been used most 

recently are checked first since they are more likely to still be considered by the MA than 

older tasks that have not been used, which may because they have already been solved or 

are no longer available. 

7.3.5 Bid Evaluation Function and Cost Value 

The MA and TA evaluate the quality of bids based on their cost value cv, which is 

dependent on the price and package delivery time. The lower the cv, the better the bid for 

the particular task. As will be shown later, cv for the MA and TA are calculated 

differently. The MA must calculate the cv based on the particular branch in the search 

tree and the path leading to it, and since there may be more than one root transportation 

task (task in the root node), there is a cv associated with each root task. The TA only 

considers the cv as a function of the task it receives, and the bid that it is considering. 

The cv should be determined by MA’s bid evaluation function f. The function to calculate 

cv can be quite complex, but most of it (other than a few variables) remains the same for 

each task, and it may be considered a common bid evaluation function suitable for many 

MA for their transportation tasks. Therefore, it may be a waste of communication to 

submit the complete function for every task announced to every TA. Rather, the MA 

assumes that the TA have knowledge of the function, and for those that don’t, the MA 

only needs to communicate the complete function to the TA once. Therefore, the MA is 

only required to provide a small amount of detail (or variables) that is needed within the 

function to calculate the cv for the specific task that is announced. Later, we show which 

details are required to be announced with each task. The f that is submitted with each task 
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refers to the bid evaluation function details used to calculate cv rather than the complete 

function. Hence, we refer to the bid evaluation function to calculate cv as cv( ). 

Definition 10: bri is a branch in MA’s search tree, associated with bid bid(bri) = b for the 

task task(bri) = t that is associated with the root task root(bri) = trv. 
ρ  is the number of 

root tasks that must be achieved, so 1 ≤ v ≤ ρ . 

Definition 11: s(tr) is a function that returns a weighting factor that the MA places on the 

particular root task tr. If s(tr) > s(tr'), then the root task tr has greater importance than the 

root task tr'. 

Using Definition 10 and Definition 11, the bid evaluation function cv( ) for the MA is 

Eq 46: ∑
=

⋅=
ρ

1

)(),()(
k

kiki trsbrtrcvbrcv
MA  

Therefore, the cv for each branch bri is the sum of the cv’s for each root task at that 

branch. The cv for each root task takes into consideration the current cv, taken from the 

granted bids (path in the search tree) for that root task, and the cv that is expected to be 

incurred to achieve the remaining set of tasks that the granted bids did not achieve of the 

root task. The cv for a root task trk at branch bri is given by 

Eq 47: ),())(1(),()(),( ikkikkik brtrtdtrwbrtrpdtrwbrtrcv ⋅−+⋅=  

where pd( ) and td( ) are functions that returns a value that is proportional to the 

dissatisfaction (how unhappy the MA is) in price and time, respectively, and w( ) is a 

weighting factor, allowing the MA to place priority on either price or time for the plan 

for trk. 

Definition 12: abip(trk, bri) is a function that returns all the bids that are selected for root 

task trk, which are on the path from the root node up to, and including, the branch bri, in 

MA’s search tree. Using Definition 10, bid(bri) ∈ abip(trk, bri) if root(bri) = trk, and 

bid(bri) ∉ abip(trk, bri) otherwise. 

Definition 13: diff(t, b) is a function which returns the set of (one or more) remaining 

tasks that still need to be achieved if b is selected for the task t. diff(t, b) = ∅  if the bid b 

fully achieves t. 
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Definition 14: tsta(trk, bri) returns a set of β remaining tasks that are associated with the 

root task trk that still need to be achieved after the branches (bids) from the root node up 

to and including branch bri are selected (i.e. returns the set of tasks associated with trk in 

the child node of bri). Using Definition 10, diff(task(bri), bid(bri)) ∈ tsta(trk, bri) if 

root(bri) = trk, and diff(task(bri), bid(bri)) ∉ tsta(trk, bri) otherwise. 

Definition 15: pdcb(tr, B) and tdcd(tr, B) are functions which take in as their input, a root 

task tr and a set of bids B, which are selected to fully or partially achieve tr, and return 

values proportional to the dissatisfaction in price and time, respectively, for the bid(s) B 

to achieve tr. 

Definition 16: pdte(tr, T) and tdte(tr, T) are functions that take in as their input, a root 

task tr and a set of tasks T that still need to be achieved in order to achieve tr, and return a 

value proportional to the expected dissatisfaction in price and time, respectively, to find 

bids to achieve the remaining tasks in order to achieve tr. Therefore, pdte(tr, T) and 

tdte(tr, T) require suitable heuristics to estimate the expected price and time required to 

achieve the collection of remaining unachieved tasks for the root task tr. 

Using Definition 12, Definition 14, Definition 15, and Definition 16, pd( ) and td( ) in Eq 

47 at a particular branch bri in MA’s search tree for any root task trk are defined as 

Eq 48: 
)),(,()),(,(),(

)),(,()),(,(),(

ikkikkik

ikkikkik

brtrtstatrtdtebrtrabiptrtdcbbrtrtd

brtrtstatrpdtebrtrabiptrpdcbbrtrpd

+=
+=

 

Definition 17: The TA receives a task t for an associated root task tr from the MA, and 

submits a bid b to fully, or partially, achieve it. The bid b, when received by the MA, 

becomes a branch bri in its search tree. From Definition 10, t = task(bri), tr = root(bri) 

and b = bid(bri). We define parentTask(bid(bri)) = task(bri). The announced task 

task(bri) contains the bid evaluation function details f, which TA’s cv( ) function uses in 

order to allow the TA to calculate the cv for its potential bids, to submit the bid bid(bri) 

with the lowest cv value. 

The bid evaluation function cv( ) for the TA (the TA calculates the cv for the bid bid(bri) 

rather than the branch bri) is defined as 
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Eq 49: 
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The elements of cv( ) for the TA are calculated with respect to the announced task 

task(bri)’s associated root task root(bri), and not task(bri) itself. The required information 

regarding the root task is contained within task(bri) (in f ). 

Using Definition 13, Definition 15 and Definition 16, we define pd( ) and td( ) for the TA 

as: 

Eq 50:   
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Definition 18: Conditions for the bid evaluation function cv( ).  

Two conditions are required for the bid evaluation function cv( ) for MA and TA. 

First, if the TA believes that the MA prefers bid bid(br1) over bid bid(br2) for a 

particular task, then the MA actually does, i.e. the MA prefers branch br1 over 

branch br2: 

Eq 51: )()())(())(( 2121 brcvbrcvbrbidcvbrbidcv
MAMATATA

<→<   

where parentTask(bid(br1)) = parentTask(bid(br2)) =  task(br1) = task(br2) = t. 

The second condition is that Eq 51 applies if the same bid for the same task is 

associated with different nodes in MA’s search tree. This means that the MA does 

not need to re-announce the task to the TA for bidding when a new node is 

created that contains the task (see Figure 48), saving communication and 

computation time. We define bid b1 = bid(br1) = bid(br3), and bid b2 = bid(br2) = 

bid(br4), where br1 ≠ br3, br2 ≠ br4, and parentTask(b1) = parentTask(b2) = 

task(br1) = task(br2) = task(br3) = task(br4) = t. If the TA believes that the MA 

prefers bid b1 over b2 for a particular task, then the MA prefers branch br1 over 

br2, and branch br3 over br4: 

Eq 52: )]()([&)]()([)()( 432121 brcvbrcvbrcvbrcvbcvbcv
MAMAMAMATATA

<<→<   



 246 

Theorem 9: Both conditions Eq 51 and Eq 52 in Definition 18 are satisfied for the bid 

evaluation function cv( ) if the functions pdcb( ), pdte( ), tdcb( ) and tdte( ) in Eq 48 and 

Eq 50 for MA and TA, respectively, are linear functions, i.e. satisfy 

Eq 53: )()()( ygxgyxg +=∪  

Proof  

There are two parts to the proof – showing that Eq 53 satisfies both conditions Eq 51 and 

Eq 52. 

Proof part 1: Eq 53 satisfies condition Eq 51 

From Eq 51, substituting Eq 46, Eq 47, Eq 48, Eq 49, Eq 50, trv = root(bri) for so 1 ≤ v ≤ ρ , extracting the cv for the root task trv in the summation in Eq 46, and using Definition 

18 where the root task for t is trv, we have 

Eq 54:     
[

]

[
]

∑

∑

≠∈

≠∈

⋅

+⋅+⋅−
++⋅

<⋅

+⋅+⋅−
++⋅

→+⋅−
++⋅

<+⋅−
++⋅

vkk

kk

vvvvvv

vvvvv

vkk

kk

vvvvvv

vvvvv

vvv

vvv

vvv

vvv

trsbrtrcv

trsbrtrtstatrtdtebrtrabiptrtdcbtrw

brtrtstatrpdtebrtrabiptrpdcbtrw

trsbrtrcv

trsbrtrtstatrtdtebrtrabiptrtdcbtrw

brtrtstatrpdtebrtrabiptrpdcbtrw

brbidtdifftrtdtebrbidtrtdcbtrw

brbidtdifftrpdtebrbidtrpdcbtrw

brbidtdifftrtdtebrbidtrtdcbtrw

brbidtdifftrpdtebrbidtrpdcbtrw

},..1{

2

22

22

},..1{

1

11

11

22

22

11

11

)(),(

)())],(,()),(,([))(1(

))],(,()),(,([)(

)(),(

)())],(,()),(,([))(1(

))],(,()),(,([)(

)))](,(,())(,([))(1(

)))](,(,())(,([)(

)))](,(,())(,([))(1(

)))](,(,())(,([)(

ρ

ρ

 

and from Definition 12, where br1 and br2 are associated with the root task trv, we have 

Eq 55: 
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from Definition 13, say 

Eq 56: 
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and therefore, from Definition 14 and Eq 56, and since trv is the root task for t, we have 
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Eq 57: 
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substituting Eq 55, Eq 56 and Eq 57 in Eq 54, we get 

Eq 58:  
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Making the left hand side (first two lines) of Eq 58 equal to n1 < n2, and using Eq 53 for 

pdcb( ), pdte( ), tdcb( ), tdte( ), we have 

Eq 59: 
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which becomes 



 248 

Eq 60:  
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Looking at the summations in Eq 60, and using Eq 47 and Eq 48, 

Eq 61: 
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Since the summations in Eq 61 do not consider root tasks that are associated with the 

branches br1 and br2 (k ≠ v), then from Definition 12, abip(trk, br1) = abip(trk, br2) 
32 and 

from Definition 14, tsta(trk, br1) = tsta(trk, br2) 
33, therefore 

Eq 62: ∑∑
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32 The only difference in the set of bids (branches) in the path from the root node to the branches br1 and 

br2 (which are at the same node) are bid(br1) and bid(br2), respectively. abip( ) only returns bids bid(br1) 

and bid(br2) in the list of bids associated with the root task of br1 and br2, i.e. root task trv – see Eq 55. 

Therefore the list of bids returned that are in the paths ending at br1 and br2 for all the other root tasks are 

the same. 

33 Similarly, the difference in the tasks in the new node created by branches br1 and br2 are diff(trv, bid(br1)) 

and diff(trv, bid(br1)), respectively, which tsta( ) only returns them in the list associated with the root task of 

br1 and br2, i.e. trv – see Eq 57. Thus, the list of tasks that are in the new node associated with br1 and br2 

for the other root tasks are the same. 
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so from Eq 62, substituting the relevant n1 and n2, and making all constant values (for 

different bid(br1) and bid(br2)) on either side of the inequality equal to c1, Eq 60 reduces 

to 

Eq 63: 
121121 )()( ctrsnctrsnnn vv +⋅<+⋅→<  

Eq 63 is consistent, and thus we complete the first part of the proof. 

Proof part 2: Eq 53 satisfies condition Eq 52 

Using br3 and br4 in Definition 12, Definition 13 and Definition 14 (see Eq 55, Eq 56, Eq 

57), we have 

Eq 64: 
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Eq 65: 
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Eq 66: 
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Consider cvMA(br3) < cvMA(br4) in Eq 52, using Eq 46, Eq 47, Eq 48 , Eq 64, Eq 65, and 

Eq 66, we obtain 

Eq 67: 
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using Eq 53 for pdcb( ), pdte( ), tdcb( ), tdte( ), we have 
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Eq 68: 

[
] [

]

[
] [

] ∑

∑

≠∈

≠∈

⋅+⋅+⋅−

++⋅+⋅
+⋅−++⋅

<⋅+⋅+⋅−
++⋅+⋅

+⋅−++⋅

vkk

kkvvvv

vvvvv

vvvvv

vkk

kkvvvv

vvvvv

vvvvv

trsbrtrcvtrsTtrtdteBtrtdcbtrw

TtrpdteBtrpdcbtrwtrsTtrtdte

brbidtrtdcbtrwTtrpdtebrbidtrpdcbtrw

trsbrtrcvtrsTtrtdteBtrtdcbtrw

TtrpdteBtrpdcbtrwtrsTtrtdte

brbidtrtdcbtrwTtrpdtebrbidtrpdcbtrw

},..1{

4

4

444

},..1{

3

3

333

)(),()()],(),([))(1(

)],(),([)()()],(

))(,([))(1()],())(,([)(

)(),()()],(),([))(1(

)],(),([)()()],(

))(,([))(1()],())(,([)(

ρ

ρ  

similarly with Eq 62, the summations in Eq 68 are equivalent 

Eq 69: ∑∑
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so from Eq 69, substituting n1 and n2 from Eq 58 and Eq 59, and making all constant 

values (for different bid(br3) and bid(br4)) on either side of the inequality equal to c2, Eq 

68 reduces to 

Eq 70: 2221 )()( ctrsnctrsn vv +⋅<+⋅  

Using Eq 63 and Eq 70 to form Eq 52, we have 

Eq 71: ])()([&])()([ 2221121121 ctrsnctrsnctrsnctrsnnn vvvv +⋅<+⋅+⋅<+⋅→<  

which is consistent, and thus we complete the second part of the proof.  

Q.E.D. 

7.3.6 Bid Evaluation Function Components 

We define Bk as a set of bids associated with root task trk, and Tk as a set of (remaining) 

tasks associated with trk or the empty set (if no tasks remaining). eprt(trk) returns the 

price that the MA expects to pay to achieve the root task trk, price(b) returns the price of 

the bid b, and expectedPrice(t) returns the price that the MA or TA expects the MA 

would need to pay, in order to achieve the (remaining) task t. etqrt(trk) returns the product 

of the expected delivery time and quantity of all the packages to be delivered in the root 

task trk, quantity(x) returns the quantity specified in the bid or task x, destination(trk) 

returns the delivery destination for packages associated with root task trk, deliveryTime( ) 
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will return the actual delivery time of a bid, and expectedDeliveryTime( ) will return the 

expected delivery time of (remaining) tasks. In our implementation, the functions pdcb( ), 

pdte( ), tdcb( ), and tdte( ), that are used in the bid evaluation function cv( ), for both MA 

and TA, are therefore defined as 

Eq 72: 
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Eq 75: 
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The functions above are consistent with Theorem 9. Functions for the dissatisfaction in 

price, pdcb( ) and pdte( ), are straight forward. expectedPrice(t) depends on the quantity 

and distance of the transportation task t, the type of TA (their price) that service the route, 

transfer prices, and the number of expected transfers required to complete the transport. 

Transfer prices are the prices to transfer the package between TA (for partial route 

transport), and the source and destination, and includes prices for loading, unloading, and 

storage. 

Functions for the dissatisfaction in time, tdcb( ) and tdte( ), are a little more involved, 

where time is a real number, representing hours from some arbitrary start point in time. 

etqrt(trk) = etrt(trk) � quantity(trk), where etrt(trk) returns the time that the MA expects is 

required in order to deliver all the package(s) specified in the root task trk, and 

quantity(trk) is the quantity to be transported in root task trk. etqrt( ) is used to normalise 

the value returned in the numerator of Eq 74 and Eq 75 for the specific root task, as in Eq 

72 and Eq 73. The delivery time is a function of the root task’s destination 

(destination(trk)), as opposed to the destination specified in the announced task that the 
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TA is bidding for. The destinations may be different as partial route bids are allowed, and 

thus the announced task’s destination may be to achieve a route part of the way to the 

root task destination. In this case, the delivery time associated with the announced task 

does not affect the delivery time of the root task. Hence, deliveryTime( ) = 

expectedDeliveryTime( ) = 0. expectedDeliveryTime( ) depends on the quantity and 

distance of the transport, the type of TA (their speed) that service the route, transfer 

times, and the number of expected transfers. Transfer times depend on the time to transfer 

the package between TA (for partial route), and the source and destination, and includes 

times for loading, unloading, and refuelling. expectedDeliveryTime( ) also considers the 

number of trips that may be required by the TA if the quantity is large. Since resources 

are limited, even if all the available TA were used, they may not be able to carry the 

complete quantity in one trip, and hence all the TA must make multiple trips. 

The calculation for the dissatisfaction in time multiplies the delivery time with the 

quantity of packages that is delivered at that time, which keeps tdcb( ) and tdte( ) linear 

(satisfies Theorem 9). Therefore, delivering a large quantity early (at τ1) together with a 

small quantity much later (at τ2) may be better than delivering the complete quantity at a 

time τ3, where τ1< τ3 << τ2. If we had chosen to consider the latest time that the last 

package was delivered for the root task, regardless of what was delivered before then, the 

dissatisfaction in time could be td( ) = [max(deliveryTime(Bk, destination(trk)) ∪ 

expectedDeliveryTime(Tk, destination(trk))) / etqrt(trk)], see Eq 48 and Eq 50, and in this 

case, etqrt( ) = etrt(trk). Therefore, td( ) would not be linear (not satisfy Theorem 9), and 

thus will not satisfy condition Eq 52 in Definition 18, requiring the MA to re-announce 

the task every time it appears in a new node in its search tree. Note that condition Eq 51 

in Definition 18 can be satisfied in this case, if the MA provides information with the 

announced task regarding the maximum delivery time of the currently selected bids, and 

remaining tasks, for the root task at the particular node (and path). The TA can take the 

maximum of the time supplied by the MA, and the time that TA’s bid delivers the 

package. The MA will do the same when calculating the cv( ) for the same bid. 

Both heuristic functions expectedPrice( ) and expectedDeliveryTime( ) for MA and TA 

should return the same value when the same input is used, otherwise they may have 
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differing beliefs of which bids are preferred (lowest cv). In our prototype, the MA and 

TA were coded such that the functions within the bid evaluation function were the same, 

i.e. had the same formulae and values, ensuring that all agents’ bid evaluation functions 

produce consistent outputs. In a deployed system, developers may not have control over 

which formulae and values others may use in their agents. In such a case, the MA may 

announce the complete bid evaluation function (formulae and values) to the TA, which 

only needs to be done once when one of the initial root tasks is announced. 

Due to the military sensitivity of the information, we are unable to provide further details 

of the internal functions and values used to calculate the bid evaluation function cv( ). 

7.3.7 Bid Evaluation Function Details 

All announced tasks contain the bid evaluation function details f, which the TA requires 

to calculate the bid evaluation function cv( ). Using Definition 17, Eq 49, Eq 50, Eq 72, 

Eq 73, Eq 74 and Eq 75, the TA has a bid b = bid(bri) for an announced task t = task(bri), 

that is associated with the root task root(bri) which must transport a package to location 

destination(root(bri)) as soon as possible with minimum price. The bid evaluation 

function cv( ) for the TA is 

Eq 76: 
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Eq 77: 
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and therefore, from Eq 77, information f that the MA must provide to the TA to calculate 

the cv( ) for the specific announced task t = task(bri) associated with root task root(bri) is 

(assuming the TA contains all other formulae and values to calculate the functions using 

task t = task(bri) and bid b = bid(bri) as inputs): 

Eq 78: 
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7.4 Theoretical Analysis 

7.4.1 Time Complexity 

The time complexity for MA’s planning was discussed in section 5.3.5. We now discuss 

the time complexity for TA to find suitable bids for the MA’s announced task. PAP’s 

bidding deadline should take into consideration the time for TA to find and submit bids. 

The complexity for the TA to compute a bid for a task for the MA is dependent on the 

number of actions in the TA’s local plan, and the number of routes that they can service. 

If there are θ  actions in TA’s local plan, then there is (θ  + 1) gaps in the local plan, 

assuming that the time window that the transportation task must be achieved within is 

large enough to encapsulate the complete local plan. Therefore, there would be at 

maximum θ  piggyback bids possible, one for each action, and ((θ  + 1) × r) gap bids 

possible, where r is the number of possible routes that can be serviced by the TA. The 

total number of bids (tnb) that can be made is 

Eq 79: rrrtnb +⋅+=⋅++= θθθθ )1(  
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For each bid made, calculations for capacity (uses maximum possible capacity), time 

(uses earliest time possible) and bid evaluation function cv( ) (price and time 

dissatisfaction for the bid and up to a maximum of three tasks, which the bid does not 

achieve) are easy – the time complexity is fixed for each bid. The price of each bid is 

dependent on the number of actions in the TA’s local plan, and in the worst case, there 

are no confirmed inventory items in actions, �  < 100% and pth = 0.0 (see section 7.3.2) 

so the TA considers all actions in the plan to calculate the bid price, and the bid is half 

way (θ /2) through the plan. To calculate the deviation prices pt and pf, the price for the 

individual deviations between the bid and all other actions is required, hence θ  prices 

need to be considered. For the existing deviation pe, for each action ai on one side of the 

bid in the local plan, the deviation price between ai and all the actions aj on the other side 

of the bid in the local plan must be considered. Therefore, (θ /2)×(θ /2) = (θ 2/4) prices 

must be considered. The time complexity for calculating the price (ccp)  for each bid is 

Eq 80: 
4

2θθ +=ccp  

When a task is received, all the routes r are scanned to calculate the amount of the task 

that the route achieves. Then, for every gap being checked for bids, the routes are 

scanned twice to calculate the amount of the gap that the route achieves, and a list that is 

the combination of both lists. The time complexity for calculating the lists of routes clr 

during the bidding process is 

Eq 81: rrrrclr ⋅+⋅⋅=⋅⋅++= 32)2()1( θθ  

The overall time complexity of calculating bids for the TA is (tnb × ccp) + clr, so using 

Eq 79, Eq 80 and Eq 81, we have 

Eq 82: (tnb × ccp) + clr = )32()
4

()(
2

rrrr ⋅+⋅⋅++⋅+⋅+ θθθθθ  

Therefore, the time complexity is O((tnb × ccp) + clr), which is of the order 

Eq 83: Time complexity for TA bidding = ( )rO ⋅3θ  
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This complexity applies for finding updated bids for rejected or withdrawn bids. When 

checking for updated better bids for received tasks, in the worst case, pcth = 0.0 (see 

section 7.3.4) and the task’s time window encapsulates the whole plan, so bids 

throughout the TA’s complete local plan are checked if their prices have changed for the 

better. If δ  is the number of received tasks that the TA checks for better bids, all possible 

bids for all tasks need to checked for better bids, and therefore the time complexity is 

given by O(δ  × ((tnb × ccp) + clr )), which is of order 

Eq 84: Time complexity for updated better bids = ( )δθ ⋅⋅ rO 3  

With tnb, θ  is limited by the task’s time window and r is limited by the route threshold 

rth (see secion 7.3.1) and the number of routes that the TA will consider for each gap N. 

With ccp, θ  is limited by the probability threshold pth or presence of any confirmed bids. 

With clr, θ  is limited by the task’s time window, but all r must be checked in order to see 

if the route is suitable. For updated better bids, θ  in tnb and clr is limited by the threshold 

pcth and the task’s time window. The number of tasks δ  checked for better bids can be 

limited by having a threshold on the number of tasks checked, or having a time limit, 

where the TA checks as many tasks as it can within some time frame. Although δ  can 

grow quite large as tasks are continually received throughout the life of the agent, some 

tasks may be withdrawn, and old tasks may be considered to be expired, in which case 

these tasks can be deleted. 

The greater the restriction that TA places on the search for bids, i.e. increasing rth, pth, 

pcth, and decreasing N, the greater the chance that the quality of the solution will suffer. 

A bid which may be better than those found may have been overlooked as it fell outside 

of the restrictions. θ  in tnb and clr can be limited for a very large task time window, 

without sacrificing the quality of the solution, by using the cv( ). Since cv( ) is dependent 

on time, there may be a point in time in the local plan where if the TA checks for bids 

beyond that point, the time dissatisfaction in the cv( ) for the bids will be large enough 

such that the cv( ) will not be less than the smallest cv( ) of a bid that has been currently 

found. 
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7.4.2 Communication 

General communication requirements for PAP were discussed in section 5.3.6. Here we 

present communication requirements for our particular PAP application, the global 

transportation scheduling implementation, with greater accuracy than the general 

equations presented in chapter 5. Additionally, we present the communication saved from 

not having to re-announce tasks that appear in multiple nodes (see Figure 48). From Eq 4 

section 5.3.5, if br is the branching factor in MA’s search tree and m is the depth, then 

Eq 85: Number of nodes and branches in MA’s search tree = ∑
=

m

i

ibr
1

 

Each node has transportation tasks associated with it, where only new tasks are 

announced. Since each node may contain two new additional tasks than the node before 

it, the maximum number of tasks that would have to be announced ψ is (using Eq 85) 

Eq 86: ∑
=

⋅+=
m

i

ibr
1

2ρψ  

where ρ  is the number of root tasks in the root node. The MA may communicate the ψ 

tasks to all the TA, therefore the maximum number of tasks that the MA must send to TA 

mta(MA) 34, where κ  is the maximum number of TA, is 

Eq 87: ψκ ⋅=)(MAmta  

Each TA may receive all the announced tasks, therefore the maximum number of tasks 

that each TA may receive mta(TA), is 

Eq 88: ψ=)(TAmta  

For each announced task, TA may send a maximum of β  bids, where 

Eq 89: br=⋅⋅ ηκβ  

where η is the maximum number of tasks that can be contained within a node, given by 

                                                    

34 ac (auctioneer) and bd (bidder) are used chapter 5 section 5.3.6, which are analogous to MA and TA, 

respectively. 
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Eq 90: m⋅+= 2ρη  

Therefore, the maximum number of bids that TA may submit during the planning process 

mb(TA) is 

Eq 91: βψ ⋅=)(TAmb  

Thus, the maximum number of bids that the MA may receive mb(TA) is 

Eq 92: κβψ ⋅⋅=)(MAmb  

Note that the number bids received by the MA may be less than the number of branches 

searched in the planning tree (Eq 85) because tasks may be repeated in different nodes, 

and not re-announced (if conditions for the bid evaluation function cv( ) are met – see 

Definition 18). Therefore, the bids (branches) associated with the repeated tasks are also 

repeated at the different nodes. 

In the worst case, every branch searched may require a maximum of three speech acts – 

provisional grant, provisional grant accepted, and either provisional reject or confirm 

grant (for the branches in the path of the solution). The MA must send the speech acts for 

each branch in the planning tree, therefore, the maximum number of speech acts that the 

MA must send or receive mns(MA) is 

Eq 93: ∑
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where (2/3)⋅mns(MA) is the maximum number of speech acts that the auctioneer sends, 

and (1/3)⋅mns(MA) is the maximum number of speech acts that the auctioneer receives. 

The TA only communicates speech acts for bids that it submits to the TA. From Eq 89, 

there are κ  TA that send a maximum of β  bids for each task, creating κ ⋅ β  branches for 

each task in every node in MA’s planning tree. Therefore, each TA contributes 1/κ  

branches of MA’s complete search tree. The maximum number of speech acts that the 

TA must send or receive mns(MA) is 

Eq 94: 
κ
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where (2/3)⋅mns(TA) is the number of speech acts that the bidder receives, and 

(1/3)⋅mns(TA) is the number of speech acts that the bidder sends.  

The total maximum communication requirements for MA and TA are 

Eq 95: )()()()( MAmnsMAmbMAmtaMAtc ++=  

Eq 96: )()()()( TAmnsTAmbTAmtaTAtc ++=  

As previously mentioned, if the bid evaluation function cv( ) satisfied two conditions 

specified in Definition 18, only new tasks in MA’s search tree need to be announced. 

This saves communication by not having to re-announce tasks that appear in multiple 

nodes. The maximum number of tasks mxt in all nodes in the planning tree is 

Eq 97: ∑
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i
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)2(ρ  

The amount of communication saved for announced tasks csat is therefore (using Eq 86 

and Eq 97) 
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where the amount of communication saved for mta(MA), mta(TA), mb(MA), and mb(TA), 

are κ ⋅csat, csat, β ⋅κ ⋅csat, and β ⋅csat, respectively. This could be a significant saving in 

communication. 

7.4.3 Convergence, Livelock and Deadlock 

Theorem 10: Our global transportation scheduling implementation will converge, and 

thus prevent livelock, and will not deadlock. 

Proof: 

From Theorem 8, planning using PAP will not deadlock. From Theorem 7, planning 

using PAP will converge if (a) there are a finite number of bids and (b) each bid for a task 

(or set of tasks) is granted a finite number of times. Condition (b) is satisfied because our 

current implementation of PAP discards withdrawn or rejected bids, and therefore, bids 

can only be provisionally granted once. 
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Condition (a) is also satisfied for the following reasons. In our implementation, the TA 

stores all bids so that they do not send the same or similar bid more than once. Say r is 

the maximum (finite) number of routes that a TA can service. Consider a static 

environment where the TA’s local plan does not change, and there are a finite number of 

actions in the local plan (within the time window that the transportation task must be 

achieved). In each gap, the TA submits bids that use maximum capacity possible and 

starts at the earliest time possible. Since the capacity and time is fixed for each route in 

the gap, the maximum number of bids per gap is r, one for each route. The maximum 

number of bids possible for a task is one piggyback bid for each action in the local plan, 

plus r bids for each gap in the local plan.  

Consider the case where TA’s local plan is continually changing. Changing actions and 

gaps can potentially allow unlimited number of possible bids for the TA, as every change 

can allow a new type of bid to be submitted – a slight change in capacity or time for bids 

in the new gap or action, or changes in the local plan altering prices of current bids. An 

important condition is either that the transportation task contains a time window that it 

must be achieved within, or that the time in TA’s local plan does not extend to plus or 

minus infinity, thus constraining the time window in the local plan that can be considered 

for bids. In our implementation, the former is the case. The TA in our implementation do 

not submit bids with the same route and similar time and price (e.g. time within a few 

minutes, and price below some percentage threshold) to a previously sent bid. Therefore, 

bids with the same route and capacity will not be submitted if they have infinitesimal 

differences in time and price, thus the number of possible bids within the time window is 

finite (assuming the possible price range is finite, which is the case in our 

implementation). The capacity in bids for a TA can be defined as {p, w}, where p is the 

number of sub-packages (which can not be broken down into smaller packages, and is 

finite) and w is the weight of each sub-package. The capacity (or quantity) in the bid that 

is to be transported is therefore the product of p and w. The maximum number of bids, 

with the same route and time, that has different capacity, is p. Hence there is a finite 

number of possible bids with different capacity. Therefore, in a dynamic environment, 

each TA will submit a finite number of bids. 

Q.E.D. 
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7.4.4 Scalability 

We will briefly look at how our implementation of the global transportation scheduling 

implementation using PAP scales well as TA and MA are added to the system. As TA are 

added, computation time for other TA should not be affected. Ideally, TA should be 

executed on different processors, and therefore adding TA should not affect the 

computation of other TA. Computation time of the MA is dependent on the bidding 

deadline and the processing of bids (to select a bid for granting). The bidding deadline is 

only affected if the communication time to announce the task to many TA, and receive 

bids from many TA, is significant. The MA must therefore increase its bidding deadline 

to allow enough time for communication. Otherwise, the MA will continue planning after 

the bidding deadline has passed, regardless of how many TA there are, and how many 

bids it has received. Bid processing time is likely to increase with the number of TA as 

more bids may be received. The computation time increases linearly with the number of 

bids (at worst, if bids are not sorted, the MA must scan each submitted bid once and store 

the best one), and therefore scales well. 

Increasing the number of MA may affect the computation time of the TA because the TA 

may receive many tasks from different MA simultaneously. Therefore, the TA may not 

have enough computation resources to find bids for all the tasks within the specified 

bidding deadline. In such a case, the TA may need to prioritise, selecting tasks that are 

most suited to it, or placing strict restrictions on the search for bids, allowing it to find a 

bid quickly, but at the cost of the quality of the bid. If s is the number of transportation 

tasks received simultaneously, and Ob is the (non-exponential) time complexity of TA 

bidding bids (Eq 83), then the time complexity increases by s⋅Ob, which is not 

exponential. 

Increasing the number of TA will likely increase memory requirements for the MA 

because the number of TA that may submit bids increases, and thus more bids for a task 

may need to be stored. Since the MA only stores one bid per TA per task, unless a TA 

submits updated better bids, then the extra memory required to store the extra bids for 

each task is approximately equal to the number of extra TA that have entered the system. 

Similarly, increasing the number of MA may lead to the number of tasks announced to 
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increase, and thus result in an increase in memory requirements for the TA to store the 

extra tasks, and any bids that have been submitted for the tasks. Only one bid needs to be 

submitted and stored for each task, unless the bid is rejected, withdrawn, or an updated 

better bid is found. 

Although time complexity and memory may not be significantly affected by scalability, 

communication (bandwidth) may be a potential problem. As the number of TA increases, 

the amount of communication that must be sent and received between the single MA and 

the many TA increases. Since the communication (of tasks and bids) must be done within 

a short time frame, there may be bandwidth problems for the MA to send tasks to many 

TA, or receive bids from many TA, at once, causing a bottleneck. Communication in 

PAP has been restricted, only allowing TA to submit one bid per task (unless a better bid 

becomes available), with the MA not rejecting bids that are not used. The maximum 

number of tasks sent, and bids received, at one time is equal to the maximum number of 

TA that are available (κ ). If the bandwidth is limited, then the MA must spend time 

waiting for the tasks and bids to be sent and received, respectively, by setting the bidding 

deadline accordingly. This may increase the time for the MA to find a transportation plan. 

In a (reasonably greedy) depth-first search approach, a larger bidding deadline may not 

cause a significant increase in planning time, unless a large amount of backtracking is 

required (many infeasible solutions encountered). Increasing the number of MA may 

cause many MA to send tasks to a single TA at one time, again resulting in bandwidth 

problems, but for the TA. 

Increasing the number of TA will likely increase the overall communication requirements 

of the planning process for the MA. The number of tasks sent and received (see Eq 87 

and Eq 88), and bids sent and received (see Eq 91 and Eq 92), is dependent on the 

number of TA, and the number of branches, or bids, which will likely increase as the 

number of TA increases. Increasing the number of MA will likely lead to extra 

communication for the TA, since it is likely to receive more tasks, and thus send more 

bids to achieve the tasks. Sandholm and Lesser suggest a mutual monitoring and 

communication charge to restrict message congestion (Sandholm and Lesser 1995). With 

mutual monitoring, agents are monitored and punished if they submit too many tasks, or 

submit tasks to an appropriate audience. This could be extended so that agents that send 
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inappropriate bids for tasks are also punished. With communication charge, a fee must be 

paid in order for the receiving agent to process the message. 

7.4.5 Greater Flexibility  

Our global transportation scheduling implementation (or framework) is able to address a 

greater range of transportation problems than some current approaches. Fischer et al. 

(Fischer and Kuhn 1993; Fischer, Muller et al. 1996) addressed a transportation problem 

that allowed TA to bid a partial quantity of a transportation task. If TA only submit bids 

with full routes, then our implementation would be able to address Fischer’s 

transportation problem. 

Allowing only bids with full quantity and routes, our implementation is able to address 

the transportation problem specified in chapter 4, Figure 12, which is similar to the 

(multiple vehicle) Pickup and Delivery problem with time constraints, and thus the Dial-

a-Ride Problem and the Vehicle Routing Problem (Savelsbergh and Sol 1995) (see 

chapter 2). A TA may submit a gap bid (see section 7.3.1) to fully achieve a 

transportation task, according to the required schedule. The TA may check for piggyback 

bids in its local plan to allow other transportation tasks to share the same ride, as long as 

it fully achieves the task. If the sharing of rides are not required (as in the Dial-a-Ride 

Problem), then only gap bids are used (no piggyback bids). Actions can be inserted into 

TA schedules so that the TA commences and finishes at a particular location (central 

depot). Many solutions to these problems are typically centralised or assume a static 

environment (Savelsbergh and Sol 1995), and therefore are not appropriate for the 

decentralised and dynamic accounts of this problem domain, which our implementation is 

well suited to. 

Our implementation can address the multi-commodity, multi-modal network flow 

problem with time windows (Haghani and Oh 1996), which is equivalent to our global 

transportation problem, but in a decentralised and dynamic environment. 

The greyhound scheduling problem (Dean and Greenwald 1992; Dean and Greenwald 

1992) is similar to the global transportation scheduling problem where many TA are 

required to transport a package the complete route. The only difference is that the TA’s 
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transport schedules are fixed (when and where they travel is predetermined), similar to a 

commercial bus, train and airline. Our implementation can address this problem by 

having actions with an empty inventory in TA’s local plan already defined and fixed 

before planning commences. In this case, only piggyback bids need to be searched for. 

7.5 Experimental Evaluation 

7.5.1 Military Logistics Scenarios 

Over 30 scenarios were executed, which were taken from military logistics training 

exercises (Perugini, Lambert et al. 2004; Perugini, Lambert et al. 2004). Due to the 

sensitivity of the information contained within the scenarios, details of the scenarios 

cannot be discussed. We manually determined a plan for each scenario, which is how 

military planners form schedules in training exercises, and then compared the actual 

solution produced to that plan. Due to the complexity, the optimal plan could not be 

computed. 

The scenarios comprised up to two MA, ten heterogeneous TA, and an agent to provide 

MA and TA with distances between locations. TA could travel up to 130 routes, and the 

transportation tasks were to transport one or two large quantities of resources a large 

distance. TA had pth = pcth = 0.5%, �  = 80%, rth = 1.5 and N = 50. Only ten TA were 

run at once because of the limited computing resources available at the time – one PIII 

900MHz to run all agents and communication software. The agents were developed using 

the ATTITUDE multi-agent architecture, and the CoABS grid (Kettler) was used to allow 

agents to communicate.  

In the worst case scenario, there was a single MA with two large transportation tasks, 

requiring a depth in the planning tree of over 60, and four TA, and hence limited 

available services resulting in considerable backtracking. The bidding deadline duration 

was set to 2 minutes. The duration was extended to ensure that TA had more than enough 

time to compute bids, with our limited computing resources and relaxed bidding 

restrictions (large rth and N so that many/all of TA routes were checked during bidding), 

before the MA progressed with the planning. A plan was produced in approximately 4 
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hours. Ideally, each TA will have its own processor and greater bidding restrictions, 

allowing it to compute bids quickly, and with the bidding deadline duration set to say 5 

seconds 35, providing a plan within approximately 10 minutes. Manually calculating a 

detailed complete plan for this scenario (as our implementation did) took us much longer 

than 10 minutes, while having all the information regarding TA capabilities available. In 

reality, this may not be the case. These transportation services may need to be extracted 

from these TA (transport organisations) by the logistics planners via some means, for 

example, telephone or Internet. This will likely add to the time required to find a 

transportation schedule, as well as add to the complexity for a planner to manually find a 

transportation plan. 

In the worst case scenario, the MA stored a maximum of 135 tasks and 514 bids, sent a 

total of 460 tasks to TA (each task sent 4 times, one for each TA), received a total of 479 

bids, and communicated (sent and received) 331 speech acts (grants, rejects and 

withdrawn messages). The MA backtracked 18 times. The worst case TA stored 115 

tasks and 113 bids, received 115 tasks and sent 179 bids (the other TA sent 

approximately the same number of bids as the number of received tasks) and 

communicated 163 speech acts. Such communication and memory requirements were 

easily manageable in our implementation. 

The transportation plans produced were similar, or the same, to the plans we expected to 

be produced. There were a few minor differences. The TA occasionally took an 

unexpected route, primarily because the TA had a gap in its local plan such that it could 

perform a cheap partial route bid, where the route was a slight deviation from the direct 

route. In some plans, the TA may take two or more trips to transport packages, rather 

than one complete trip. As we will discuss in section Error! Reference source not 

found., this can be reduced by increasing the expected cost in the cv( ). 

With the scenarios that were executed, our agent-based global transportation scheduling 

implementation compared well with manual approaches, in terms of time and quality 

                                                    

35 Running only a single TA with an extensive local plan (many actions), and simulating the MA’s task, the 

TA was able to form a bid for the under 5 seconds with the available computing resource. 
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(Perugini, Lambert et al. 2004; Perugini, Lambert et al. 2004). Even if a scenario was 

found in which the agent-based implementation did not perform better than doing it 

manually (e.g. required the same time and output a similar plan), planners can still benefit 

by automating this complex and tedious scheduling process – particularly having agents 

to do the ‘running around’ for the planner in order to extract and assemble transport 

services from various transportation organisations. 

7.5.2 Computation of bids 

Experiments were performed showing the effect on TA computation time by varying the 

route threshold rth and the number of routes N that the TA will consider for bids. 

Scenarios comprised one MA and four TA. Results are shown in Figure 52 and Figure 

53, showing the worst case bidding time for any TA in each scenario. As expected, the 

TA are able to form bids faster with low rth and N values as less routes need to be 

considered for bids. We found that setting rth or N too low sometimes resulted in a bad or 

infeasible plan for the MA because a vital route required for the plan was not considered 

for a bid. 
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Figure 52. rth versus time. 
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N vs time (rth = 0.5)
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Figure 53. N versus time. 

7.5.3 Multiple MA 

Experiments were performed using two MA. If a transportation task is split between two 

MA, then the resulting plan was worse than if one MA achieves the task. Two MA can 

compete for services in order to achieve their tasks, resulting in the inefficient use of 

transportation services – tragedy of the commons. Similar behaviour was found when 

applying PAP to the combinatorial auction domain with multiple auctioneers in the 

previous chapter. 

These experiments also showed that the transportation implementation using PAP was 

able to cope in a dynamic environment, where services for a MA were continually 

changing because other MA were also using them. The occurrences of withdrawn bids 

increased because submitted bids were being used by other MA by the time a MA tried to 

grant it. MA with a shorter bidding deadline produced a better plan than those with a 

longer deadline because it allowed the MA to secure received bids before another MA 

could use it. Having the bidding deadline too short resulted in the MA proceeding with 

planning before receiving all the bids, as bids take time to compute, usually resulting in a 

worse plan, or no plan at all (the MA believes that there are no bids for its root tasks). 

Note that the abovementioned effects are a result of operating with self-interested MA. 

Social policies could be introduced to coordinate allied/cooperative MA, such as 

combining separate MA’s tasks into one and then perform the planning. 
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7.5.4 Comparison with Related Work 

In the following two sections, the generality of our transportation scheduling framework, 

which incorporates PAP, is explored through empirical testing on several related 

problems from the literature. A survey of the literature has identified two problems that 

share similarity with our problem: the multi-commodity, multi-modal network flow 

problem (Haghani and Oh 1996) and the pickup and delivery problem with time windows  

(Ropke and Pisinger Forthcoming). 

We have endeavoured to empirically test the ability of our transportation implementation 

to solve these problems, as closely as possible. Since the problem we address in this 

thesis is inherently more dynamic and decentralised in nature than these problems, our 

comparison mainly serves the purpose of demonstrating the wider applicability of the 

approach to logistics problems in general. 

7.5.5 Disaster Relief: Multi-Commodity, Multi-Modal Network Flow 

In Haghani and Oh’s multi-commodity, multi-modal network flow problem (Haghani and 

Oh 1996), they define a class of common problems typical of disaster relief. The model 

outlines a scenario where disasters could include natural disasters (earthquakes, tsunamis) 

and terrorism, which are common military problems. In their paper, a multi-modal time 

(corresponds to distance in our problem sets) and capacity constraints problem is 

described, where they take a centralised approach to optimisation. They formulate the 

problem as a mixed integer linear minimisation problem and show how a Lagrangian 

relaxation approach can be utilised as a powerful heuristic for such problems. 

Since disaster relief operations involve cooperation amongst (autonomous) military, 

government and non-government (commercial) organisations, we chose to test our 

transportation implementation on this problem since our agent-based approach offers a 

naturally decentralised and dynamic solution consistent with such open environments. 

Here, we aim to empirically establish the applicability of our transportation framework 

for providing a mechanism to coordinate the actions (transportation) of the organisations 

involved to provide appropriate emergency response. Note that we specifically aim to 

establish the ability of our (unmodified) agent implementation to solve problems of this 
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kind. Although we used the existing heuristics for our trials, we could easily incorporate 

new heuristics for this specific problem in order to produce better solutions. 
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Figure 54. Disaster relief transportation network problem: adapted from (Haghani and 

Oh 1996), for three modes of transport: (a) mode M, (b) mode  L, and (c) mode N. The 

values pairs on each arc (edge) correspond to distance (time at constant speed) and route 

capacity constraints. 

We adapted the transportation network scenario used by Haghani and Oh, as shown in 

Figure 54, capturing the same complexities and aspects of the disaster scenarios that they 

have studied. Haghani and Oh specify the time, rather than distance, for each mode to 

travel along each route (edge). We specify the distance for each route and use the speed 
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for each mode to determine the travel time. By specifying the route distance, we may use 

distance, in addition to time of delivery, in evaluating our transportation plans. Haghani 

and Oh also limit the number of TA that can travel along each route at one time. The 

route capacity in their scenarios denote the maximum quantity of resources that can be 

transported along the route simultaneously by a collection of vehicles of a particular 

mode. We do not restrict the number of TA that can travel along a route, and thus the 

route capacity in Figure 54 denotes the capacity of each individual TA along the route. 

There are three modes of transport: L, M and N. Resources may be transferred between 

modes at any node. Mode L can travel all routes, has a loading capacity of 4 units and a 

speed of 10. Mode M can travel all routes, has a loading capacity of 1 unit and a speed of 

5. Mode N is unable to get to nodes C and D, has a loading capacity of 16 units and a 

speed of 2.5. All TA have: loading and unloading times and a price of 1 per unit; the 

price for transportation is set to the distance travelled to allow the MA to minimise 

distance and time (equal weighting on price and time was used, w = 0.5); and the transfer 

price was set to 1; pth = pcth = 0.5%; �  = 99%; rth = 1.5; and N = 25. One MA is used 

to allocate the transportation tasks. 

Haghani and Oh plan only 16 time steps into the future and use a large number of TA 

(hundreds). In our experiments, we were successfully able to solve the scenario in Figure 

54 using only between 3-6 TA (plus one MA), but plan much further into the future (up 

to 398 time steps). Since we assume agents do not have information regarding other 

agents capabilities and schedules, TAs that schedule actions a long way into the future 

can submit a partial route bid at the end of the transportation task. They do this assuming 

that other TAs could service the beginning route of the transportation task since a large 

amount of time is available. In actual fact, there are no TA that can perform the beginning 

route in time, as they too are fully allocated in the future. Therefore the MA must 

backtrack and this potentially results in intractable planning. To prevent this problem, we 

only allow TAs to perform partial routes that start at the source of the announced task. 
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# TA 

Each 

Mode 

# TA Quantity Unidirectional 

or 

Bidirectional 

Total 

Distance 

Delivery 

Time 

# 

Individual 

Trips 

1 3 10 Unidirectional 1820 190 79 

1 3 10 Bidirectional 3160 358 154 

2 6 20 Unidirectional 3060 170 146 

2 6 20 Bidirectional 6080 398 284 

Table 4. Summary of results (disaster relief) using our transportation implementation. 

Quantity is the quantity of resources that must be transported from each of nodes A, B 

and C to nodes F and G (for unidirectional and bidirectional) and from nodes F and G to 

nodes A, B and C (only for bidirectional). 

Haghani and Oh simulations transport resources in one direction in the network, from 

nodes A, B and C to nodes F and G. We also look at transporting resources in two 

directions, (i.e. also from nodes F and G to nodes A, B, and C), modelling the transport of 

emergency supplies into the disaster area and the transport of injured persons out of the 

disaster area. 

With our simulations, the quality of plans is simply evaluated based on the total distance  

travelled by TA (by setting the price for transportation equal to the distance travelled) and 

the earliest time that all resources are delivered. Results are shown in Table 4. 

It is instructive to observe that our implementation has the capacity to generate solutions 

that reflect bidirectional routing, without further modification, in addition to the 

unidirectional routing performed by Haghani and Oh, 1996. Although the data used in 

this scenario is static, in reality it is likely to be dynamic and distributed. This is one of 

the direct benefits of the more dynamic, and distributed approach used in our framework. 

7.5.6 Pickup and Delivery Problem with Time Windows 

We applied our transportation implementation as is to the pickup and delivery problem 

with time windows (PDPTW). In the PDPTW, TA must pick up resources within the 

specified time window (between the earliest pickup time and the latest pickup time) and 

deliver the resources within the specified time window (between the earliest delivery time 
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and the latest delivery time), and cannot transfer resources between TA (TA must 

perform the complete route). The TA start and finish at specified locations (depots). 

Our transportation implementation does not use time windows for both pickup and 

delivery, rather it uses an earliest start time for pickup and a latest finish time for 

delivery. We found that the single time window was appropriate for the military scanarios 

observed. In our simulations, we used the earliest pickup time in the PDPTW datasets as 

the earliest start time and the latest delivery time in the PDPTW datasets as the latest 

finish time. The ability to specify time windows for both pickup and delivery can be 

easily incorporated into our implementation. 

We used datasets by Ropke and Pisinger (Ropke and Pisinger Forthcoming), which were 

adapted to suit our implementation. These datasets were chosen because they involved 

complexities that other PDPTW datasets did not, such as: have multiple depots (not all 

TA start and finish at the same locations); not all tasks need to be served; and vehicles 

may not be able to serve some transportation tasks. The datasets specify a service time 

(loading and unloading) for both pick up and delivery. We used a constant service time of 

400 (time includes both pickup and delivery service times) since service times in our 

military scenarios were generally dependent on the type of TA rather than the type of 

resources transported. For all TA, one unit distance takes one unit time to travel. The 

price for transportation is set to the distance travelled, and thus the MA is aiming to 

minimise the distance travelled. 

We successfully ran datasets with 15 TA and 50 transportation tasks (allocated via one 

MA). TA were only allowed to submit full route bids for announced transportation tasks. 

The results of the simulations are shown in Table 5. 
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Problem # Tasks Achieved # Tasks Not Achieved # TA Used Total Distance Travelled 

Prob50A 50 0 13 23888.8 

Prob50B 49 1 14 29296.1 

Prob50C 50 0 15 23010.9 

Prob50D 50 0 15 25018.9 

Prob50E 48 2 12 17623.8 

Prob50F 49 1 14 19663.6 

Prob50G 49 1 13 14050.1 

Prob50H 49 1 13 17704.5 

Prob50I 50 0 13 24022.5 

Prob50J 50 0 14 26353.4 

Prob50K 50 0 13 19216.6 

Prob50L 49 1 13 21883.1 

Table 5. Summary of results using our transportation implementation (for PDPTW 

problem instances adapted from Ropke and Pisinger). TA may not be able to achieve all 

50 tasks even though not all TA are used because some TA may not be able to perform 

some transportation tasks. 

The quality of our results are not likely to be as good as those obtained by OR 

(centralised) approaches to this particular problem. In addition to OR approaches having 

access to all information while planning, they assume a cooperative setting. Hence 

committed TA plans may be freely altered as transportation tasks are processed. In our 

implementation, TA’s local plans may not be altered after MA have chartered/contracted 

these services. As a result, other than piggyback bids, TA are unable to amalgamate one 

or more actions in the local plan with a transportation task in order to form an altered 

sequence of actions that service both tasks. Since transportation tasks in the datasets do 

not repeat routes, the TA are unable to take advantage of piggyback bids to transport two 

or more transportation tasks in one trip. The TA therefore transport only one task per trip, 

wasting spare capacity. 
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This particular problem assumes a static environment and does not require 

decentralisation. Our implementation is appropriate for decentralised and dynamic 

problems in a non-cooperative setting, where TA actions that are contracted must remain 

fixed (unless the contract for transportation services specify otherwise). With such 

problems, the OR approach would not be applicable, whereas our transportation 

framework can be applied to both types of problems. Finally, better results may have 

been obtained by devising new heuristics for this specific problem. 

7.6 Discussion 

In this section, we discuss some issues discovered with our global transportation 

scheduling implementation. In this chapter, we have provided details of our 

implementation to address the complex global transportation scheduling problem. In the 

end, the plans produced by our implementation are only as good as the quality of the bid 

evaluation function cv( ) used, i.e. its only as good as the knowledge and heuristics used. 

Since the implementation of PAP is relatively greedy (greedy with backtracking), the 

quality and time taken to arrive at a solution relies heavily on the rationality and 

intelligence of the cv( ), in order for the MA to make smart rational choices for the 

selection of bids. Deliberative approaches, e.g. A*, require an underestimate for cv( ) as 

many paths are tested to provide optimality. Even if deliberative approaches (e.g. anytime 

algorithms) do not aim for optimality, they generally “search” many paths to find a 

suitable plan, and thus even a bad cv( ) can still produce a suitable plan. Greedy 

approaches rely on intelligent rational decisions as choices cannot usually be altered – in 

our implementation backtracking is not allowed if a bad solution is pursued, only if an 

infeasible solution is pursued. Additionally, choosing suitable bids will also minimise 

infeasible solutions, and hence, backtracking and time. 

The cv( ) in our implementation takes into consideration the current cost of the plan (as a 

function of price and time), and the expected cost to achieve the remaining tasks. If the 

expected cost returns a low value, then the resulting plan may have the TA performing a 

route in incremental steps rather than one complete trip, which is less efficient. This is 

due to the MA selecting partial routes, thinking that a faster and cheaper option is 
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available for the remainder route. When a faster and cheaper option is not found, the TA 

will again submit another partial bid to perform another step of the route, and so on. 

Making the expected cost conservative will force the MA to select large complete routes 

over many partial routes. This is a rational approach, because in most circumstances, one 

large trip is better than many small trips. 

Scenarios with heterogeneous TA with wide ranging services/capabilities (speed and 

price) resulted in the worst plans as it was difficult to accurately determine the expected 

cost (speed and time) for the remaining tasks in the cv( ). For example, a TA may want to 

transport a package starting at some location X, but is not sure when the package is able 

to arrive. If the package arrives at X by plane, the TA can start the transport in 6 hours. If 

the package arrives by ship, the TA can start in the transport 3 days. What time does the 

TA send in a bid for the start of the transport? Choosing 6 hours or an average of the two 

times results in an infeasible solution if the package arrives by ship. Choosing 3 days 

results in wasted time, and a bad plan, if the package arrives by plane. Therefore, in such 

circumstances in our scenarios, the cv( ) associated with the bids may not be accurate, 

resulting in the MA not selecting the most appropriate bid. Two suggested solutions to 

this problem are: (1) select the bid (plans or ship) to get the package to X first before 

selecting TA’s bid to transport the package from X; or (2) the MA could assume one (the 

plane or ship), and if this is incorrect, then use PAP’s backtracking facility to select the 

other option. 

Similar to the problem above, and potentially the most debilitating problem with the 

decentralised nature of our problem (and other similar problems) is the lack of knowledge 

(partial observability) regarding services, or available bids, by the TA in the environment. 

This prevents the agents from making good decisions as it impedes on the expected cost 

of the cv( ). Therefore, if a particular course of action is taken, agents may not have a 

clear idea of how well the TA are able to perform any remaining tasks that still need to be 

achieved.  

In our experiments, we tried to plan with very little information and domain knowledge 

regarding the environment and the TA services. As a result, decisions were often based 
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on incorrect information regarding expected TA services 36 to achieve remaining tasks. 

This lead the expected cost of the cv( ) to be incorrect, and sometimes caused bad 

decisions to be made – like making decisions in the dark. 

There are a few potential solutions to the partial observability problem. Available a priori 

domain knowledge should be used where available. Most application domains, including 

our global transportation scheduling application, are likely to have constraining factors. 

For example, tasks may be performed a certain way, e.g. for a particular transportation 

task a package must always pass through locations X and Y – this reduces the search 

space of the planning problem. Additionally, information regarding the environment or 

agents’ services may be known, e.g. a particular TA always services a certain route – 

provides agents with knowledge regarding TA services. 

Knowledge regarding the environment and agents’ services can also be obtained during 

planning by agents monitoring the environment or conversing with other agents to extract 

this information or form (informed) predictions of what services are available. In addition 

to domain knowledge, agents may be able to make better decisions with little information 

using good heuristics. For example, in our implementation, if the MA backtracked, the 

MA would not consider any other bids (for the task at that node) which are similar to the 

backtracked bid. These bids were likely to also result in backtracking since it creates the 

same remaining tasks that could not be achieved when the backtracked bid was selected. 

In some scenarios, this heuristic resulted in a significant saving in time to find a solution. 

Heuristics may be specific to a particular application domain or generally that perform 

well for a class of application domains. It will be useful to determine general heuristics, if 

they exist, and the type of information they require. 

In addition to the problem of partial observability, decentralised planning usually has 

problems with commitment, communication and time. In a centralised system, the MA 

contains all information regarding TA services. The MA can internally search many 

options relatively fast, without commitment (holding resources) and communication (and 

hence time) until the final plan is found and secured. In a decentralised system, the MA 

                                                    

36 Since this had to be predicted with little/no information – uninformed predictions. 
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may not be able to search various options quite as easily. The MA must communicate, 

which takes time, in order to determine the options (bids) it has available. In order to 

check the suitability of an option, the MA must commit to a bid (provisionally grant a 

bid) and hold that bid (the TA cannot use the bid elsewhere) before it can determine the 

suitability of that particular option by progressing with planning – further communication 

and time by announcing the remaining task(s) and receiving bids for it, and so on. If an 

option is unsuitable, it requires further communication and time to backtrack, and de-

committing from a bid can be disruptive to the TA as it could have used the bid 

elsewhere. Therefore, there are greater restrictions with a MA’s deliberative behaviour 

using a decentralised approach compared with a centralised approach. Thus, regardless of 

the complexity of the domain, a strongly deliberative approach to decentralised problems 

may not always be appropriate – particularly if the cost of commitment, communication 

and time is high. This also enforces the fact that the cv( ) should be suitable to select the 

most appropriate bids in the first instance, eliminating the need for backtracking. 

Although decentralised problems may not be suited to deliberative approaches, it may be 

necessary to deliberate (backtrack) to some degree – to a greater degree than a depth-first 

search – for certain application domains, including our global transportation scheduling 

domain. In (Perugini, Lambert et al. 2003) we investigated using PAP to perform an A* 

search. This could be modified to allow the MA (or agent developer) to adjust the 

deliberation (from greedy to optimal search, or anytime search) depending on the 

particular circumstances, such as the complexity of the application domain, time spent 

planning and the cost of communication. 

In our implementation, the cv( ) used did not always work well for transportation tasks 

with very large quantities. A few heuristics that we devised for the cv( ) to solve the 

problem did not satisfy the restrictive conditions for the cv( ) (see Definition 18). 

Additionally, our cv( ) depends on the time that parts of a package are delivered 

multiplied by the quantity of the parts that are delivered. We would have preferred to 

have a cv( ) that depends on the time of the last delivered package, but a cv( ) for this 

which met the required conditions could not be easily found (see section 7.3.5). It could 

be the case that a suitable cv( ) may not meet the required conditions, and thus the extra 
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communication for repeated tasks may be required. Note that the problem above was 

resolved if the large task was split into two smaller (but still large) tasks. 

Many of these issues are applicable to the general type of planning problems that PAP 

aims at addressing, such as issues due to decentralisation. Further work is required in 

order to address these issues. 

7.7 Summary 

PAP was applied to our complex global transportation scheduling problem, which 

required partial route, in addition to partial quantity, bids. Details of the implementation, 

theoretical analysis and experimental results were discussed. Our bid pricing approach 

allows more informed bid pricing than an approach used by Sandholm (Sandholm 1993). 

Due to the flexibility of our implementation (or framework), it is able to address a greater 

range of transportation problems than previous approaches, as they are instances of the 

global transportation scheduling problem. These problems include Fischer et al.’s (partial 

quantity only) transportation problem, multi-commodity, multi-modal network flow 

problem with time windows, the greyhound scheduling problem, and instances of the 

(multi-vehicle) pickup and delivery problem with time windows (PDPTW), dial-a-ride 

problem and vehicle routing problem. We applied our implementation to both the multi-

commodity, multi-modal network flow problem and the PDPTW. Most existing 

approaches to transportation planning are typically centralised, using Operations 

Research techniques to address them. We have presented a decentralised approach to 

transportation scheduling, which is able to cope with a dynamic environment. 

Experimental results in our military scenario were encouraging. Our implementation 

performed well with the scenarios used. The plan produced was the same or similar to 

forming plans manually, which is how planners currently form transportation plans. With 

ideal computing resources, our implementation could have potentially reduced the time to 

form a complete detailed transportation plan. Even when the implementation does not 

perform a great deal better than forming the plan manually, planners would still benefit 

from automating this complex, tedious and time consuming process. 
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We found that breaking a task up among two MA generally resulted in a worse plan than 

one MA achieving the task because the MA competed for resources (or bids). This 

resulted in inefficient allocation of resources as one MA obtained a resource that the 

other required. Similar results were obtained with the combinatorial auction experiments 

in the previous chapter. PAP was not designed to optimise the global outcome of multiple 

MA. It was developed to allow a self-interested MA to obtain a suitable plan and 

allocation for their task, in the presence of other MA that they are potentially in 

competition with. This is consistent with many organisational interactions in the real 

world, and could potentially increase the likelihood that organisations would use such a 

protocol. An organisation may be reluctant to use a protocol which did not act in its own 

interests, and could potentially benefit its competition. In our implementation, if two or 

more MA are not in competition with each other (i.e. are collaborative since part of the 

same organisation), then it is beneficial that they aggregate their tasks and plan as a single 

MA. 

With multiple MA, MA benefit from having shorter bidding deadlines as they are able to 

secure bids before other MA. Having the bidding deadline too short such that it does not 

allow enough time for bids to be received resulted in a worse plan or no plan. 

We discussed issues regarding our global transportation scheduling implementation, and 

hence the general type of problems that PAP was developed to address. Due to the 

predominantly greedy approach of our implementation, the quality of plans produced 

relies heavily on the bid evaluation function cv( ). The cv( ) should allow the MA to make 

rational and intelligent decisions for the selection of bids. This enables the MA to make 

the correct decision the first time as backtracking is only used if an infeasible solution is 

encountered, not a bad solution. The decentralisation is also an issue with planning, due 

to partial observability, commitment, communication and time. Partial observability 

limits the agents in making informed decisions. This is a greater problem when agents 

(TA) exist with wide ranging services available (e.g. not homogeneous), making it 

difficult for agents to determine the type of services to expect if they take a particular 

option. Greater commitment, communication and time are required in decentralised 

planning than centralised planning. This limits the amount of deliberation (backtracking) 
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that is possible with the decentralised approach if commitment, communication and time 

costs are high. These issues require further investigation. 
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Chapter 8 

8 Conclusion and Future Work 

8.1 Suitability of (BDI) Agents for Modern Military Logistics 

In this thesis, we show the ease, and methodology, by which (BDI) agent concepts and 

technology can model organisations’ behaviour. Agents model organisations’ business 

processes and interactions (social processes – protocols), and expertise. The ease of 

mapping between organisational processes and expertise and agent plans and inference 

rules, respectively, is due to the similarity between agent ideology and concepts, and 

those of organisations. Organisations’ behaviour is thought of in terms of goals, desires, 

intentions, success and failure, their information (or beliefs), processes (or plans) by 

which they achieve their goals, and rules by which they make their inferences and 

deductions. Agents are also described by these characteristics, where our agents are 

implemented in ATTITUDE that uses by the BDI paradigm procedurally and Horn clause 

logic for declarative inference rules. Therefore, agents provide a suitable conceptual 

model to easily map organisations, their processes and expertise, into software. The 

examples given in chapter 3 indicate this. 

Chapter 3 discussed the ease (and methodology) with which BDI agents can be 

developed to respond and recover from failure, and respond and react to changes that 

may occur in the environment. Not only does this provide software with intelligent 

behaviour to perform tasks in logistics, but increases its robustness as agents are unlikely 

to crash when they fail or come across a wide variety of (possibly changing) situations. 

Rather, agents are likely to continue and try alternative means of achieving their tasks, or 

alter their behaviour when certain situations occur, respectively. 

Types of domains where BDI, or procedural, agent approaches are appropriate are in 

highly constrained domains or domains where there is little time available for planning 

(e.g. real-time systems). In lowly constrained real-time systems, considerable effort may 

be required to develop the agents due to the large number of plans required to consider 
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many possible situations. In our logistics domain, most organisational processes are 

highly constrained, which includes their individual processes and social processes 

(protocols), making it ideal for BDI agents. Agents’ social plans in our domain are not 

highly constrained as it depends on services available by indeterminate agents at the time.  

Since agents have a reasonable amount of time to find a plan, a first-principles approach 

to distributed agent planning is appropriate. Therefore, the way organisations do business, 

their individual processes and social processes (protocols, such as PAP), are usually 

relatively constrained, but in our domain, their distributed plan (process) to achieve their 

business goals are not – e.g. PAP is a constrained social agent process to find an 

unconstrained social agent distributed plan. 

Components of organisations’ logistics processes and expertise were successfully 

modelled and implemented, and thus automated, using (ATTITUDE BDI) agents. An agent 

modelled and implemented ship’s logistics process for forming a medevac logistics plan. 

Additionally, we modelled and implemented components of a Bde organisation’s 

processes and expertise to (partially) form a logistics plan to deloy a Bde (army) unit. As 

discussed in chapter 3, the agent development for such a purpose is reasonably easy and 

straight forward, providing a suitable and practical approach in developing (components 

of) a software support system for the complex military logistics planning domain. 

Logistics planning required many calculations, which are tedious, time consuming and 

error prone. Software, and thus agents, can perform calculations quickly and without 

error. From results in our implementation in chapter 3, there was a considerable time 

saving from using agents to perform these calculations. Therefore, performing 

calculations is one aspect of logistics planning where agents (software) could potentially 

have a large impact and benefit. 

Our current implementation showed that the agents were able to connect and 

automatically gather information and services from various (geographically) distributed 

sources, eliminating the need for planners to do the ‘running around’ and searching for 

them. The agents were able to use rules (expertise) to collate and analyse the information 

and plans to produce logistics facts, such as risks with logistics plans, and check 

constraints, which is vital in logistics planning. Having agents analysing information and 
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plans to provide only required information for planners, and concealing unnecessary 

details, allows agents to act as information filters. This prevents information overload for 

planners, potentially making their planning task more manageable and effective. 

In DARPA’s CoAX project (chapter 3), the medevac agent played a logistics plan 

execution and monitoring role, in addition to logistics planning. As the medevac agent’s 

logistics plan was executed, the medevac agent monitored the environment (number of 

casualties). If changes occurred that affected the plan (more casualties detected), then the 

medevac agent responded (reacted) by performing dynamic replanning, changing the 

relevant components of the logistics plan. This shows that agents are capable of 

performing a plan execution and monitoring role in military logistics. Additionally, the 

reactive characteristic (or behaviour) of agents is vital in military logistics because of its 

dynamic nature, which includes logistics planning and plan execution and monitoring. 

Agents are able to adapt their logistics plans (dynamic replanning) to changes in the 

environment. Chapter 3 discusses how this reactive behaviour can be embedded within 

agents. 

There may be extensive expertise, or rules, associated with a particular organisation (such 

as the Bde army unit), requiring the determination of many logistics facts and checking of 

many constraints. An agent, if it has the relevant information in its knowledgebase, has 

the potential to process all of these rules very quickly compared to a human. Planners 

may have time to investigate only some of the rules in the time given, which was the case 

in the logistics planning course that was attended, potentially degrading the quality of the 

plan. 

Planners may be forming a logistics plan for an organisation that it knows little about. For 

example, a planner associated with the navy could be planning the logistics to deploy the 

Bde army unit. The navy planner may not be aware of all the Bde organisational details, 

such as their processes and expertise, in order to form a logistics plan. Additionally, the 

organisational details may not be documented for others to access. The navy planner 

must, for example, find and call the relevant person(s) to obtain the required information. 

Developing an agent for an organisation provides a way of documenting their processes, 

expertise and interactions, and thus the agent can provide this information to a planner. 
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This eliminates the need for planners to find and call the correct person in order to obtain 

the required information. More importantly, agents can use the organisational processes, 

expertise and interactions to perform the relevant planning for the planner, such as 

forming a logistics plan to deploy a Bde unit. The planner would not require information 

regarding organisational details. Hence, planners can potentially find and access the 

services and information (e.g. a logistics plan) from agents (organisations) reasonably 

easy, without knowing any of their details. 

MALT is able to incorporate external organisations in the planning process. The CoAX 

project demonstrates that it is possible for various international organisations to 

separately develop agents, connect them via a network, and allow them to cooperate, as 

long as they follow the same social protocol and ontology. This is important because 

MALT, and thus the modern military logistics, requires external organisations to be able 

to develop their own agents (with their private information and to act in their interests) to 

connect to, and cooperate with, other agents. 

An agent social protocol, the Provisional Agreement Protocol (PAP), was developed to 

allow agents to perform planning and task allocation required by modern military 

logistics. Agents can use PAP in order to facilitate the cooperation with other agents in 

MALT, as it provides a means for distributed agents, and hence organisations, to 

collectively plan together. PAP also considers external organisations’ decentralised 

nature, and does not require them to release services or information that they do not want 

to, during the planning process. 

Agents and PAP provide a suitable approach for military global transportation 

scheduling. Current transportation scheduling approaches are typically centralised (e.g. 

Operations Research) and are usually not conducive to a dynamic environment. PAP is 

able to cope with a changing environment, allowing planning to proceed if changes 

occur. It has been demonstrated that agents, using PAP and our transportation scheduling 

framework, could facilitate this complex transportation planning. From our experiments 

and the scenarios used, there were time benefits with the agent transportation scheduling 

implementation. Agents were able to improve transportation scheduling, which is a major 

component in logistics planning. Even when there is little benefit from using agents to 
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automate transportation scheduling (i.e. outputs the same quality plan, in the same 

amount of time, as a planner that does it manually), planners may still benefit from the 

automation of this complex and tedious task, and thus can perform more important tasks. 

Changes to the logistics system may occur, for example, because organisations may 

change or add to their processes, expertise, interactions, functions or capabilities. Due to 

an agent system’s (and hence MALT’s) inherent modular design, a developer should only 

need to change or add code (e.g. organisational processes and expertise) in the individual 

agents concerned, rather than change or add code to various elements in the system. Even 

in modular designs, particularly if not designed well, a change in one component may 

affect other components, and hence many components need to be modified. With an 

agent system, there is less likely to be dependence between modular components (agents) 

due to its decentralised characteristics – unless there are changes to the social protocols, 

as these are common between agents. Agents are autonomous, and thus contain their own 

information and make their own decisions. Additionally, agents are typically developed 

by different organisations, and thus each are responsible for their own agent’s 

development and modifications. Not only does this distribute development and 

modification of the agent system to a number of developers, but each developer need 

only be concerned with a small component of the agent system (one or a few agents), 

making it easy to keep the complete agent system (MALT) maintained. However, it 

places more emphasis on social agent specifications. 

8.1.1 When are Agents NOT Suitable 

Agents are suitable for many aspects of modern military logistics, but it may not be 

appropriate for all aspects of modern military logistics, or other logistics and related 

domains. Agents in our application domain were used to model organisations’ 

behaviours. An example for which agents are not suited is the sorting of a list. One does 

not need to think about solving the problem in terms of goals, beliefs and intentions. If 

the application domain cannot easily be described in terms of goals, intentions and 

beliefs, then agents may not be well suited. 

Agents may not be suited to application domains that are not decentralised (e.g. 

distributed, autonomous, self-interested and with private information) and that can be 
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practically implemented centrally. Decentralisation may result in unnecessary 

communication for planning and agent coordination (particularly if all the information 

does not need to be communicated from distributed sources). Decentralisation typically 

results in partial observability, which is likely to reduce the quality of the plan formed as 

it may be difficult to make informed decisions. Commitment during decentralised 

planning may cause problems. During planning resources may be held, preventing others 

from using them, when later it may discovered that they are not required. A centralised 

system with total observability may exhaustively search all possible options before 

committing to a plan. Although dividing a task into sub-tasks and distributing them 

among agents has benefits, such as distributed processing, there can be problems if the 

agents’ behaviours are not coordinated effectively. Negative conflicts and the absence of 

identifying synergies among agent’s behaviours and requirements may result in a worse 

solution than if it was formed centrally as one large task – due to tragedy of the commons 

(see chapter 6). This is likely to be of greater concern if a non-cooperative (self-

interested) agent approach is taken, as agents are focused on maximising their own local 

utility rather than the global utility. 

8.2 The Provisional Agreement Protocol 

The Provisional Agreement Protocol (PAP) enables agents (their associated 

organisations) to plan and allocate tasks in a decentralised, dynamic and open 

environment, within a many-to-many setting through contracting. PAP allows 

organisational (e-commerce) interaction within the social complexities of the modern 

military logistics environment that arise primarily from its increasing decentralised 

nature. Agents using PAP are able to form flexible and agile enterprises (or coalitions) to 

achieve their associated organisations’ business goals. 

PAP, which is an extension of ECNP, overcomes shortfalls that other contract net 

approaches (CNP, ECNP and CNP-ext) for our particular planning and task allocation 

requirements. This includes allowing backtracking, bidders’ negotiating with multiple 

auctioneers (or MA) simultaneously, and planning with dynamic bids and tasks. With 

backtracking, as well as discarding provisionally rejected bids, PAP enables a 
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decentralised depth-first search, which from our knowledge, has not been previously 

done. PAP has greater flexibility in planning and task allocation than CNP, ECNP and 

CNP-ext, while still being able to address problems that they are able to. PAP prevents 

the eager bidder problem for bidders, allowing them to bid for many tasks for potentially 

many auctioneers simultaneously. With PAP’s ability to withdraw bids and tasks, and 

with its updated and updated better bid features, agents are able to cope with a dynamic 

environment, where bids and tasks may emerge and retract during the planning process. 

PAP is relatively consistent with contracting, as required in our (e-commerce) domain. 

Allowing auctioneers to deliberate before forming full contracts may reduce broken 

contracts. We have shown that PAP has less communication than CNP, ECNP and CNP-

ext under certain circumstances, and does not fall into livelock (converges to either a 

solution or no solution) or deadlock. Finally, PAP delegates processing because the 

auctioneer does little bid processing. Rather, the auctioneer submits a bid evaluation 

function for the bidders to process their own bids. This can have beneficial scalability 

properties. 

PAP was applied to combinatorial auctions (chapter 6) and our global transportation 

scheduling (chapter 7) problems. Applying PAP to two domains shows its generality. 

Combinatorial auctions were primarily used to empirically evaluate PAP. In addition, we 

were also able to present benefits of PAP over current (centralised) one-shot 

combinatorial auction approaches, and use it to facilitate the novel dynamic, and multiple 

(dynamic), combinatorial auction problems. There are a few benefits of PAP over one-

shot combinatorial auctions. Using PAP, bidders are not required to submit all their bids 

and their dependencies to a centralised auctioneer, which may not be practicable to do so. 

PAP also requires less communication than one-shot auctions if bidders possess many 

bids. Even though we applied a greedy PAP approach to combinatorial auctions, its 

ability to interact with a changing environment during the auction (planning process) may 

allow a better solution to be found than a one-shot auction which determines the optimal 

solution from an initial submission of bids. Our experiments showed that the saving in 

communication of PAP over ECNP increases with the number of bidders or depth of the 

search. Experiments confirmed that PAP performs a depth-first search. 
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With multiple auctions, PAP performed better locally and globally if resources (bids per 

auctioneer) were plentiful. As resources became scarce, dynamism and competition, and 

thus the tragedy of the commons phenomenon, increased. This may result in an 

inefficient allocation of resources, both locally and globally, leading to a solution which 

is not pareto optimal nor globally optimal. This issue requires further investigation. 

In most scenarios, our PAP implementation used a greedy approach to finding an 

allocation of bids for the auctioneer, as presented in previous literature. With the single 

auction (static bids) scenario, we showed that PAP’s backtracking facility, with a suitable 

heuristic, can enable a better solution to be found than the first greedy solution. In the 

multiple auction case, it was discovered that as resources became scarce, primarily due to 

dynamism, backtracking was detrimental. Due to the environment dynamics, previous 

states are not recoverable. Therefore, a potentially better solution may no longer exist 

when the auctioneer backtracks (or during backtracking), and a solution that was given up 

may no longer exist when the auctioneer tries to regain it. Implementing a suitable 

backtracking heuristic may also be difficult due to the presence of partial observability. 

Agents may not have information regarding whether better solutions are available, 

whether they will become available, and how to reach a better solution. 

With backtracking, we found two problems with the current implementation of PAP. 

First, our implementation did not allow auctioneers to regain a previously granted 

allocation of bids as provisionally rejected bids are currently discarded (to ensure 

convergence). Second, auctioneers may hold on to bids and prevent other auctioneers 

from using them, and later release them. Auctioneers currently discard provisionally 

withdrawn bids (to ensure convergence) rather than wait and see if they become available 

again. Bidders are unable to have conflicting bids from other auctioneers granted until the 

bid is rejected, which results in a problem similar to the eager bidder problem. This is the 

subject of future work. 

Our global transportation scheduling implementation was able to overcome shortfalls 

with Fischer et al.’s transportation implementation for our domain by allowing partial 

route, in addition to partial quantity, bids. It is also able to address a greater range of 
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transportation problems 37 than current approaches, which are typically centralised. The 

various transportation problems are instances of the global transportation scheduling 

problem. We demonstrated the flexibility of our transportation implementation by 

applying it to both the multi-commodity, multi-modal network flow problem with time 

windows and the pickup and delivery problem with time windows. Our implementation 

addresses these problems in a decentralised manner and can cope with a dynamic 

environment, and is suitable for variants of these problems with decentralised and 

dynamic properties. 

Our implementation allowed a more informed pricing of bids than previous approaches. 

We used a bid evaluation function that allowed the auctioneer to carry over unachieved 

tasks to child nodes in its search tree without having to re-announce them, reducing 

communication. Experimental results on our military scenarios showed that our 

implementation performed well with the scenarios used. Plans (transportation schedules) 

formed were the same or similar to plans that we formed manually, which is how 

planners currently form them in training exercises. Ideally, the time required for our 

implementation to form plans should be an improvement over forming them manually. 

Even if our implementation were not to perform much better than planning manually, 

planners may still benefit from automating these tedious tasks, freeing their time for other 

important tasks. 

There were a few issues that emerged, mostly as a consequence of the type of domain 

that we are studying, rather than specific to our transportation application. It is primarily 

due to decentralisation, and its associated issues of commitment, communication, time and 

partial observability. With centralised planning, all information is usually available. An 

agent may deliberate by exhaustively searching all options quickly 38 without committing 

to them, before finally committing to a (potentially optimal) final solution. With 

                                                    

37 Fischer et al.’s (partial quantity only) transportation problem, multi-modal, multi-commodity, multi-

modal network flow problem with time windows, the greyhound scheduling problem, and instances of the 

(multi-vehicle) pickup and delivery problem with time constraints, dial-a-ride problem and vehicle routing 

problem. 

38 Compared to decentralised – extracting information from memory is usually much faster than over a network. 



 290 

decentralised planning, greater deliberation requires greater communication. 

Communication can be costly and introduce a potentially large (compared to centralised) 

communication time overhead to access the available options, increasing the time 

required to deliberate. Commitment is also required to hold resources during planning as 

the options are being examined, and then releasing them if they are not required. This can 

be a problem, for example (as mentioned above), as holding resources may prevent others 

from using them if they are later release. Agents in decentralised domains may need to 

trade off deliberation for intelligent rational decision making. This allows good decisions 

on possible plan options to be made the first time, reducing the need for deliberation (i.e. 

backtracking). In order to achieve this, greater reliance must be placed on domain 

knowledge and heuristics. This is complicated due to partial observability, which 

increases the chances of making uninformed decisions as capabilities available to achieve 

goals are not known when decisions are made – decisions are made in the dark. The 

problem with partial observability worsens as the range of possible capabilities available 

becomes wider. This makes it difficult to accurately determine capabilities that might be 

available to achieve agents’ goals. Suitable heuristics to deal with issues arising from 

partial observability requires further investigation. Although extensive deliberation may 

not be suitable with decentralised planning, greater deliberation than the PAP currently 

provides may be required – i.e. more deliberation than a depth-first search. This is the 

subject of future work. 
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