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Abstract

We present a new technique for interactively mining patterns and
generating explanations by harnessing the expertise of domain experts.
Key to the approach is the distinction between what is unexpected
from the perspective of the computational data mining process and
what is surprising to the domain expert and interesting relative to
their needs. We demonstrate the potential of the approach for discov-
ering patterns and generating rich explanations in a clinical domain.
Discovering interesting facts in clinical data is a grand challenge, since
medical practitioners and clinicians generally have exceptional knowl-
edge in the problem domain in which they work, however this knowl-
edge is typically difficult to isolate computationally. To identify the
desired surprising patterns, we formally record user knowledge, and
use that knowledge to filter and constrain the output from an objective
data mining technique, with the user making the final judgement as to
whether or not a rule is surprising. Specifically, we introduce an un-
expectedness algorithm based on association rule mining and Bayesian
Networks and a ε-explanations technique for explanation generation to
identify unexpected patterns. An implemented prototype is success-
fully demonstrated using a large clinical database recording incidence,
prevalance and outcome of dialysis and kidney transplant patients.

∗Corresponding author is Liz Sonenberg, l.sonenberg@unimelb.edu.au
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1 Introduction

In this paper, we tackle knowledge mining by taking into account the poten-
tial to utilise an expert’s own knowledge base for discovering new, surprising,
knowledge. From the perspective of an end-user, patterns derived during the
data mining process are not always interesting. Several promising techniques
for mining unexpected patterns have recently been shown to have the poten-
tial to address this problem, such as the work of Padmanabhan and Tuzhilin
(2006) on discovering minimal unexpected patterns and the unexpectedness
mining algorithm of Jaroszewicz and Simovici (2004; 2009). However, such
unexpected patterns are not necessarily surprising to the user. On the other
hand, techniques have been developed for evaluating interesting patterns
based on user expectations e.g. (Liu et al., 1999; Ohsaki et al., 2007).

This paper builds on our preliminary work (Kuo et al., 2008), by creat-
ing a new approach and prototype that addresses the challenge of mining
and identifying patterns that are interesting to a domain expert. We fo-
cus on knowledge that may inform clinical practice. Thus our challenge is
not in mining patterns from the data based on criteria defined a priori, but
in interactively discovering patterns that are surprising to the expert and,
importantly, interesting and useful in clinical practice.

In medical practice, clinicians typically diagnose, prognosticate and treat
patients based on their medical knowledge; for instance, nephrologists com-
bine knowledge of the anatomy and function of kidneys, risk factors for kid-
ney disease and knowledge on kidney disease progression in treating patients
with renal failure. The well-known evidence-based medicine paradigm is
based on the ideal that the essence of the aggregated data about past pa-
tients provides the empirical basis for decisions about current and future
patients (Kuhn et al., 2008). Clinical record databases generally contain di-
verse information about patient history, such as physiology, treatment and
disease progression. These clinical databases frequently contain significant
implicit knowledge about the domain and are excellent targets for data min-
ing. However, much of the knowledge implicit in such a database is likely to
be only known by clinicians expert in the domain.

An example of a clinical database is the Australia and New Zealand Dial-
ysis and Transplant (ANZDATA) registry1. Since 1980, the Australian and
New Zealand governments have funded this registry to record the incidence,
prevalence and outcome of dialysis and transplant treatment for patients
with end stage renal failure. Although statistical analysis of data within this
registry has yielded some useful insights into the trends in kidney disease

1http://www.anzdata.org.au/v1/index.html
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progression, it has required a significant investment in time in order to fol-
low the process of hypothesis selection and validation (McDonald et al., 2002;
Lim et al., 2005; Haysom et al., 2009).

In this paper, we demonstrate that it is possible to automate the discovery
of surprising facts without requiring a user-generated-hypothesis approach.
We implement a two-step process of firstly capturing domain expert knowl-
edge in an explicit formal model and leverage this model to derive unexpected
patterns from the data, and secondly derive data-driven explanations to assist
the expert in interpreting the new patterns. This work constitutes a promis-
ing new approach for discovering surprising patterns in clinical datasets, it is
important to note that the associations we present are exploratory in nature.

Our approach relies on an unexpectedness algorithm based on filtering
association rules mined by Bayesian representations of a users knowledge,
which is achieved through modification of an approach first described by
Jaroszewicz and Simovici (2004), but modified to accommodate mining sur-
prising patterns and explanation.

The structure of this paper is as follows. Section 2 sets out background
material: a description of the ANZDATA registry; a brief account of the
terminology we use in regard to surprising, unexpected, and interesting, set
in the context of related literature. In Section 3 we survey related work
on unexpected pattern mining. In Section 4 we introduce a mechanism for
explanation generation that supports our approach to mining unexpected
patterns. Section 5 describes our proposal for an iterative process of mining
unexpected rules, combining association rules with a updateable probabilistic
knowledge representation based on Bayesian Networks (BNs). Our experi-
ments with this approach using the ANZDATA registry and with involvement
of a domain expert are presented in Section 6. The lessons learned from the
experiments point to types of gaps in mining surprising patterns, as cata-
logued in Section 6.3. We conclude with a discussion and some observations
on limitations of the evidence gathered so far for the approach (Sections 7
and 8).

2 Background

The ANZDATA registry contains a wealth of information on kidney disease
treatment and progression in Australian and New Zealand renal patients. As
at 2010, the database recorded some 96 attributes on each patient, includ-
ing demographic, clinical and physiological data, on a yearly basis; 19,220
patients were represented for a total of 217,803 records. Each patient has
multiple entries, corresponding to the outcome of each dialysis and transplant
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treatment. There are 96 variables that are categorized into 7 types: record
tags, clinical attributes, clinical findings, procedure, disease/syndrome, be-
havior, and health care activity. The attributes in the dataset are either
categorical or numerical, and some of the categorical attributes encode rich
terminologies, and potentially knowledge, in their values: for example, the al-
lowable values of the TreatmentModality attribute are: [1=Haemodialysis;
2=Peritoneal dialysis; 3=Transplant(Graft); 4=Return of native function;
5=Loss to follow up]. Additionally, as each patient is likely to have multiple
entries, further information is implicitly encoded in the progression of time
variant attributes. The dataset also contains a large percentage of missing
values.

A general goal in data mining is finding interesting facts (Silberschatz
and Tuzhilin, 1996). In this paper, we use interesting as a subjective user-
perspective qualifier, and, to be consistent with the data-mining literature,
interestingness as a computational metric of data mining output, either in-
dependent of, or partially dependent on, a computational representation of
the user’s domain knowledge. It is important to note that although inter-
estingness metrics are generally developed as computable approximations of
interesting, the two terms are not equivalent.

In preliminary experiments on deriving knowledge from the ANZDATA
dataset, we applied conventional association rule mining (Agrawal et al.,
1993) and emerging pattern mining techniques (Ramamohanarao and Bai-
ley, 2003) to a subset of the data (in which a targeted subset of attributes
was selected for a reduced set of records). Unsurprisingly, the first problem
we encountered was that an overwhelmingly large set of rules was generated,
and furthermore many of the rules were either already known, or seemed rea-
sonable (that is, simple to explain in the context of the user’s knowledge) to
a domain expert (in this case, a senior nephrologist). In other words, unin-
formed data mining was generally unable to provide interesting or surprising
patterns to the expert, perhaps because these patterns were obscured by the
sheer number of rules.

A straightforward observation is that interesting is a relative term: clearly,
any newly presented fact will be assessed as interesting or not with respect
to the knowledge that a user already has, and a domain expert will have
much more specific domain knowledge than a non-expert. So, before we can
identify potentially interesting facts, we need to know what the user knows.
Here we use the term domain knowledge (DK) as the set of internal knowl-
edge that an individual user interacting with a data mining system has; DK
refers to terms, concepts, relationships and facts relevant to the dataset be-
ing mined; it will vary from user to user, approaching zero in näıve users. To
enable automation of the process of discovering interesting facts, we need to
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record some part of the DK of the user in a computable form, which we refer
to as the system’s knowledgebase (KB).

In previous work we demonstrated that it is possible to reduce the number
of association rules presented to the user by applying a filtering step in which
a model of domain knowledge - in that case a domain ontology derived from
the UMLS (Unified Medical Language System) - was used to define semantic
templates for attributes under which rules were aggregated (Kuo et al., 2007).
Although the technique effectively reduces the possible set of rules, it does
not necessarily make the set more interesting to the user; in fact, the rules
selected for presentation were effectively biased towards being unsurprising,
as they had to conform to a template defined by the most common domain
knowledge - that recorded in a domain ontology. That technique, while
reducing the total rule count and minimising duplication caused by attribute
synonyms, is not effective for discovering interesting rules.

There are two types of interestingness: objective and subjective. Objec-
tive interestingness metrics are independent of a user’s knowledge, and are
defined using statistical significance measures such as conciseness, coverage,
reliability, precision, accuracy - that is, they depend solely on the dataset
being mined (Geng and Hamilton, 2006; McGarry, 2005). Subjective inter-
estingness metrics are dependent on a user’s knowledge; one common type
of subjective interestingness is unexpectedness.

In data mining, ‘unexpectedness’ generally refers to a computational
property of knowledge with respect to an identified knowledgebase. That is,
unexpectedness is a mathematical metric applied to mined rules or patterns,
and is a derivative of both a specific knowledgebase KB and a particular
representation of the related domain knowledge DK. Importantly, the value
of unexpectedness will change if KB changes.

In some earlier work, the term unexpected was used in two ways: (a) a
pattern is computationally unexpected to the data mining system or (b) a
pattern is unexpected to the user. To avoid this ambiguity, we adopt nomen-
clature that distinguishes the human (‘user’) and computational (‘system’)
perspectives (Fig. 1). For the subjective user-perspective term to correspond
to the computational property of unexpected, we adopt the term surprising.
So, relative to a system’s knowledge base, a pattern may be ‘unexpected’;
relative to a user’s domain knowledge, a pattern may be ‘surprising’.

[Figure 1 about here.]

From the perspective of a user, if we assume that one aspect of being
interesting is being surprising to the user - that is, new facts/patterns are
likely to be interesting - then it is reasonable to suggest that unexpectedness
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metrics should be better approximations of interesting than objective inter-
estingness metrics, purely because they can take some approximation of the
user’s knowledge into account in the ranking process.

In our usage, rules/facts are surprising to a user, and unexpected to a
data mining algorithm. So, another assumption of the research described
here is that, as the computational representation of the user’s knowledge KB
used by an unexpectedness algorithm converges to the user’s actual DK, so
the set of unexpected facts identified by the metric are more likely to be
surprising to the user, and therefore more likely to contain interesting facts.
Importantly, we use the terms interesting and surprising in reference purely
to the users’ perspective. This definition differs from earlier work, reviewed
in Section 3, in which interesting and surprising have been used to describe
both the users’ impressions and the computational properties of rules.

Below, to identify surprising facts, we develop a technique for formally
recording user knowledge, and using that knowledge to filter and constrain
the output from objective data mining methods, with the user making the
final judgement on whether a rule is surprising. Specifically, we use an un-
expectedness algorithm based on filtering association rules mined by BN
representations of a users knowledge. A similar approach has been described
by Jaroszewicz and Simovici (2004; 2009) and we extend that technique to
mine surprising patterns and to generate explanations.

3 Related work on unexpectedness in pattern

mining

A well recognized problem in data mining is the generation of enormous num-
bers of patterns which can overwhelm a user (Liu et al., 1999). A general
solution to this problem is to measure the interestingness of patterns so that
the results can be pruned or ranked. Ohsaki et al. (2007) studied the utility
of 40 objective interestingness metrics on meningitis and hepatitis data, and
found some metrics useful in estimating the interest of medical experts. In
terms of subjective interestingness, which incorporates the knowledge of a
user, the most studied metric is unexpectedness. The general goal of unex-
pectedness based pattern mining is discovering surprising patterns to users.

One of the difficulties in mining unexpected patterns comes from the
innate character of the entangled interaction between the user and the data
mining algorithm during the mining process, as depicted in Fig. 2: initially,
DK is acquired and represented in some computable model KB ; secondly,
the mining algorithm calculates the degree of unexpectedness for the mined
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patterns against the KB and presents results to a user; third, the user learns
some knowledge from the unexpected patterns; and finally, the user refines
the KB and performs the next iteration, starting from the second step.

[Figure 2 about here.]

Ideally, the KB (that is, the formal representation of the users’s knowl-
edge), converges on the user’s knowledge, and the suggested patterns become
more and more relevant. The dynamic character of mining unexpected pat-
terns introduces many issues that are different from those of common data
mining tasks, including the complexities of acquiring and representing the
KB, aligning the KB representation with DK, and aligning the KB repre-
sentation with the data model in the dataset being mined. Abstractly, the
unexpectedness of a pattern is the difference between KB and the pattern:

Degree(Unexpectedness) = Difference(KB, pattern). (1)

TheDifference() function will be defined according to the type of knowledge
representation used. For example, rule based representations may define
Difference() as a scoring function which estimates the difference between
a rule in the KB and the input pattern; probabilistic representations may
define Difference() as the degree of belief change (Jaroszewicz et al., 2009;
Malhas and Aghbari, 2009).

Various different knowledge representations have been trialled to capture
users’ expectations: rules, fuzzy rules, fuzzy taxonomy, probabilities and
BNs. These representations can be categorised into two groups: rule based
and probability based representations.

Rule based representations utilise terminologies of subjects and relations
for defining users’ expectations about data. Approaches include: General Im-
pressions : rules involving impression descriptors: ID ∈ {<,>,<<, |, [aset]},
which describe the impression over attributes (Liu et al., 1997); Fuzzy Lin-
guistic Variables and Knowledge Rules : in which users define semantic mean-
ings over possible values of each attribute (Liu et al., 1999; Wang et al.,
2003); Expectations : association rules expressed in logical literals (Padman-
abhan and Tuzhilin, 1998, 2008, 2002); and Fuzzy Taxonomy : tree-based
representation with items represented as leaf nodes and concepts represented
as non-leaf nodes, where is-a relationships between parent nodes and child
nodes can be used to derive rules (Shekar and Natarajan, 2004).

There are three main approaches for calculating unexpectedness for rule
based representations: Rule matching : based on the concept that a rule and
a belief are different if either the consequents of the rule and the belief are
‘similar’ but the antecedents are ‘far apart’, or vice versa. Unexpectedness is
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generally calculated as the degree of difference (Padmanabhan and Tuzhilin,
1998); Logical contradiction: defined in a mined ruleA→ B and a beliefX →
Y satisfying the following conditions: (a) B and Y logically contradict each
other, (b) A∧X have high support (the joint probability in association rules)
and (c) the rule A,X → B holds (Padmanabhan and Tuzhilin, 1998, 2008,
2002, 2006); and Item-relatedness : defined by highest-level node membership
(HM), highest-level relatedness (HR), and node separation relatedness (NSR)
from the structural context of the fuzzy taxonomy (Shekar and Natarajan,
2004).

Probabilistic representations of knowledge have been used to define for-
mal models of user’s beliefs. Silberschatz and Tuzhilin (1995; 1996) have
described a probabilistic representation where KB is defined in probabilis-
tic beliefs; interestingness (unexpectedness) is then defined as: I(p,B, ξ) =∑

αi∈B wi|d(αi|p, ξ)−d(αi|ξ)|. The interestingness of a pattern p relative to a
belief system B and prior evidence ξ is defined in terms of how much degrees
of beliefs (αi) change as a result of a new pattern p weighted by weight factors
wi. Various authors have used BNs for representing background knowledge,
e.g. (Jaroszewicz et al., 2009; Malhas and Aghbari, 2009) . Each variable is
represented as a node in the network and the edges are assigned manually so
the user can express their belief of the dependencies among variables. Un-
expectedness is calculated as I (I, i) = |PD

I (i) − PBN
I (i)| for the itemset I

with values i. PD
I (i) and PBN

I (i) represent the probabilities in the data and
BN respectively.

In this work we use a probabilistic knowledge representation (BNs) for two
important reasons: because they can be graphically visualised and therefore
facilitate interaction with the user; and because they provide a mechanism
for inferencing probabilities for unexpectedness. It should be noted, how-
ever, that one major advantage to logic-based algorithms is that they do not
require eliciting probabilities associated with beliefs from users, as eliciting
probabilities is a difficult task in acquisition of user knowledge.

4 Explanation generation

In our experience, when presenting unexpected rules to a user, that user will
try to understand the rules by explaining them based on their own knowl-
edge; yet, this reasoning task should be difficult because these rules should
be surprising to the user. Again, in our experience, frequently rules would be
regarded as surprising at first glance, then become unsurprising in retrospect
if a user comes up with a rational explanation involving related factors, al-
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though the user would still wonder whether his/her explanation is supported
by the data. On some occasions the user could not come up with any explana-
tion for a rule, but wondered whether there is some possible explanation(s)
in the data. Finding explanations seems to play a critical role in pattern
interpretation; potentially, then, computed ’explanations’ relevant to a par-
ticular rule and supported by the data might provide a way for an expert to
interpret that rule, in addition to their own knowledge.

Our approach builds on our earlier work for explanation generation based
on the context of probabilistic dependencies and modeled in BNs, and in-
cluded this approach in the overall data mining process for finding unexpected
patterns (Kuo et al., 2008). As an example of this type of explanation gen-
eration, one particular mined association rule from ANZDATA stated that
when a kidney failure patient is not diagnosed with cancer, they are more
likely to die of cardiovascular disease (¬Cancer → CardiovascularDeath).
The domain expert interpreted this rule by giving the following explanation:
when patients are diagnosed with cancer, they usually die of cancer; when
patients are not diagnosed with cancer they are unlikely to die of cancer and
therefore are more likely to die of cardiovascular disease (this is the mortality
pattern of kidney disease patients). A matching ’explanation’ could be gen-
erated from a BN created from the ANZDATA dataset: ¬Cancer → ¬DieOf
Cancer → CardiovascularDeath; providing this (and other) explanations to
the expert may well have aided the pattern interpretation process.

In terms of mining surprising rules, we propose that explanation genera-
tion helps users assess whether a rule is implicitly reasonable or not. Prior to
empirical evidence, we surmise that if a user cannot explain a rule, and the
generated explanations do not make sense (at least initially), the rule should
be truly surprising to the user, and potentially more likely to be interesting.

Because unexpected rules should be surprising to a user, the user must
make some judgement on how the new fact fits with their current under-
standing and knowledge. It is possible (and in an ideal data mining world,
desirable) that a user may find an unexpected fact contradictory to their own
knowledge. If a user finds a rule is initially surprising, but the explanation
of that rule matches his/her knowledge, then we say that the explanation is
reasonable, and the rule would then become unsurprising. In the case that
the rule is contradictory to the KB, and the user finds the set of presented ex-
planations unreasonable, then the rule would warrant further investigation,
and would be potentially interesting. Providing users with a set of poten-
tial explanations may allow users to make more informed judgements on
unexpected facts in terms of whether they are surprising or not: a fact that
initially seems surprising may move to unsurprising status if a reasonable
explanation is found (Section 6.2).
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We briefly summarise our method for finding explanations introduced
in (Kuo et al., 2008), which is based on probabilistic inference techniques.
We seek to mimic the way an expert might explain a rule by forming a
reasoning chain. In our discussions with domain experts, we found that the
explanations provided by the expert can often be effectively captured in terms
of conditional probabilities; therefore we choose to define explanations based
on conditional probability.

Our approach to explaining association rules, termed ε-Explanations, fol-
lows in the spirit of techniques for BNs that utilise the chain rule for factoriz-
ing variables. The approach stems, at least in part, from the original idea of
factoring variables as a sum-product of local functions as a basis for effective
algorithms (Kschischang et al., 2001).

Definition 1. (ε-Explanations) Given ε > 0 and an association rule
A → B with confidence = P (B|A), we say a variable X is a factor in an
explanation if X can approximate the confidence of the rule via the chain
rule in probability:

|P (B|A)− P̂ (B|A)| < ε,where P̂ (B|A) =
∑
X

P (B|X)P (X|A).

The explanation is written A→ X → B.

Definition 1 deals with only three variables: A,B and X. However, asso-
ciation rules sometimes have more than one variable on the left or right hand
side. Furthermore, there is no reason to limit explanations to only one factor
at a time. Therefore, we introduce the use of BNs for modeling explanations;
a BN is capable of modeling the dependencies amongst variables, and it is
not limited to three variables.

Let A = {a1, a2, ..., am} be a set of variables (attributes) at the left-hand-
side of a rule and B be a variable (attribute) at the right-hand-side of the
rule (In this paper, we consider only one variable on the right-hand-side.);
X = {x1, x2, ..., xr} be a set of variables (attributes) serving as the factors in
an explanation. The definition of a Bayesian Network as an explanation is
given below.

Definition 2. (BNs as ε-explanations) Given an association rule A →
B with confidence = P (B|A), a BN G with a set of variables X is a ε-
explanation if it satisfies the following requirements:
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1. X ∩ (A ∪B) = ∅. Every xi in X is not in A or B.

2. There is no direct connection between nodes in A and node B.

3. Every node ai inA has connections with one or more nodes in X . There
are no arcs among the nodes of A.

4. There are no isolated nodes in X . Each node xi has degree at least
two.

5. Let P̂G(B|A) be the inferred conditional probability from the BN G.
P̂G(B|A) is within ε of the conditional relative frequency in the data:

|P (B|A)− P̂G(B|A)| < ε (2)

Therefore, the problem of finding explanations is reduced to finding a set
of intermediate variables X = {x1, x2, ..., xr} and a BN G that can approx-
imate the conditional relative frequency P (B|A) when a1, a2, ..., am ∈ A is
known. Several examples of BNs as possible explanations are illustrated in
Fig. 3; the orientation of arcs can be assigned freely as long as the network
G remains acyclic.

[Figure 3 about here.]

5 Mining unexpected rules

In this section we describe the development of an interactive process of un-
expected rules mining combining association rules with a updateable prob-
abilistic knowledge representation based on BNs. We have developed an
interactive process so that the user can iteratively add knowledge to the
Bayesian Network representation of KB, allowing for a gradual building of
the background KB. The data mining process is depicted in Fig. 4 and a
screen capture of an application implemented in MATLABTM that presents
the domain expert with ranked unexpected rules, their explanations, a KB
and an interface for modifying KB is shown in Fig. 5.

[Figure 4 about here.]

[Figure 5 about here.]
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Initially, dependent association rules are mined via a χ2 test on associa-
tion rules from the dataset (steps a, b), while (independently) a KB is created
by the user in the format of an association graph (AG) (step c). Local BNs
are then generated for every dependent association rule as described in Algo-
rithm 2 (step d). Following this, unexpected rules are mined according to the
algorithm described (steps e, f), to generate a set of possible explanations
(step g) for assisting pattern interpretation (sectio 4) (step h).

In the next iteration, a user may update the KB by refining the AG based
on the mined unexpected rules and their explanations (step i); then repeat
the procedure to generate another set of unexpected rules. In terms of ter-
mination criterion of the iterative procedure, a user stops this process when
the maximal unexpectedness (Eq. 5) is lower than a particular threshold.

Association rules, as the name suggests, represent associations rather than
correlations. Correlation analysis is typically used to determine dependence
between two or more variables of a population from experimental data, where
as in association rules A and B are associated if P (A,B) > k1 and P (B|A) >
k2, for thresholds k1 and k2, however A and B might be independent from a
statistical perspective, i.e. P (B|A) = P (B). Therefore the need for explicit
dependence is the key difference.

Since our knowledge is represented as a BN, it is important to present
truly correlated rules to a user so that the user can update the network
accordingly. An intuitive idea to resolve this problem is to apply a classical
test for independence to the association. The use of independence tests for
associations has been explored previously in data mining (Bay and Pazzani,
1999; Bayardo,Jr. and Agrawal, 1999; Brin et al., 1997; Silverstein et al.,
1998). Of particular interest here, Silverstein et al. (1998) defined dependence
rules, which are a kind of generalisation of association rules that identify
statistical dependence in itemsets. The significance of dependence of rules is
measured via a chi-squared test (χ2 test) for independence. To ensure the
presented association rules do not represent independent relationships, we
applied the χ2 test to filter mined association rules; effectively, presenting
dependent association rules to the user. Dependent association rules are
slightly different from dependence rules in that dependent association rules
exhibit both high confidence and statistical dependence.

5.1 Measuring correlation in association rules

The purpose of testing rules’ independence is to identify rules with attributes
that are truly dependent. As proposed by Silverstein et al. (1998), the chi-
squared (χ2) test can be applied to test independence of mined rules. Given
an association rule A → B, we can build a 2-way contingency table of A,B
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as Table 1 shows.

[Table 1 about here.]

The expectation of each cell in Table 1 is calculated as

Ei,j =
∑
i′

ri′,j

∑
j′ ri,j′

N
. (3)

Then the χ2 value for attributes A,B is calculated by

χ2 =
∑
i,j

(ri,j − Ei,j)2

Ei,j
. (4)

We can set the null hypothesis as: A and B are independent. When
χ2 is near zero, the null hypothesis is not rejected. On the other hand, if
χ2 > χ2

α;df , the null hypothesis will be rejected. χ2
α;df is the quantile of χ2

distribution at α significance level and df degree of freedom. The α is usually
set at 0.05 or 0.01 and the df is determined by the numbers of rows and
columns in a table: df = (Rows − 1)(Columns − 1). For association rules
with 2 left hand attributes, e.g. A,B → C, the χ2 test is performed by
testing B,C under all possible values of A = {a1, a2, ..., ai}.

A number of representations are available to formally represent knowl-
edge; as discussed earlier, we chose BNs because they can be graphically
visualised and have straightforward mechanisms for inferring probabilities
for unexpectedness.

A BN consists of a set of nodes and a set of arcs (or links) which forms
a directed acyclic graph (DAG). Each node denotes one variable and an arc
between two nodes represents the direct dependency between two variables.
In the case of discrete variables, a child node (a child node is at the end
point of an arc) of an arc is associated with a conditional probability table
(CPT) representing its distribution under all values of the parent nodes. A
skeleton of a BN is a graph of the network’s structure where the arcs are not
directed. To represent knowledge in BNs, two kinds of knowledge need to be
acquired: the structure of the network and the parameters of the network.
However, it is impractical to require a user to manually assign BN parame-
ters. To minimise the burden on the user, the only knowledge we ask a user
to explicitly provide is knowledge about associations between variables in the
dataset to be mined. For each variable in data, the user is asked to assign
other variables that he/she thinks relates-to the given variable. For exam-
ple, an expert provides the following associations between variables for the
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ANZDATA dataset: smoking (age,race,sex,...), diabetes (age,race,weight,...)
hypertension (age,bmi,diabetes,...). Additionally, since association rules deal
only with discrete variables, the BNs discussed in this paper consist only of
nodes corresponding to variables with discrete values.

The acquired table of associations is equivalent to an association graph,
AG. Because the AG is manually assigned, it inevitably contains cycles that
are not allowed in BNs. Intuitively, for a cyclic path in a graph, flipping
any edge would break the cycle. Now we consider a whole graph with many
cycles. If we randomly flip an edge of a cycle, the graph would remain cyclic
because there are still other cycles and the flipped edge might incur new
cycles; however, if we iteratively apply this strategy to the graph until no
more cycles, then the graph becomes acyclic. We can flip edges because
our basic descriptor, relates-to, is symmetric, so the converted directed
acyclic graph, DAG, represents the same knowledge as the original AG.
Note that this argument overlooks the causality or other advanced issues,
e.g. d-separation, in research on BNs for simplifying the design of knowledge
acquisition, e.g. (Boneh et al., 2006). A simple algorithm for converting an
AG to a DAG is presented below (Algorithm 1).

Input: AG, Association Graph
Result: DAG, Directed Acyclic Graph
DAG← AG;
stop← False;
while stop = False do

path = FindCyclicPath(DAG);
if path=∅ then

stop← True
else

edge = RandomPickEdge(path);
DAG = FlipEdge(DAG, edge);

end

end
return DAG

Algorithm 1: AG-to-DAG conversion algorithm.

The algorithm iteratively and randomly flips an edge of every cycle until
done. There is a FindCyclicPath(G) function that returns the first cyclic
path found in graph G. The RandomPick Edge(path) function returns an
edge that is randomly picked from the edges in path. The flipping function
FlipEdge(G,e) changes the orientation of e in G. The graphs, AG and DAG,
are in a matrix format.
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The exponentially growing CPTs of BNs impose a practical memory-
based restriction on the number of parent nodes of a child node. We found
it impractical to build a full BN representation of the acquired DAG, which
was based on all of the ANZDATA variables, as the degree of vertices would
be over 30. We decided to use part of the full KB graph for each mined
association rule - that is, build a local BN for each rule.

A local BN of a rule A → B is extracted from the full BN in the KB
by removing all nodes that are not in the pathways between A and B. More
precisely, the local BN consists of (1) node A, (2) node B, (3) all the nodes
in all the paths from A to B (denoted as set X), and (4) all the arcs amongst
A, B and X. For an association rule A→ B, what we need to know from the
KB is the expectation of P (B|A) , based on the definition of unexpectedness
in Eq. 5. Inferring P (B|A) from a BN involves three possible pathways: (1)
paths from A to B and vice versa, (2) common causes of A,B and (3) their
common effects. A local BN loses no information regarding A→ B and will
return the same inferred conditional probability for P (B|A) as the full BN.
Additionally, because the only evidence is the left-hand-side of the associa-
tion rule, i.e. A, any path between A and B provides sufficient information
for inference. Consider the following example:

[Figure 6 about here.]

Either A → X → B, A → Y 1 → Y 2 → Y 3 → B or A → Z1 → · · · → B
provides a pathway for inferring P (B|A).

Definition 3. (local BN) A local BN loses no information regarding A→ B
and will return the same inferred conditional probability for P (B|A) as the
full BN when conditioning over (1) node A, (2) node B, (3) all the nodes in
all the paths from A to B (denoted as set X), and (4) all the arcs amongst
A, B and X.

Below we present a simple algorithm for generating a local BN based
on a given association rule. Let AR be the association rule having one left
hand side (LHS) attribute or two LHS attributes: A → B or A1, A2 →
B and DAG be the structure of the BN converted by Algorithm 1. The
FindAllPaths(Gud, Ai, B) function searches all possible paths between A and
B and returns found paths. The parameters of the local BN are estimated by
the LearnParameters(·, ·) function which implements maximum-likelihood-
estimation (MLE).

15



Input: D: data, AR: association rule; DAG: directed acyclic graph;
Result: BNlocal: local BN
Gud ← OR(DAG,DAGT ) (Gud is a undirectional graph);
A← AR’s LHS;
B ← AR’s RHS;
nodes← ∅;
forall the Ai ∈ A do

paths = FindAllPaths(Gud, Ai, B);
v =

⋃
vertices∈paths vertices;

nodes = nodes ∪ v;

end
nodes = nodes ∪ {A, B};
BNlocal ← DAG(nodes);
LearnParameters(BNlocal,D);
return BNlocal

Algorithm 2: Local-BN generating algorithm. The first step converts
the input DAG to a unidirectional graph by applying a Boolean OR
operation to every cell of the DAG and DAGT .

Here we define a measure of unexpectedness in the context of conditional
probability, inspired by the work of Jaroszewicz and Simovici. Utilising a BN
as KB, we can infer the conditional probability (confidence) from knowing
A = a to P (B = b|A = a). The inferred conditional probability, P̂ (B =
b|A = a), serves as the computational belief for the association rule A =
a → B = b. Unexpectedness is then defined as the difference between the
confidence of a rule and its inferred conditional probability P̂ (B = b|A = a).

Definition 4. (Unexpectedness of an association rule) Given a Bayesian
Network BN and data D, the unexpectedness of an association rule A =
a→ B = b is defined as:

U(A = a→ B = b) =
∣∣∣PD(B = b|A = a)− P̂BN(B = b|A = a)

∣∣∣ , (5)

where PD is the relative frequency in data D, and P̂BN is the conditional
probability inferred from BN .

Algorithm 3 demonstrates the process for mining unexpected association
(and dependence) rules. Each rule is iteratively evaluated by calculating the
difference between the actual probability of the rule (from the data) and the
inferred probability (from the local BN); if the difference is greater than a
threshold, the rule is appended to the set of unexpected rules.
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Input: D:data, BNlocal: local BN, AR: association rules, εU :threshold for
unexpectedness

Result: RU :Unexpected rules
RU ← ∅;
forall the r = {A1 = a1, A2 = a2 → B = b} ∈ AR do

U(r) =
∣∣∣PD(B = b|Ai = ai)− P̂BNlocal

(B = b|Ai = ai)
∣∣∣;

if U(r) > εU then
Append r to RU ;

end

end
return RU ;

Algorithm 3: Unexpected-AR mining algorithm.

6 Experimental results

We preprocess the ANZDATA dataset in three aspects: attribute selection,
record merging and discretization. The term ‘preprocess’ we use here actually
consists of data selection, preprocessing and transformation under the frame-
work of Fayyad et al. (1996). In terms of attribute selection, meaningless
attributes such as the sequence number of each record were removed. This is
informed by advice from the expert user. There were many paired attributes
with the same meaning but different encoding; in such cases, we chose only
one of them for the processed dataset. In terms of entry merging, we merged
multiple entries from individual patients into single rows because we do not
address temporal relations in this research. The entry merging procedure,
however, is a compromise in the data mining setting because most of the
expert’s knowledge has some temporal aspect.

[Table 2 about here.]

Finally, the discretization process equally divides numerical attributes
into 4 bins by their values. The equally problematic discretization procedure
overlooks the potential of discretization based on medical knowledge, though
it is available from the domain expert, because the data preprocessing step
is out of the scope of our overall design of unexpected rules mining. In
this experiment, we use näıve solutions for data preprocessing because our
design focuses on the steps of post-processing and pattern interpretation,
but we note that more sophistication in the earlier stages is key to overall
success in data mining (Pyle, 1999; Zhang et al., 2003). Preprocessing the
dataset reduced the number of variables to 39 (down from 96); some of these
are shown in Table 2. As discussed in Section 5, the domain expert inputs

17



knowledge by assigning an association table; we then processed the acquired
knowledge into a DAG.

6.1 Interactive mining of unexpected rules

Following the process described in Fig. 4, initially we mined association rules
with minimal support = 0.6 and confidence = 0.6; under these constraints
1279 rules were identified. In the second step we verified the independence
of every association rule via a chi-squared test. Of the 1279 rules, 361 passed
the χ2 test of being dependent under significance level α = 0.05. The KB,
assigned by the medical expert, has 375 links among the 39 variables; it is
49.3% connected in comparison to a complete graph. The dependent associ-
ation rules are then ranked by their unexpectedness values. The rules with
the highest unexpectedness score (U) are listed in Table 3.

[Table 3 about here.]

6.2 Explanation generation and expert interpretations

Explanation generation is designed to assist pattern interpretation; there-
fore we assess its effectiveness through the expert’s interpretations of the
unexpected rules. Table 4 lists the expert’s feedback on surprisingness and
reasonableness of rules and their explanations. Hence our approach success-
fully discovers two surprising rules – rules 5 and 6 from Table 3.

[Table 4 about here.]

Rule 5 is lungb=No → txwlcat = NotonTransplantList, i.e.“patients
without lung disease are not on the kidney transplant list”. The local BN
and reasonable explanation of rule 5 are depicted in Figs. 7(a) and 7(b). Our
expert commented on rule 5 in the following way: “Rule 5 is not expected, as
we would expect these patients to be on the list if there are no other problems.
The generated explanation to Rule 5 relates late referral to no lung disease.
A possible explanation is that the late referrals have more complications and
higher risk of infection which may delay them being put on the transplant list,
or may even be a permanent factor why they are not on the list.”

Rule 6 is hfdeath=AliveorNon-HFdeath, mideath=AliveorNon-MIdeath

→ txwlcat=NotonTransplantList i.e. “patients who are alive or don’t die
from heart failure and myocardial infarction are not on the transplant list”.
The local BN and reasonable explanation of rule 6 are depicted in Fig. 8(a)
and Fig. 8(b). Our expert commented on rule 6: “Rule 6 is also not ex-
pected, as we would expect these patients to be on the transplant list because
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they should be in good health. The generated explanation suggests late refer-
ral is being associated with these group of patients. It is possible that later
referral and its associated risks may be a reason why patients are not on or
are delayed being put on the transplant list. Interestingly, the explanation
rediscovers agequart as an intermediate factor the same as the local BN in
Fig. 8(a).”

[Figure 7 about here.]

[Figure 8 about here.]

6.3 Identified gaps

Whilst the result is encouraging, we have identified specific ‘knowledge gaps’
that significantly impair our ability to mine meaningful and unexpected rules:
they fall into two categories, which we term literal gaps and reasoning gaps.

Literal gaps occur when the data is encoded differently to the user’s ex-
pectation. As an example, rule 1 consists of attribute dryweight in the range
between 53.2 − 101.5 kg; however, the expert is used to reasoning about a
patient’s weight as overweight or underweight, rather than in terms of an
absolute value. Examples and categories of literal gaps include:

Improper discretization Continuous data is not discretized into a mean-
ingful range. Example: [Rules 1-3] The expert assesses dryweight =

53.2-101.5kg as not meaningful because adults usually have weights
in that range.

Temporal information loss Information loss when summarizing multiple
records from different time periods. Examples: [Rules 1-3] the expert
considers the change in dryweight is more meaningful than the value
(that is, gaining or losing weight is the important metric rather than
absolute weight); [Rules 4-6] the values of txwlcat(transplant waiting
list) do not provide sufficient information because the expert also needs
to know the change of status of a transplant list.

Exhaustive and mutual exclusive property of variables If a variable
is exhaustive, all possible values are enumerated; if values of variables
are mutually exclusive, they have no overlapping meanings. Example:
[Rule 2] value mideath=AliveorNon-MIdeath is not exclusive because
the value has overlapping meaning (alive or non-myocardial infarction
death).
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Semantic gap Encoding of data is not semantically consistent with the
user’s knowledge. Example: [Rules 1-3] the expert considers dryweight
= 53.2 - 101.5kg does not match her knowledge because she reasons
a patient’s weight as overweight or underweight.

Reasoning gaps are caused by the difference between a user’s reasoning and
the nature of association rules. Examples and categories of reasoning gaps
include:

Partial alignment of mined rules and experts’ knowledge Example:
[Rules 1-3] The dryweight attribute is partially aligned to an expert’s
knowledge as the expert’s perspective of ‘weight’ is relative to sex and
age, neither of which are shown in the rule.

Cause-effect context A consequence of the tendency of users to interpret
rules in the context of cause and effects, when association rules do not
represent causality. Example: [Rule 4] the attribute ‘cause of death’ is
on the left hand side of the rule, and the expert determines that this
rule is not correct as they know that the status of transplant list is not
decided by ‘cause of death’; however, this is not necessarily what the
rule is expressing.

As a result of literal and reasoning gaps, the domain expert felt that the
rules were not meaningful enough for gaining new knowledge, and therefore
categorised rules 1 to 4 as meaningless. It it noteworthy that the various
reasons underlying these gaps correspond to different stages in a knowledge
discovery and data mining (KDD) process. In the schema of Fayyad et al.
(1996), there are five steps in a KDD cycle - namely data selection, pre-
processing, transformation, mining, and interpretation. Table 5 lists the
alignment between the identified gaps and the five steps.

[Table 5 about here.]

In summary, the experiment demonstrates that the proposed design is
capable of discovering unexpected patterns, and the method for finding ex-
planations has generated reasonable explanations for the expert. More im-
portantly, we have identified literal and reasoning gaps which play a critical
role in mining of unexpected patterns.

7 Discussion

In this paper, we have presented an approach to unexpectedness-based knowl-
edge discovery from a clinical dataset, to address the challenge of identifying
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candidate patterns that may be surprising for a domain expert. The ap-
proach generates unexpected association rules based on a representation of
the user’s knowledge, proposes explanations, and interactively updates its un-
derstanding of the user’s knowledge based on user feedback on the presented
rules and explanations. We adopted BNs, populated by expert-derived node
associations and data-derived conditional probabilities, as a knowledge repre-
sentation platform for our purposes, and developed an unexpectedness metric
based on calculating the difference between the confidence of a rule and its
inferred conditional probability P̂ (B = b|A = a) from KB.

The advantage of using BNs for knowledge representation is that by en-
coding a joint distribution among variables, conditional probabilities can be
precisely inferred. A user can simply assign links among variables where a
link represents a relates-to relation. However, the drawback of the design
is that it does not provide any interface for a user to input more specific
knowledge. For example, the expert knows that when a patient’s urea reduc-
tion ratio is low, his/her risk of cardiac death will be higher; but can only
assign a simple ‘urea reduction ratio’ relates-to ‘cardiac death.’ Another
limitation is that a user typically knows a large number of concepts which
are not represented in the data; therefore, the BN cannot fully represent a
user’s knowledge.

Computational complexity and scalability

Our approach aligns with well known techniques for tackling complexity in
BNs, where the full joint distribution is typically factorized and defined in
terms of local conditional distributions obtained via the chain rule. This has
the effect of reducing the complexity for the joint probability of n binary vari-
ables from O(2n) to the factorized form, of O(n∗2k), where k is the maximal
number of parents of a node. However, as we report for our experiments in
Section 6, even using factorized representations, the exponentially growing
conditional probability tables (CPTs) impose a practical memory-based re-
striction on the number of parent nodes of a child node. We therefore found
it impractical to build a full BN representation of the acquired DAG, which
was based on all of the ANZDATA variables, as the degree of vertices in the
full network would be over 30.

Consequently, our approach achieves tractability by reducing the car-
dinality of the Bayesian modelling problem by only using part of the full
Knowledge Base KB graph for each mined association rule - that is, we build
a local BN for each rule. Indeed, several techniques are potentially applicable
to handling the computational complexity involved in BN inference such as,
but not limited to, Pearl’s π − λ − propagation which has linear complex-

21



ity for the case of polytrees but exponential complexity for networks with
loops (Lacave and Diez, 2002). Moreover, Jaroszewicz et al. (2009) resolved
this network size issue via sampling from the probability distribution dened
by the Bayesian network; their method is to first sort the nodes of the net-
work in topological order and than traverse conditional probability tables of
nodes based on the values of its parents.

Complexity of interaction for domain experts

We acknowledge that interactively finding explanations is a complicated men-
tal activity, even for domain experts; therefore, it is difficult to replicate with
computational approaches, especially when the search space is limited to the
attributes in a dataset. The complication suggests that generated expla-
nations will not necessarily be reasonable to a user. We discussed possible
reasons behind various outcomes of a user’s judgement on the surprisingness
of rules and reasonableness of explanations.

In our exploratory analysis using the ANZDATA registry, we successfully
extracted six unexpected rules out of 1279 association rules, suggesting the
KB -based filtering step is effective. Two of the six unexpected rules (33.3%)
were interpreted by our domain expert as surprising, and the explanations for
both rules seemed reasonable to the expert, demonstrating that the approach
can successfully identify and explain unexpected rules. We acknowledge that
there are many issues that can affect the validity of the rules, including those
issues identified by our expert.

Clearly further analysis could be done on each of the association rules to
quantify the independent contribution of a particular variable to that associ-
ation (that is, to account for confounding variables within the dataset) using
techniques such as multivariate regression. We consciously make no attempt
to quantify the causality of a particular association, but rather present to
the expert user a filtered set of statistically dependent associations rules that
are not represented in KB ; the expert then makes a judgement as to whether
or not the presented association is interesting and worthy of either adding
to the KB, or further analysis. The expert is assisted in this evaluation
by the explanations generated for the association. Essentially, ‘interesting
associations’ are that subset of all high confidence (statistically dependent)
associations that are not represented in the current KB.

Ideally, we would see gradually increasing knowledge in the KB, as com-
monly ‘known’ associations in the dataset are identified and presented to the
expert in early iterations of the mining process, who would then add them
to the KB. In this way, the approach we present can considered as much
an aid to building a KB as it is a process of generating new knowledge.
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Since ‘interesting’ is relative to a particular KB, initial associations might
be expected to be obvious when the KB is small, but would become more
interesting as the knowledge in the KB increases in subsequent iterations of
the mining approach. This remains a target for future research. The scope of
our research did not include data preprocessing; nevertheless, it is critical for
the overall result, as demonstrated by the literal gaps discussed in Section 6.
We propose that there should be a systematic (even automatic) approach to
acquire and apply domain knowledge to data preprocessing. One aspect we
are particularly interested in exploring further is the temporal interaction
present in the dataset as patients in the data are represented by multiple
records covering sequential clinical visits.

8 Conclusion

We have demonstrated a promising new technique for discovering surpris-
ing patterns in clinical datasets, but acknowledge that the associations we
present are exploratory in nature. Further, we note that the results we have
presented are derived from the knowledge and beliefs of a single expert;
we would expect that different users might have different beliefs and conse-
quently generate different results. We argue that explanation generation is a
useful element in the design of unexpectedness-based data mining. The work
represents an important development in the field of unexpectedness-based
knowledge discovery by addressing the challenge of identifying patterns that
are interesting to a domain expert. The scope of this research is on pattern
post-processing and pattern interpretation. However, due to the complexity
of human knowledge, we found this scope limiting, suggesting the problem of
unexpectedness should be addressed at all stages of KDD, i.e. data selection,
preprocessing, transformation, data mining, and interpretation.
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A/B B
A b1 · · · bj Total
a1 r1,1 · · · r1,j

∑
j r1,j

...
...

. . .
...

...
ai ri,1 · · · ri,j

∑
j ri,j

Total
∑

i ri,1 · · ·
∑

i ri,j N

Table 1: Given association rule A→ B: 2-way contingency table is shown
for attributes A and B, where ri,j is the count of itemset {A = ai, B = bj}.

Attributes Definition Values

agequart Quartiles of age for patients 0/1/2/3

agestart Age at first dialysis 0-24.2 / 24.2-48.5 / 48.5-72.7 / 72.7-97.0

bmib Body Mass Index 1.8-20.4 / 20.4-39.1 / 39.1-57.7 / 57.7-76.3

cig Smoking? C / F / N / U / na (not applicable)

cancdiag Cancer ever diagnosed? N / Y

coronary Coronary artery disease? N / S / U / Y / na

cvdb Cerebrovascular disease? No / Yes / na

diabetes Diabetes? N / T1 / T2

diseaseb Cause of ESRD Analgesicnephropathy / Diabetes / GN /
Other / PolycsticKD / RefluxNephropa-
thy / Renovascular / Uncertaindiagnosis

dryweight Base weight in kg 5-53.2 / 53.2-101.5 / 101.5-149.8 / 149.8-
198.1

height Height at entry in meters 0.47-0.86 / 0.86-1.25 / 1.25-1.64 / 1.64-
2.03

hyper-
tension

Hypertension requiring
treatment

HistoryofHypertension / NotHypertensive
/ na

lungb Chronic lung disease? No / Yes / na

modality Method or treatment Graft / HD / PD

referralb Late referral LateReferral / Notlatereferral / na

txwlcat Transplant waiting list sta-
tus

NotonTransplantList / OnTransplantList
/ na

hfdeath Death from heart failure AliveorNon-HFdeath / DeathduetoHF

mideath Death from myocardial in-
farction

AliveorNon-MIdeath / DeathduetoMI

Table 2: Some examples of the attributes in the preprocessed ANZDATA
dataset.
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No. Unexpected Rules S C U
1 cvdb=No → dryweight=53.2-101.5 0.64 0.70 0.09
2 mideath=AliveorNon-MIdeath →

dryweight=53.2-101.5
0.62 0.70 0.09

3 lungb=No → dryweight=53.2-101.5 0.63 0.71 0.09
4 lungb=No, hfdeath = AliveorNon-

HFdeath → txwlcat = NotonTrans-
plantList

0.64 0.74 0.07

5 lungb=No → txwlcat = NotonTrans-
plantList

0.65 0.74 0.07
e

6 hfdeath=AliveorNon-HFdeath,
mideath=AliveorNon-MIdeath → txwl-
cat=NotonTransplantList

0.63 0.73 0.07

Table 3: The top six mined unexpected rules, with Support (S), Confidence
(C) and Unexpectedness (U) values.

Rule
No.

Surprisingness
of rule

Reasonableness
of explanation

1,2,3,4 Meaningless Meaningless
5,6 Surprising Reasonable

Table 4: The user’s feedback about the top six mined unexpected rules.
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KDD steps
Gap Sel. Prep. Trans. Mining Inter.
Improper discretization X X
Temporal information loss X X X
Exhaustive and mutual exclusive
property of variables

X X X

Semantic gap X X
Partial alignment of mined rules
& experts’ knowledge

X X

Cause-effect context X X X

Table 5: The alignment between the identified gaps and the five steps of
knowledge discovery and data mining.
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Figure 1: The different terms for a user’s knowledge and a system’s
knowledge.

Figure 2: The dynamics of knowledge in the interactive pattern mining
process.
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Figure 3: Some examples of BNs as explanations by conditioning over
intermediate variables X = {x1, x2}
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Figure 4: Process for mining unexpected rules
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Figure 5: The user is presented ranked unexpected rules, their explanations
and an interface for modifying the knowledge base.
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>>
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Figure 6: Possible pathways for inferring P (B|A)
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(a) The local BN (b) The explanation

Figure 7: Analysis of Rule 5

(a) The local BN (b) The explanation

Figure 8: Analysis of Rule 6
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