
Complex Epistemic Modalities in the Situation Calculus

Ryan F. Kelly and Adrian R. Pearce
NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria, 3010, Australia
{rfk,adrian}@csse.unimelb.edu.au

Abstract

We develop a formal account of complex group-level epis-
temic modalities in the situation calculus, with a particular
focus on reasoning about common knowledge. Expressions
involving common knowledge cannot be handled by standard
regression techniques and are thus difficult to reason about
effectively. Taking our cue from recent promising work in
dynamic epistemic logic, we overcome this limitation by in-
creasing the expressive power of the epistemic language. The
syntax of first-order dynamic logic is used to form complex
epistemic modalities from the individual-level knowledge op-
erators. Common knowledge is a special case of this syntax,
using the unbounded iteration operator. We develop a regres-
sion rule for these complex modalities and demonstrate its use
to reason about common knowledge in an example domain.
The result is a rich multi-agent theory of knowledge and ac-
tion in which complex group-level epistemic modalities are
amenable to effective automated reasoning.

Introduction
In their landmark paper Knowledge, Action, and the Frame
Problem, Scherl and Levesque (2003) adapt Reiter’s solu-
tion to the frame problem in the situation calculus to al-
low reasoning about the knowledge of an agent using re-
gression (Pirri & Reiter 1999). Extensions to concurrent ac-
tions (Scherl 2003), multiple agents (Shapiro, Lespérance,
& Levesque 2002), and partial observability of actions
(Kelly & Pearce 2007a) have produced an expressive logic
of knowledge and action that is amenable to standard effec-
tive reasoning techniques of the situation calculus.

While powerful, the existing account has a shortcoming
that limits its utility in multi-agent domains: it lacks a for-
mal treatment of group-level epistemic modalities. Simple
group-level modalities such as “everyone knows φ” can be
expressed as finite combinations of individual-level knowl-
edge operators, but more complex modalities such as “it is
common knowledge that φ” cannot be handled in this way.

Common knowledge is typically introduced to the situ-
ation calculus as a separate axiom (Davis & Morgenstern
2005; Ghaderi, Levesque, & Lespérance 2007). While log-
ically sound, this approach means regression can no longer
be used for effective automated reasoning. Our work offers

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a new approach that combines a rich group-level epistemic
language with a regression rule for effective reasoning.

To achieve this we must overcome a fundamental expres-
sivity limitation, as the regression of common knowledge
cannot be expressed in terms of common knowledge alone
(Batlag, Moss, & Solecki 1998). We take our cue from re-
cent promising work in the related field of dynamic epis-
temic logic, with the main idea due to van Bentham, van
Eijck and Kooi (2006): increase the expressive power of
the epistemic language so it is strong enough to formulate
a proper regression rule. They have developed the Logic
of Communication and Change (henceforth “LCC”) using
propositional dynamic logic to express epistemic modali-
ties, and have shown that it allows reasoning about common
knowledge using techniques akin to regression. We follow a
similar approach in this paper and introduce complex epis-
temic modalities to the situation calculus.

While our development naturally parallels that of LCC,
the richer ontology of the situation calculus also means there
are substantial differences. Our formalism captures first-
order effects, quantifying-in and de-dicto/de-re, and arbi-
trary sets of concurrent actions, while providing a regression
rule for automated reasoning and integrating smoothly with
existing techniques based on the situation calculus.

Following the tradition of (Scherl & Levesque 2003) we
develop our formalism as a series of macro-expansions, with
no changes to the underlying situation calculus theory. We
adopt the language of first-order dynamic logic to construct
complex epistemic paths. The macro PKnows(π, φ, s)
expresses knowledge using a path. Common knowledge
between A and B can be expressed in this syntax us-
ing the iteration operator: PKnows((A ∪ B)∗, φ, s).
Regression is modified to treat PKnows(π, φ, do(c, s))
as a primitive fluent, producing an equivalent formula
PKnows(T (π),R(φ), s). The result is a rich theory
of knowledge and action in which group-level epistemic
modalities are amenable to effective automated reasoning.

The paper proceeds as follows: Sections 2-3 review the
necessary background material; Section 4 adopts dynamic
logic as an epistemic path language and defines the macro
PKnows; Section 5 shows how to regress PKnows ex-
pressions; Section 6 demonstrates this technique with an
example; and Sections 7-9 complete the paper with related
work, future work and conclusions.

Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning (2008)

611

Background: The Situation Calculus
Our work utilises the situation calculus (Pirri & Reiter 1999)
with multiple agents (Shapiro, Lespérance, & Levesque
2002) and concurrent actions (Reiter 1996), and we build
on the standard account of knowledge due to (Scherl &
Levesque 2003). Below is a brief overview.

The situation calculus is a many-sorted language of first-
order logic augmented with a second-order induction axiom.
It has the following sorts: AGENT terms represent the agents
operating in the world; ACTION terms are functions denot-
ing individual instantaneous events that can cause the state
of the world to change, with the initiating agent indicated by
their first argument; CONCURRENT terms are sets of actions
that occur simultaneously; SITUATION terms are histories of
the actions that have occurred in the world; RESULT terms
represent sensing results returned by actions; OBJECT terms
represent any other object in the domain. Fluents are predi-
cates or functions that represent properties of the world that
may change between situations; they take a situation term
as their final argument. An agent’s knowledge is represented
using the macro Knows. We call the fluents that are directly
affected by actions primitive fluents. Although defined as a
macro, Knows is treated syntactically as a primitive fluent.

A basic action theory is a set D of situation calculus sen-
tences (with a specific syntactic form as specified in (Pirri
& Reiter 1999)) that describes a particular dynamic world.
Queries about the behaviour of the world are posed as log-
ical entailment queries relative to this theory. It consists
of the following disjoint sets: the foundational axioms of
the situation calculus (Σ); successor state axioms describing
how fluents change between situations (Dss); precondition
axioms indicating when actions can be performed (Dap);
unique names axioms ensuring that action terms are distinct
(Duna); and axioms describing the value of fluents in the
initial situation (DS0):

D = Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

We assume a fixed D throughout the paper. There is a
distinguished fluent predicate Poss(c, s) indicating when it
is possible to perform actions in a given situation. In simple
domains it suffices to specify Poss(a, s) for each individual
action type, and define Poss(c, s) by:

Poss(c, s) ≡ c 6= {} ∧ ∀a : a ∈ c→ Poss(a, s)

In more complex domains precondition interaction may
be an issue, but techniques for handling this are well outside
the scope of this paper; see (Reiter 1996).

Situations give a branching-time account of the world,
with initial situations identified by Init(s) and the function
do(c, s) constructing successor situations by performing sets
of concurrent actions. The special initial situation S0 repre-
sents the actual initial state of the world, while other initial
situations model incomplete knowledge of the initial state.

The uniform formulae as defined in (Pirri & Reiter 1999)
can be thought of as properties of the state of the world.
They are basically logical combinations of primitive fluents
referring to a common situation term. The meta-variable φ
is used throughout to refer to an arbitrary uniform formula.

As it is often useful to evaluate such formulae at several dif-
ferent situations, we will suppress the situation terms in uni-
form formulae to simplify the presentation. The notation
φ−1 represents a uniform formula with the situation argu-
ment removed from all its fluents, while φ[s] represents a
uniform formula with the particular situation s inserted into
all its fluents.

The truth of a fluent is completely specified by defining its
truth in the initial situation, and collecting the effects of the
various actions into successor state axioms. Such axioms
provide a monotonic solution to the frame problem. They
have the following general form, asserting the truth of a flu-
ent F in the successor situation do(c, s) based on the current
situation s and the actions c that were performed:

F (x̄, do(c, s)) ≡ Φ(−→x , c, s)
Effective reasoning in the situation calculus depends on

the regression meta-operator RD (Pirri & Reiter 1999), a
syntactic manipulation whose behaviour can be summarised
for our purposes as follows: it transforms a formula φ uni-
form in do(c, s) into a formula RD(φ) that is uniform in s
and is equivalent to φ under the theory of action D:

D |= φ ≡ RD(φ)

Regression operates by replacing primitive fluents
F (x̄, do(c, s)) with the body of the matching successor state
axiom. It also replaces non-primitive fluents such as Poss
with their corresponding definitions. We will omit the sub-
script sinceD is constant throughout the paper, and will sim-
plify the presentation of situation-suppressed formulae by
usingR(φ, c) to denoteR(φ[do(c, s)])−1.

If φ refers to a situation that is rooted at S0, repeated ap-
plications of the regression operator (denoted by R∗) can
transform it into an equivalent formula uniform in the ini-
tial situation. The successor state and action precondition
axioms are “compiled in” to the formula and so are not re-
quired for answering the regressed query:

D |= φ[do(cn, do(cn−1, . . . , do(c1, S0))]
iff

Duna ∪ DS0 |= R∗(φ)[S0]

The axioms Duna ∪ DS0 are often in very simple forms
or can be compiled to make reasoning more efficient. The
trade-off is that the length of R∗(φ) may be exponential in
the length of φ. While an efficiency gain is not guaranteed,
regression has proven very effective in practice.

Background: Epistemic Reasoning
This section presents epistemic reasoning specifically in the
context of the situation calculus; for a comprehensive treat-
ment of the wider field see (Halpern & Moses 1990).

Epistemic reasoning was first introduced to the situation
calculus by (Moore 1980), and formalised extensively by
(Scherl & Levesque 2003) whose paper is now the canonical
reference for these techniques. It has been further extended
to include concurrent actions (Scherl 2003), multiple agents
(Shapiro, Lespérance, & Levesque 2002) and partial observ-
ability of actions (Kelly & Pearce 2007a). It is this family of
techniques that we build upon in this paper.

612

The semantics of knowledge are based on a reification of
the “possible worlds” semantics of modal logic, using situ-
ation terms rather than abstract worlds. A knowledge fluent
K(agt, s′, s) is used to indicate that “in situation s, the agent
agt considers the alternate situation s′ to be possible”. The
macro Knows is then defined as a shorthand for the stan-
dard possible-worlds definition of knowledge, stating that an
agent knows something when it is true in all situations con-
sidered possible:

Knows(agt, φ, s) def= ∀s′ : K(agt, s′, s)→ φ[s′]

The sensing result function SR(a, s) gives the result re-
turned by the action a when executed in situation s, allow-
ing additional information to be obtained at run-time. Par-
tial observability of actions is accounted for by the function
Obs(agt, c, s), which specifies what information an agent
perceives when actions are performed. A simple axiomati-
sation might have agents observe all actions performed, and
all sensing results from their own actions:

a ∈ Obs(agt, c, s) ≡ a ∈ c
a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ r = SR(a, s)

∧ actor(a) = agt

We assume that the domain is synchronised, so agents al-
ways know when an action has occurred even if they are
uncertain as to its precise details. In other words, we assume
that Obs(agt, c, s) is never the empty set. The dynamics of
knowledge are specified by a successor state axiom for K:

K(agt, s′′, do(c, s)) ≡ ∃c′, s′ : s′′ = do(c′, s′)

∧ K(agt, s′, s) ∧ Poss(c′, s′)
∧ Obs(agt, c′, s′) = Obs(agt, c, s)

This axiom ensures that s′′ is considered a possible alter-
native to do(c, s) when s′′ is the result of doing actions c′
in a situation s′ that is considered a possible alternative to
s, where c′ was possible and produced the same observa-
tions as c. Thus an agent’s knowledge after the occurrence
of an action is completely determined by the combination
of its knowledge before the action, and the information it
observed about the action.

An important result of (Scherl & Levesque 2003) allows
the regression operator to treat the Knows macro syntacti-
cally, as if it were a primitive fluent. This makes epistemic
queries amenable to the standard reasoning techniques of
the situation calculus, by reducing them to epistemic queries
about the initial situation only. The regression rule is:

R(Knows(agt, φ, do(c, s))) def=
∃y : y = Obs(agt, c, s) ∧ Knows(agt,

∀c′ : R(Poss(c′) ∧Obs(agt, c′) = y)→ R(φ, c′), s)

Note that this definition uses regression to replace
Poss(c′) and Obs(agt, c′) with their definitions, which
must be expressible using a finite combination of primitive
fluents. The simplest way to ensure this is possible is by
having finitely many action types.

Group-level epistemic modalities can now be defined in
terms of individual-level knowledge. LetG be a finite group
of agents. The basic group-level modality is “everyone
knows φ”, which is defined as:

EKnows(G,φ) def=
∧

agt∈G

Knows(agt, φ)

Since the definition is finite, EKnows can be handled
in the situation calculus using simple macro-expansion. To
assert more complete knowledge by members of the group,
one can say “everyone knows that everyone knows φ” by
nesting EKnows operators. In general:

EKnows1(G,φ) def= EKnows(G,φ)

EKnowsn(G,φ) def= EKnows(G,EKnowsn−1(G,φ))

The higher the value of n, the stronger an assertion is
made about the knowledge of the group. The strongest
group-level modality is “it is common knowledge that φ”,
meaning that everyone knows φ, everyone knows that every-
one knows φ, and so on ad infinitum. Common knowledge
is extremely powerful and has deep implications for coordi-
nated group behaviour. For example, the impossibility of the
famous “Coordinated Attack” problem rests on an inability
to obtain common knowledge (Halpern & Moses 1990). It
can be defined variously via an infinite conjunction, a fix-
point or a transitive closure on EKnows, e.g.:

CKnows(G,φ) def=
∧
n∈N

EKnowsn(G,φ)

Since its definition is second-order or infinitary, com-
mon knowledge cannot be reduced to individual knowledge
during reasoning. The only formal treatments of common
knowledge in the situation calculus and related literature in-
troduce it via a separate, explicit axiom (Davis & Morgen-
stern 2005; Ghaderi, Levesque, & Lespérance 2007). This
makes reasoning difficult as regression cannot be applied.

The problem boils down to a fundamental expressivity
limitation, first discovered in the related field of dynamic
epistemic logic:

Epistemic logic with actions and common knowledge
is more expressive than epistemic logic with common
knowledge alone (Batlag, Moss, & Solecki 1998)

In our terminology: R(CKnows(G,φ, do(c, s))) cannot
be expressed in terms of CKnows(G,ϕ, s). Given the deep
similarities between the situation calculus and modal logic
(van Bentham 2007), we can be confident that this limita-
tion also holds in the situation calculus. Rather than trying
to confirm it, we proceed directly with a technique for cir-
cumventing it. We follow the recent promising work of (van
Benthem, van Eijck, & Kooi 2006), who use two important
new ideas to produce a regression rule for common knowl-
edge in their logic LCC:

• form more expressive epistemic modalities using the syn-
tax of dynamic logic, interpreted epistemically

• apply regression within the modality as well as to the en-
closed formula

613

We apply these ideas to perform epistemic reasoning in the
situation calculus, allowing common knowledge to be han-
dled using regression. While the development naturally par-
allels that of LCC, the much richer ontology of the situation
calculus means there are also substantial differences. A full
description of LCC would take us too far afield in this paper.

Complex Epistemic Modalities
In this section, we adopt the language of dynamic logic to
express complex epistemic modalities. To deal gracefully
with the many first-order aspects of the situation calculus
we use a variant of first-order dynamic logic, adapted from
(Kooi 2007) but with some simplifications.

First, let us specify the syntax of our new epistemic lan-
guage. We use π to denote an arbitrary epistemic path:

Definition 1. Let agt be an AGENT term, φ a uniform for-
mula and x a variable name, then the epistemic paths π are
the smallest set matching the following structural rules:

π ::= agt | ?φ |π1;π2 |π1 ∪ π2 |π∗ | ∃x
The test (?), sequence (;), choice (∪) and unbounded iter-

ation (∗) operators are standard in dynamic logic, although
test formulae may now contain variables that must be in-
terpreted. The operator ∃x allows the value of a variable to
change by non-deterministically re-binding x to some value.

Let us reiterate the purpose of this path language. Despite
using the syntax of dynamic logic, it is not related to actions
in any way. Rather it expresses paths through the epistemic
frame generated by the agents’ individual K relations. We
will shortly introduce a new macro PKnows(π, φ, s) (read
this as “path-knows”) to express knowledge using these
epistemic paths. To make this clear, here is how some differ-
ent kinds of knowledge would be expressed using the stan-
dard account of knowledge, and how we intend to express
them using epistemic paths:

Knows(A, φ) ≡ PKnows(A, φ)
Knows(A,Knows(B,φ)) ≡ PKnows(A;B,φ)

Knows(A, φ) ∧Knows(B,φ) ≡ PKnows(A ∪B,φ)

EKnows(G,φ) ≡ PKnows(
⋃

a∈G

a, φ)

CKnows(G,φ) ≡ PKnows((
⋃

a∈G

a)∗, φ) (1)

The semantics of epistemic paths are given by the macro
KDo(π, s, s′), which should be read “s′ can be reached
from s by following the epistemic path π”. It expands to
a rather complicated second-order formula in the base lan-
guage of the situation calculus. What follows is a simplified
presentation of the semantics of each operator; a complete
definition of KDo can be found in the appendix.

Formulae of first-order dynamic logic are interpreted rel-
ative to both a “current world” and a “current variable bind-
ing”. Variable bindings are represented by a first-order sub-
stitution µ, with µ(φ) applying the substitution to the vari-
ables in φ and µ[x/z] setting the value of variable x to the
term z. The semantics operate over pairs (µ, s).

Definition 2. A situation s′ is reachable from situation s
via epistemic path π, denoted KDo(π, s, s′), according to
the following semantics. All introduced variables are fresh.
RTC represents the standard second-order definition of re-
flexive transitive closure.

KDo(π, s, s′) ≡ ∃µ, µ′ : KDo(π, µ, s, µ′, s′)

KDo(agt, µ, s, µ′, s′) ≡ µ′ = µ ∧K(agt, s′, s)

KDo(?φ, µ, s, µ′, s′) ≡ s′ = s ∧ µ′ = µ ∧ µ(φ)[s]

KDo(π1;π2, µ, s, µ
′, s′) ≡ ∃µ′′, s′′ :

KDo(π1, µ, s, µ
′′, s′′)

∧ KDo(π2, µ
′′, s′′, µ′, s′)

KDo(π1 ∪ π2, µ, s, µ
′, s′) ≡ KDo(π1, µ, s, µ

′, s′)

∨ KDo(π2, µ, s, µ
′, s′)

KDo(∃x, µ, s, µ′, s′) ≡ s′ = s ∧ ∃z : µ′ = µ[x/z]

KDo(π∗, µ, s, µ′, s′) ≡ RTC[KDo(π, µ, s, µ′, s′)]

Like its single-agent counterpart Knows, the macro
PKnows is a straightforward encoding of the semantics of
the modal box operator:

PKnows(π, φ, s) def= ∀s′ : KDo(π, s, s′) → φ[s′]

An advantage of this macro-expansion approach is that
PKnows expressions can be nested and quantified-into
without any ontological difficulties, as it all simply expands
to a formula of the base language. The de-dicto/de-re dis-
tinction is explicated by placing quantifiers inside/outside
the scope of the macro. The situation calculus also settles
other semantic issues that might arise in a modal formalism
(e.g. rigid vs non-rigid designators).

These definitions provide the required expressiveness
boost for our epistemic language. Of course, they should
not be used directly for reasoning purposes as they expand
to complicated second-order expressions. The next section
will demonstrate that regression can treat these macros as if
they were primitive fluents, facilitating an effective reason-
ing procedure for knowledge queries.

We close this section with a formal statement of the va-
lidity of our new formalism. The identifies in equation (1)
demonstrate that our complex epistemic modalities subsume
the modalities used in existing accounts of knowledge in the
situation calculus.

Theorem 1. The identities in equation (1) are entailed by
any basic action theory D, where CKnows is defined as the
transitive closure of EKnows.

Proof Sketch. Each is a straightforward matter of expand-
ing the PKnows definition, using the relevant identities
from Definition 2, and collecting back together components
matching the form of the Knows macro. See the appendix
for more details.

614

Epistemic Path Regression
As with the standard Knows macro, we do not want to ex-
pand PKnows macros during reasoning. Instead, we need
regression to treat PKnows syntactically as a primitive flu-
ent. This can be achieved by regressing both the epistemic
path π and the enclosed formula φ. Mirroring the notation
of LCC, we introduce the meta-operator T for this purpose
and define the following regression rule:

R(PKnows(π, φ, do(c, s))) def=

∀c′ : PKnows(T (π, c, c′),R(φ, c′), s) (2)

Let us consider the operation of the path-regressor T by
analogy with R. One can think of regression as a “pre-
encoding” of the effects of an action: φ will hold in do(c, s)
iffR(φ, c) holds in s. The path regressor T needs to lift this
idea to epistemic paths: there is a π-path from do(c, s) to
do(c′, s′) iff there is a T (π, c, c′)-path from s to s′.

To ensure this, every agt-step from s1 to s2 along the
regressed path T (π) must correspond to an agt-step from
do(c1, s1) to do(c2, s2) along the original path π. The path
regressor uses a fresh variable x to track the action corre-
sponding to the current situation. It adds several tests to en-
code the successor state axiom for K in the regressed path:

• action x must always be possible in the current situation

• the value of Obs(agt, x) before making an agt-step must
match the value of Obs(agt, x) after making the step

Contrast with the regression rule for Knows, which en-
codes this information within the enclosed formula. Note
that R is used to replace Poss and Obs with their defini-
tions, ensuring that the tests are proper uniform formulae.
Note also that c and c′ must be situation calculus variables
rather than path variables, as they are used outside the path
expression. T simply asserts that x is equal to c at the be-
ginning of the path, and equal to c′ at the end.

Definition 3. The epistemic path regressor T (π, c, c′) oper-
ates according to the definitions below, where x and z are
fresh variables not appearing in π :

T (π, c, c′) def= ∃x ; ?x = c ; Ta(π, x) ; ?x = c′

Ta(agt, x) def= ∃z ; ?R(Obs(agt, x) = z) ; agt ;
∃x ; ?R(Poss(x) ∧ Obs(agt, x) = z)

Ta(?φ, x) def= ?R(φ, x)

Ta(∃y, x) def= ∃y

Ta(π1;π2, x) def= Ta(π1, x) ; Ta(π2, x)

Ta(π1 ∪ π2, x) def= Ta(π1, x) ∪ Ta(π2, x)

Ta(π∗, x) def= Ta(π, x)∗

The following theorem states that these definitions behave
as desired, respecting the semantics of epistemic paths:

Theorem 2. For any epistemic path π:

D |= KDo(π, do(c, s), s′′) ≡
∃c′, s′ : s′′ = do(c′, s′) ∧KDo(T (π, c, c′), s, s′)

Proof Sketch. The proof proceeds by cases, covering each
path operator in turn. The base cases agt, ?φ and ∃y follow
from Definition 2 and the successor state axiom for K. The
inductive cases are straightforward as Ta is simply pushed
inside each operator. See the appendix for more details.

With this result in hand, we can justify the use of equation
(2) for regressing PKnows expressions:

Theorem 3. For any epistemic path π, uniform formula φ
and set of actions c:

D |= PKnows(π, φ, do(c, s)) ≡
∀c′ : PKnows(T (π, c, c′),R(φ, c′), s)

Proof Sketch. The mechanics of this proof mirror the cor-
responding proof from (Scherl & Levesque 2003): we ex-
pand the PKnows macro, apply Theorem 2 as a succes-
sor state axiom for KDo, re-arrange to eliminate existential
quantifiers, then collect terms back into forms that match
PKnows. See the appendix for more details.

We are now in a position to reduce an epistemic query
PKnows(π, φ, s) at some future situation to an epistemic
query PKnows(T ∗(π),R∗(φ), S0) at the initial situation.
While this is a significant gain for effective automated rea-
soning, it still remains to answer the regressed query. As
with the work of (Scherl & Levesque 2003), we assume this
will be handled by a special-purpose epistemic reasoning en-
gine rather than by expanding the knowledge macros and
reasoning directly in the situation calculus.

However, we should note that validity in first-order dy-
namic logic is undecidable; in fact it is Π1

1-hard (Kooi 2007).
As with previous work in the situation calculus, we must as-
sume that axioms about the initial situation are in a restricted
form amenable to effective reasoning. There are several spe-
cial cases that can simplify answering the regressed query.

A common simplifying assumption is that the potential
values of each variable can be finitely enumerated. In this
case it is possible to translate our epistemic paths into propo-
sitional dynamic logic, which is decidable. The only diffi-
culty is the elimination of variable bindings inside an iter-
ation operator, which can be handled using a Kleene-style
technique similar to the K translator of (van Benthem, van
Eijck, & Kooi 2006).

Alternately, it may be that the initial situation is com-
pletely known and uncertainty is introduced only due to par-
tial observability of actions. In this case the initial epistemic
frame contains the lone situation S0, and the regressed path
can be reduced to a series of tests and variable re-bindings.

As we shall see in the next section, the epistemic paths
resulting from regression can often be substantially simpli-
fied. In particular, if all actions are public then the variable
x introduced by T can be simplified away as it will always
contain the actions that were actually performed.

We are currently investigating further techniques for an-
swering the regressed query in a more effective manner.

615

Example
In this section we give a small example to demonstrate our
technique in action. Two agents, Alice and Bob, are attend-
ing a party. They know that its location, the functional fluent
loc, is either Cathy’s house or Dave’s house, and they have
just received an invitation telling them it is in fact at Cathy’s
house. The sensing action read(agt) is publicly observable
and returns the location of the party. All of this is common
knowledge. This domain can be summarised as follows:

loc(S0) = C

Poss(read(agt), s) ≡ true
SR(read(agt), s) = r ≡ r = loc(s)

PKnows((A ∪B)∗, loc = C ∨ loc = D,S0)

Using the techniques developed in this paper, we can prove
several interesting facts about this domain.

Example 1. After Bob reads the invitation, he knows that
the party is at Cathy’s house:

D |= PKnows(B, loc = C, do(read(B), S0))

This example could be done equivalently using Knows,
but it is a good introduction to the mechanics of the regres-
sion procedure. To begin, note that loc cannot change and so
is invariant under regression. Applying our new regression
rule from equation (2), we get:

∀c′ : PKnows(T (B, read(B), c′), loc = C, S0)

Expanding the definition of T , the new epistemic path is:

T (B, read(B), c′) ⇒
∃x ; ?x = read(B) ; ∃z ; ?R(Obs(B, x) = z) ; B ;

∃x ; ?R(Poss(x) ∧ Obs(B, x) = z) ; ?x = c′

Inserting the definitions ofPoss andObs and applying some
straightforward simplifications, we get:

T (B, read(B), c′) ⇒ ∃z ; ?z = read(B)#loc ; B ;

?z = read(B)#loc ; ?c′ = read(B)

Examining the test conditions in this path, we see that the
value of loc after the B step must equal the value of loc
before it. We can in fact simplify this to:

T (B, read(B), c′)⇒
∃z ; ?z = loc ; B ; ?z = loc ; ?c′ = read(B)

We can thus use the following when evaluating PKnows in
the regressed query:

KDo(T (B, read(B), c′), S0, s
′)→ loc(s′) = loc(S0)

Since loc(S0) = C, the query is entailed.

Example 2. After Bob reads the invitation, it is not common
knowledge that the party is at Cathy’s house:

D 6|= PKnows((A ∪B)∗, loc = C, do(read(B), S0))

Intuitively, since Alice does not observe the sensing re-
sults from the read(B) action she should still consider
loc = D a possibility. Formally, the query regresses to:

∀c′ : PKnows(T ((A ∪B)∗, read(B), c′), loc = C, S0)

To calculate T ((A ∪B)∗) we need the following result:

Ta(A, read(B)) ⇒
∃z ; ?z = read(B) ; A ; ?read(B) = z

The tests in this regressed path are rigid - they don’t con-
tain any fluents and so do not restrict the path in any way.
It is thus equivalent to the original path A. This is as ex-
pected, since Alice does not observe any sensing results
from read(B) and Poss(read(B)) is always true, so her
knowledge should not change. The regression of the entire
epistemic path is then:

T ((A ∪B)∗, read(B), c′) ⇒
[A ∪ ∃z ; ?z = loc ; B ; ?z = loc]∗ ; ?c′ = read(B)

Since this path permits A steps, and Alice considers
loc = D a possibility, the query is not entailed.

Example 3. After Bob reads the invitation, it is common
knowledge that Bob knows where the party is:

D |= PKnows((A∪B)∗,∃x : PKnows(B, loc = x),
do(read(B), S0))

We begin by regressing the inner expression over the fresh
variable c′, which produces:

R(∃x : PKnows(B, loc = x), c′)⇒
∃x : PKnows(B, loc = x) ∨ c′ = read(B)

So when regressing the outer expression, we get:

∀c′ : PKnows(T ((A ∪B)∗, read(B), c′),

∃x : PKnows(B, loc = x) ∨ c′ = read(B), S0)

From the previous example, T ((A ∪ B)∗, read(B), c′)
asserts that c′ = read(B). This is due to the public
observability of the read action. The enclosing ∀c′ can thus
be simplified away and the result is a simple tautology.

If the read action were not publicly observable, common
knowledge would not be obtained; a proof of this would mir-
ror example 2.

616

Example 4. If Alice also reads the invitation, it becomes
common knowledge that the party is at Cathy’s house:

D |= PKnows((A ∪B)∗, loc = C,

do(read(A), do(read(B), S0)))

Applying regression over the first action, and simplifying
with c′ = read(B) as before, we reduce this query to:

PKnows([∃z ; ?z = loc ; A ; ?z = loc ∪ B]∗ ,
loc = C, do(read(B), S0))

When we apply regression a second time, the ∃z and test
components in this path are not modified. The result is:

PKnows([∃z ; ?z = loc ; A ; ?z = loc∪
∃z ; ?z = loc ; B ; ?z = loc]∗ ,

loc = C, do(read(B), S0))

Or equivalently, the simpler form:

PKnows([∃z ; ?z = loc ; (A ∪B) ; ?z = loc]∗ ,
loc = C, S0)

By a similar argument to the first example, this query is
entailed by the domain. Again, the public observability of
read is the key to obtaining common knowledge in this case.

Related Work
Existing work using group-level epistemics in the situation
calculus has, when common knowledge is included at all,
used an explicit second-order axiom to define it and has thus
forgone the use of regression for effective reasoning (Davis
& Morgenstern 2005; Ghaderi, Levesque, & Lespérance
2007). By combining complex epistemic modalities with
an effective reasoning procedure, our work allows reasoning
about common knowledge in a wide range of application ar-
eas. Work that could immediately benefit from our approach
includes: specification of multi-agent systems (Shapiro,
Lespérance, & Levesque 2002); theories of coordination and
ability (Ghaderi, Levesque, & Lespérance 2007); reasoning
about the epistemic feasibility of plans (Lespérance 2001);
analysing multi-player games (Bart, Delgrande, & Schulte
2001); and our own work on the cooperative execution of
Golog programs (Kelly & Pearce 2006).

This paper clearly owes much to the heritage of dy-
namic epistemic logics in general (Halpern & Moses 1990;
Batlag, Moss, & Solecki 1998) and the development of LCC
in particular (van Benthem, van Eijck, & Kooi 2006). We
choose the situation calculus for its much richer ontology,
e.g. preconditions and effects are first order, while actions
take arguments and may be performed concurrently. On one
hand, this forces us to use a more powerful dynamic logic
for our epistemic language and run the risk of undecidabil-
ity. On the other, it actually simplifies some aspects of our
presentation. We do not need explicit update frames, and the
definition of our path regressor does not require an auxiliary
Kleene-style operator to handle iteration.

In domains with a finite state-space the situation calcu-
lus may not offer a gain in expressiveness (e.g. the party-
invitation domain could be formulated equivalently in LCC)

but it can certainly provide a more succinct axiomatisation.
Moving beyond such domains, our formalism offers the po-
tential to incorporate other rich domain features that have
been developed for the situation calculus, such as continu-
ous time and actions with duration (Reiter 1996).

We echo the sentiment of (van Bentham 2007) and look
forward to continued cross-pollination between these two re-
lated disciplines.

Future Work
The expressiveness of our epistemic language means that an-
swering a regressed knowledge query can be difficult in gen-
eral, and we are investigating ways to make reasoning easier
while retaining first-order features. Starting from the ex-
pression for common knowledge, the path regressor T will
generate only a fragment of the full epistemic language, e.g.
it will not generate nested iteration operators. Restricting
the domain can weaken this generated fragment, e.g. a rel-
ativised common-knowledge operator is sufficient for do-
mains in which all actions are public (van Benthem, van
Eijck, & Kooi 2006). Identifying restrictions such as this
that can simplify reasoning in the epistemic language is a
promising avenue for future research.

Our ongoing work extends the formalism to asynchronous
domains, where some action occurrences may be completely
hidden from an agent. Accounting for arbitrarily-long se-
quences of hidden actions requires a more complex rea-
soning procedure that builds on the techniques of (Kelly &
Pearce 2007a; 2007b). We are also incorporating additional
extensions to the situation calculus, such as continuous time
(Reiter 1996). A journal paper presenting the extended ver-
sion of our formalism is currently in preparation.

Conclusion
In this paper we have enriched the situation calculus with
a comprehensive account of complex group-level epistemic
modalities. Using first-order dynamic logic to construct
complex modalities from the base knowledge operators of
each agent, our formalism can capture a wide variety of
group-level knowledge expressions, including the important
case of common knowledge. It is formulated as a series of
macro-expansions and additions to the meta-theoretical rea-
soning machinery, so it can be used directly to enrich ex-
isting action theories and should be compatible with other
extensions to the situation calculus. By leveraging the situ-
ation calculus, we gain a very rich domain ontology without
significant complications. In particular, concurrent actions
can be handled in a straightforward manner.

Utilising the increased expressive power of our formal-
ism, we have extended the regression meta-operator to do ef-
fective reasoning for epistemic queries. The most immediate
benefit of this work, and indeed the impetus for its develop-
ment, is that reasoning about common knowledge no longer
requires a separate axiomatisation. As we have shown with
a small example, it can now be handled using regression.

The end result is a rich multi-agent theory of knowledge
and action in which complex group-level epistemic modali-
ties are amenable to effective automated reasoning.

617

Appendix: Encoding Dynamic Logic
This appendix develops an encoding of first-order dynamic
logic (henceforth “FODL”) into the situation calculus via
macro expansion. Unlike the simplified semantics presented
in the body of the paper, these macros do not require sub-
stitutions to be encoded as terms in the logic. Our encoding
operates by embedding FODL into Golog, a programming
language built on the situation calculus.

This may seem like an unnecessary complication - why
not expand FODL directly into sentences of the base sit-
uation calculus? We find the embedding into Golog sim-
pler and clearer, and expect many readers familiar with the
situation calculus will feel likewise. As Golog is well-
understood, it relieves some our burden of proof that the
embedding works as required. Since the semantics of Golog
itself is based on macro-expansion, the end result is the the
same: sentences of FODL macro-expand into sentences of
the situation calculus. Finally, our modification to Golog so
that it is interpreted over epistemic frames may further elu-
cidate the intended operation of FODL in this paper.

We make one modification to the semantics of Golog, so
that it is interpreted over epistemic frames. The base pro-
gram component is no longer an action but an agent’s epis-
temic relation. δ represents an arbitrary Golog program.
Since we intend to interpret Golog over epistemic frames,
we will use the macro EDo(δ, s, s′) to distinguish it from
standard action-based Golog.
Definition 4. The semantics of Golog over epistemic frames
is given by the macro EDo defined as follows, where P
names a predicate symbol:

δ ::= agt | ?φ | δ1; δ2 | δ1 ∪ δ2 |π(x)δ(x)
| δ∗ |procP (x̄) δ(x̄) end ; δ |P (x̄)

EDo(agt, s, s′) def= K(agt, s′, s)

EDo(?φ, s, s′) def= s = s′ ∧ φ[s]

EDo(δ1 ; δ2, s, s′)
def= ∃s′′ : EDo(δ1, s, s′′)

∧ EDo(δ2, s′′, s′)

EDo(δ1 ∪ δ2, s, s′)
def= EDo(δ1, s, s′)

∨EDo(δ2, s, s′)

EDo(π(x)δ(x), s, s′) def= ∃x : EDo(δ(x), s, s′)

EDo(δ∗, s, s′) def= RTC[EDo(δ, s, s′)]

EDo(P (x̄), s, s′) def= P (x̄, s, s′)

The final clause identifies a procedure call with arguments
x̄. Implementing procedure calls via macro expansion re-
quires a second-order formula encoding the standard least-
fixed-point semantics for recursive procedures. We will not
repeat the definition here, but note that the invocation of a
Golog program using procedure definitions appears as:

{procP1(x̄) δ1(x̄) end ; . . . ; procPn(x̄) δn(x̄) end ; δ}
Clearly Golog is a very powerful language, so the ques-

tion must be asked: could we use Golog as our epistemic

path language, rather than FODL? Unfortunately not, as
Golog has no notion of state - while the Golog operator
π(x)δ(x) is similar to the FODL operator ∃x, its effect is
localised to the contained program δ(x). FODL allows vari-
able assignments to affect the entire remaining program. In
order to simulate this via macro expansion, we use what
is essentially a continuation-passing transformation to pass
state among the operators.

First, note that any epistemic path π will contain only a fi-
nite number of FODL variables. Without loss of generality,
suppose that π contains n such variables named x1 to xn.
The idea is to translate each component of the path into a
Golog procedure with n arguments, where the ith argument
is used to pass in the current value of xi. After perform-
ing the necessary operations to encode the semantics of that
path component, it calls a continuation procedure represent-
ing the next path component. This translation is based on
the macro KDoc(π,N,C) which is passed the name to use
for the procedure encoding the given path component (N)
and the name of the continuation procedure (C).
Definition 5. The embedding of FODL into Golog is given
by the macros KDo and KDoc defined as follows, where
Pi are fresh procedure names and v̄ are argument vectors of
length n:

KDo(π, s, s′) def= EDo({KDoc(π, P,End)

; procEnd(v̄) ?> end ; π(v̄)P (v̄)}, s, s′)

KDoc(agt,N,C) def= procN(v̄) agt ; C(v̄) end

KDoc(?φ(x̄), N,C) def= procN(v̄) ?φ(v̄) ; C(v̄) end

KDoc(∃xi, N,C) def= procN(v̄)π(x)C(v̄[vi/x]) end

KDoc(π1;π2, N,C) def= KDoc(π1, N, P) ;
KDoc(π2, P, C)

KDoc(π1 ∪ π2, N,C) def= KDoc(π1, P1, C) ;
KDoc(π2, P2, C) ;
procN(v̄)P1(v̄) ∪ P2(v̄) end

KDoc(π∗, N,C) def= KDoc(π, P,N) ;
procN(v̄)C(v̄) ∪ P (v̄) end

This translation generates one procedure for each operator
in the path, plus the procedure End used to successfully ter-
minate execution. Most of these definitions are straightfor-
ward translations of equivalent operators in FODL to Golog.
One interesting case is ∃xi, which calls the continuation pro-
cedure with a fresh variable in position i.

The most complex case is π∗, which simulates iteration
using a pair of mutually recursive procedures P andN . Pro-
cedure N can either terminate immediately (calling the con-
tinuation C) or call P . A call to P executes one iteration of
π before continuing with another invocation of N . The pos-
sible executions for π∗ are thus nil, π, π;π, etc as required
by the semantics of FODL.

It should be clear that the expansion of each operator sat-
isfies the relevant identity from Definition 2.

618

Appendix: Extended Proofs
Theorem 1. The identities in equation (1) are entailed by
any basic action theory D, where CKnows is defined as the
transitive closure of EKnows.

Proof. Each is a straightforward matter of expanding the
PKnows definition, using the relevant identities from Defi-
nition 2, and collecting back together components matching
the form of the Knows macro. We take the A ∪ B case as
an example:

PKnows(A ∪B,φ, s)⇒
∀s′ : KDo(A ∪B, s, s′)→ φ[s′]

Using the semantics of the ∪ operator:

PKnows(A ∪B,φ, s)⇒
∀s′ : [KDo(A, s, s′) ∨KDo(B, s, s′)]→ φ[s′]

Using the semantics of the agt operator, this expands to:

PKnows(A ∪B,φ, s)⇒
∀s′ : K(A, s, s′)→ φ[s′] ∧ K(B, s, s′)→ φ[s′]

Which matches the form of Knows, giving the required:

PKnows(A ∪B,φ, s)⇒
Knows(A, φ, s) ∧ Knows(B,φ, s)

Lemma 1. For any epistemic path π:

D |= KDo(π, do(c, s), s′′) ≡
∃µ, µ′, c′, s′ : µ(x) = c ∧ µ′(x) = c′∧
s′′ = do(c′, s′) ∧KDo(Ta(π, x), µ, s, µ,′ s′)

Proof. Proceed by cases, covering each path operator in
turn. We will omit the use of R() in the definition of Ta to
simplify the presentation. For the base case of an individual
agent, we have:

KDo(π, do(c, s), s′′) ≡K(agt, s′′, do(c, s))

Ta(agt, x)⇒ ∃z ; ?Obs(agt, x) = z ; agt ;
∃x ; ?Poss(x) ∧ Obs(agt, x) = z

Expanding KDo(Ta(agt, x), µ, s, µ′, s′) thus produces:

KDo(Ta(agt, x), µ, s, µ′, s′) ≡
∃z : Obs(agt, µ(x), s) = z ∧ ∃s′′ : K(agt, s′′, s)∧

Poss(µ′(x), s′′) ∧ Obs(agt, µ′(x), s′′) = z ∧ s′′ = s′

Note that µ and µ′ are never applied to a variable other than
x. When we substitute this into the RHS of the hypothesis,
µ(x) and µ′(x) are asserted to be c and c′ respectively, so
they can be simplified away to give:

D |= K(agt, s′′, do(c, s)) ≡ ∃c′, s′ : s′′ = do(c′, s′)

∧K(agt, s, s′) ∧ Poss(c′, s′)
∧ Obs(agt, c, s) = Obs(agt, c′, s′)

This is the successor state axiom for K, which is trivially
entailed by the domain.

For the ?φ case, we have:

KDo(?φ, do(c, s), s′′) ≡ φ[do(c, s)] ∧ s′′ = do(c, s)

Ta(?φ, x)⇒?R(φ, x)
Giving:

KDo(Ta(?φ, x), µ, s, µ′, s′) ≡
R(φ, x)[s] ∧ s = s′ ∧ µ = µ′

Substituting into the RHS of the hypothesis, this asserts that
c = c′ and hence s′′ = do(c, s), so the hypothesis is clearly
entailed.

The case for ∃y is trivial as KDo(∃y, s, s′) ≡ s = s′.

The inductive cases are straightforward as Ta is simply
pushed inside each operator. We will take the π∗ case as an
example. The inductive hypothesis gives us:

KDo(π, do(c, s), s′′) ≡
∃µ, µ′, c′, s′ : µ(x) = c ∧ µ′(x) = c′∧
s′′ = do(c′, s′) ∧KDo(Ta(π, x), µ, s, µ,′ s′)

We can apply RTC to both sides of this equivalence, along
with two rearrangements: the LHS is expanded to put ∃µ, µ′′
at its front, and the rigid tests on the RHS are taken outside
the RTC operation. The result is:

∃µ, µ′′ : RTC[KDo(π, µ, do(c, s), µ′′, s′′)] ≡
∃µ, µ′, c′, s′ : µ(x) = c ∧ µ′(x) = c′∧

s′′ = do(c′, s′) ∧RTC[KDo(Ta(π, x), µ, s, µ,′ s′)]

Using the definitions of KDo and Ta we have:

KDo(π∗, do(c, s), s′′) ≡
∃µ, µ′′ : RTC[KDo(π, µ, do(c, s), µ′′, s′′)]

KDo(Ta(π∗, x), µ, s, µ′, s′) ≡
RTC[KDo(Ta(π, x), µ, s, µ′, s′)]

Substituting these into the RTC of the inductive hypothesis
completes the proof.

Theorem 2. For any epistemic path π:

D |= KDo(π, do(c, s), s′′) ≡
∃c′, s′ : s′′ = do(c′, s′) ∧KDo(T (π, c, c′), s, s′)

Proof. Recall the rule for T (π, c, c′):

T (π, c, c′)⇒ ∃x ; ?x = c ; Ta(π, x) ; ?x = c′

Expanding KDo for this rule:

KDo(T (π, c, c′), s, s′) ≡ ∃µ, µ′ : µ(x) = c∧
µ′(x) = c′ ∧KDo(Ta(π, x), µ, s, µ′, s′)

We can trivially substitute KDo(T (π, c, c′), s, s′) into
the RHS of Lemma 1 to get the required result.

619

Theorem 3. For any epistemic path π, uniform formula φ
and actions c:

D |= PKnows(π, φ, do(c, s)) ≡
∀c′ : PKnows(T (π, c, c′),R(φ, c′), s)

Proof. The mechanics of this proof mirror the correspond-
ing proof from (Scherl & Levesque 2003). First we expand
the PKnows macro to produce:

PKnows(π, φ, do(c, s)) ≡
∀s′′ : KDo(π, do(c, s), s′′)→ φ[s′′]

Using Theorem 2 as a kind of pseudo-successor-state-axiom
for KDo, we may write:

PKnows(π, φ, do(c, s)) ≡ ∀s′′ :

(∃c′, s′ : s′′ = do(c′, s′)∧KDo(T (π, c, c′), s, s′))→ φ[s′′]

Bringing the existential variables outside of the implication
produces:

PKnows(π, φ, do(c, s)) ≡ ∀s′′, c′, s′ :

s′′ = do(c′, s′) ∧KDo(T (π, c, c′), s, s′)→ φ[s′′]

The variable s′′ is now doing no work in this formula, so
it can be removed:

PKnows(π, φ, do(c, s)) ≡ ∀c′, s′ :

KDo(T (π, c, c′), s, s′)→ φ[do(c′, s′)]

The use of variable s′ now matches the form of the
PKnows macro. Capturing it, and using regression on the
φ term , we have the hypothesis as required:

PKnows(π, φ, do(c, s)) ≡
∀c′ : PKnows(T (π, c, c′),R(φ, c′), s)

References
Bart, B.; Delgrande, J. P.; and Schulte, O. 2001. Knowl-
edge and planning in an action-based multi-agent frame-
work: A case study. In Advances in Artificial Intelligence,
volume 2056 of LNAI, 121–130. Springer.
Batlag, A.; Moss, L. S.; and Solecki, S. 1998. The logic of
public announcements and common knowledge and private
suspicions. In Proc. of TARK’98, 43–56.
Davis, E., and Morgenstern, L. 2005. A first-order theory
of communication and multi-agent plans. Journal of Logic
and Computation 15(5):701–749.
Ghaderi, H.; Levesque, H.; and Lespérance, Y. 2007. A
logical theory of coordination and joint ability. In Proc.
AAAI’07, 421–426.
Halpern, J. Y., and Moses, Y. 1990. Knowledge and com-
mon knowledge in a distributed environment. Journal of
the ACM 37(3):549–587.
Kelly, R. F., and Pearce, A. R. 2006. Towards high-level
programming for distributed problem solving. In Proc.
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, 490–497.
Kelly, R. F., and Pearce, A. R. 2007a. Knowledge and
observations in the situation calculus. In Proc. AAMAS ’07,
841–843.
Kelly, R. F., and Pearce, A. R. 2007b. Property persistence
in the situation calculus. In Proc. IJCAI’07, 1948–1953.
Kooi, B. 2007. Dynamic term-modal logic. In Proc. Work-
shop on Logic, Rationality and Interaction, volume 8 of
Texts in Computing, 173–185. College Publ., London.
Lespérance, Y. 2001. On the epistemic feasibility of plans
in multiagent systems specifications. In Proc. 8th Inter-
national Workshop on Agent Theories, Architectures, and
Languages, volume 2333 of LNAI, 69–85.
Moore, R. C. 1980. Reasoning about knowledge and ac-
tion. Technical Note 191, SRI International.
Pirri, F., and Reiter, R. 1999. Some contributions to the
metatheory of the situation calculus. Journal of the ACM
46(3):325–361.
Reiter, R. 1996. Natural actions, concurrency and continu-
ous time in the situation calculus. In Proc. KR’96. Morgan
Kaufmann. 2–13.
Scherl, R., and Levesque, H. 2003. Knowledge, action,
and the frame problem. Artificial Intelligence 144:1–39.
Scherl, R. B. 2003. Reasoning about the interaction of
knowledge, time and concurrent actions in the situation cal-
culus. In Proc. IJCAI’03, 1091–1098.
Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 2002.
The cognitive agents specification language and verifica-
tion environment for multiagent systems. In Proc. AAMAS
’02, 19–26.
van Bentham, J. 2007. Situation calculus meets modal
logic. Technical report, University of Amsterdam.
van Benthem, J.; van Eijck, J.; and Kooi, B. 2006. Logics
of communication and change. Information and Computa-
tion 204(II):1620–1662.

620

http://www.kr.org
http://www.aaaipress.org

	KR 2008
	Home
	Contents
	Index
	KR, Inc.

