
Distributed Interactive Learning in Multi-Agent Systems

Jian Huang and Adrian R. Pearce
Department of Computer Science and Software Engineering

NICTA Victoria Laboratory
The University of Melbourne

Victoria 3010, Australia
{jhua,adrian}@csse.unimelb.edu.au

Abstract

Both explanation-based and inductive learning techniques
have proven successful in a variety of distributed domains.
However, learning in multi-agent systems does not necessar-
ily involve the participation of other agents directly in the
inductive process itself. Instead, many systems frequently
employ multiple instances of induction separately, or single-
agent learning. In this paper we present a new framework,
named the Multi-Agent Inductive Learning System (MAILS),
that tightly integrates processes of induction between agents.
The MAILS framework combines inverse entailment with an
epistemic approach to reasoning about knowledge in a multi-
agent setting, facilitating a systematic approach to the shar-
ing of knowledge and invention of predicates when required.
The benefits of the new approach are demonstrated for in-
ducing declarative program fragments in a multi-agent dis-
tributed programming system.

Introduction
This paper concerns agent learning problems, where in-
duction involves the construction of hypotheses that ex-
plain observations relative to the context of a particular do-
main. Learning that utilises logic programming based on do-
main knowledge has been extensively researched, including
explanation-based learning (EBL) (Dejong & Mooney 1986;
Mitchell, Keller, & Kedar-Cabelli 1986) and inductive logic
programming (ILP) (Muggleton & Raedt 1994).

Success in EBL and ILP has demonstrated that new
knowledge can be acquired systematically using domain (or
background) knowledge and training examples (or positive
and negative examples). When provided with some back-
ground knowledge B and examples E of a concept, an ILP
system constructs a hypothesis H that explains E in terms
of B, i.e. B ∧ H |= E, based on the process of inverting
deductive inference (Muggleton 1995).

While it has been recognized that domain knowledge
performs an important role in constructing these hypothe-
ses in multi-agent systems (Kazakov & Kudenko 2001), a
great deal of work on multi-agent learning problems has fre-
quently employed multiple instances of induction separately,
as opposed to learning that tightly integrates processes of in-
duction between agents. For a survey of multi-agent learn-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ing, refer to (Stone & Veloso 2000). In those works, agents
do not necessarily require the participation of other agents
directly in learning.

According to (Kazakov & Kudenko 2001), the problem
of true multi-agent learning has far more complexity than
simply having each agent perform localized learning in iso-
lation. Weiß and Dillenbourg clearly identify this prob-
lem “interaction does not just serve the purpose of data ex-
change, but typically is in the spirit of a cooperative, ne-
gotiated search for a solution of the learning task (Weiß &
Dillenbourg 1999)”.

The reason that interaction and cooperation in multi-agent
learning is important, is because the crucial knowledge nec-
essary in learning a hypothesis is typically distributed over
a number of agents. This gives rise not only to the prob-
lem that no individual agent can accomplish the learning
task alone any more but also the problem of knowing what
background knowledge from each agent is required for con-
structing the global hypothesis, given that sharing complete
knowledge is often not feasible in such environment. Due
to the above two constraints, neither of the two extremes of
the collaboration scheme would work, i.e. learning in iso-
lation or communicating everything. Therefore, the interac-
tion between agents while performing a learning task needs
to be elaborated, such that agents draw together knowledge
when necessary. Further, they should draw only the neces-
sary knowledge together.

This paper studies interactive multi-agent learning using
an integrated approach, which combines ILP with epistemic
reasoning. Our work utilizes the implemented ILP system
Aleph (Srinivasan 2001), a successor to Progol, for perform-
ing hypothesis construction. Instead of viewing induction
as a stand alone technique for learning new concepts, our
work adopts a perspective in which the induction process
is viewed as an extension to deduction for acquiring miss-
ing knowledge needed for reasoning. By adopting this view,
it allows partially specified programs to be completed and
executed by a multi-agent team. We aim at establishing a
general model within which execution and symbolic learn-
ing can take place interactively among a number of agents
autonomously and seamlessly.

In the following sections, we first provide an overview
of inductive learning in multi-agent domain and demon-
strate the reason interaction is necessary in such an environ-



ment. A formalism is then presented for analyzing agents
for multi-agent inductive learning. The subsequent section
details the interactive strategy the agents are to adopt in or-
der to collaborate in inductive learning. At the end of the
paper, we outline the experimental system testing the pro-
posed model and conclude.

Multi-agent Inductive Learning
The study of knowledge in the literature, as it relates to
agents, frequently concerns either factual (Fagin et al. 1997)
or procedural (Georgeff & Lansky 1986) aspects of knowl-
edge. Singh has termed the former “know-that” and the lat-
ter “know-how” (Singh 1999). As people often do not dis-
tinguish “knowing a fact” from “knowing how to do some-
thing” explicitly, it often depends on the context to be able to
tell which meaning is referred to, e.g. “Do you know quick
sort?”. This distinction is, however, important to us because
in multi-agent learning domain, knowledge is no longer only
about the state of the world but has a lot to do with actual
problem solving. This is because participants not only need
to know what to do but also how to do it and who can do it.

Throughout the paper, we follow the notation used in the
KARO framework (van Linder, van der Hoek, & Meyer
1998), i.e. we use the operator Kiϕ for agent i knows the
fact ϕ and Aiα for agent i has the ability to perform the ac-
tion α. Both these two aspects of knowledge are of concern
to us because in multi-agent setting, the agent knowing what
to do and the agent knowing how to it may not be the same.
It often occurs that one agent’s knowledge depends on an-
other agent’s knowledge of the state of the world or being
able to perform some action.

Consider the following example in a logic programming
context:

Agent i requires a definition for the predicate
min(L,M) (for finding the min number in a list). It
knows that if it can sort a list (in ascending order), then
the first element will be the minimum of the list. How-
ever, agent i doesn’t know how to sort a list (but it
does know what sorting a list means!) so its knowledge
about min depends on another agent’s knowledge on
sort. Agent j knows how to generate permutations of
a list and how to check the ordering of a list. Given
that sorting can be performed by generating permuta-
tions and checking if the permutation is ordered, agent
j is already capable of performing sorting as long as
information can be communicated.

In the above example, only agent i knows what sort
means at the start, which can be viewed that agent i knows
about the +/- examples of sorted lists. Although agent j
knows everything it needs to perform sort, it doesn’t know
there exists such a thing called sorting! Nevertheless, it
can induce the definition of sort, based on its background
knowledge and examples given by agent i. One consequence
of this separation of know-that and know-how is that there
exist such needs to transfer the concept (i.e. +/- examples)
to the agent who is capable of implementing the concept.
In our case, agent i needs to transfer the knowledge of the
+/- examples to agent j first, as a way of communicating to

agent j “this is the concept that I need an implementation
of”.

With the presence of the aforementioned dependency in
knowledge, interaction between agents during learning is a
prerequisite for successful learning outcome. Without in-
teraction between the agents, hypotheses would not be suc-
cessfully induced. Interaction in such an environment can
potentially be complicated when dependencies span over a
large number of agents and when dependencies are circular.
In summary, the following situations may arise and need to
be handled:

1. The simplest case is that agent j already has an imple-
mentation when agent i asks for it. Therefore, it’s just a
matter of communication.

2. Alternatively, agent j needs to induce a hypothesis based
on the +/- examples received from agent i and its own
background knowledge to explain the examples.

3. Furthermore, agent j may require agent k to induce some
background knowledge for it first before it can induce the
definition required by agent i.

4. Finally, even background knowledge required for induc-
ing the definition may be distributed over different agents.
An example of multi-agent inductive learning is pro-

vided in Table 1. In the example there are three agents;
each contains some background knowledge and some pos-
itive/negative examples. This example will be referred to
throughout the rest of the paper.

Formalization of Inductive Learning Agents
In this section, we formally specify the agents among which
reasoning, learning, induction and execution of logic pro-
grams can take place.

Function symbols, predicate symbols, variables, terms
and literals are defined in the usual logic programming
sense. Every predicate symbol is an atomic action. Each
agent consists of the following four components:

Background Set B = {b1, · · · , bn} Agent’s background
knowledge consists of predicate definitions in logic pro-
gramming sense, i.e. it is a collection of horn clauses. We
may refer to the background set as the program the agent
contains. Each bx in the set corresponds to one horn clause
in the program.

Example Set E = E+ ∪ E− The set of posi-
tive examples E+ = {e+

1 , · · · , e+
n } and negative ex-

amples E− = {e−1 , · · · , e−n } are ground literals, or
ground horn clauses with no body. They are facts
or training data, in normal machine learning sense, to
which a correct hypothesis must conform. For exam-
ple, e+

1 = sort([2,1,3],[1,2,3]) means this
is a positive example of sort. Similarly, e−1 =
¬ sort([3,2,1],[1,3,2]) indicates a negative ex-
ample. Although in logic programming sense, there is no
actual difference between programs and examples, we still
differentiate them in our model as they are used for very dif-
ferent purposes.



Agent i
-----------------------------------------------------------------
range(List,Range) :- min(List,Min) :- max(List,Max) :-

min(List,Min), sort(List,L), sort(List,L),
max(List,Max), first(L,Min). last(L,Max).
Range is Max - Min.

last([L],L). first([N|Ns],N).
last([N|Ns],L) :- last(Ns,L).

+ -
sort([],[]). sort([0],[0]). sort([1],[]). sort([1],[2]).
sort([2,1,3],[1,2,3]). sort([1,2,3,4,5],[5,4,3,2,1]).
sort([1,5,2,4,3],[1,2,3,4,5]). sort([9,3,1,5,3],[1,3,3,9,5]).

Agent j
-----------------------------------------------------------------
permutate([],[]). ordered([]).
permutate(List,[First|Perm]) :- ordered([_]).

select(First,List,Rest), ordered([X,Y|Tail]) :-
permutate(Rest,Perm). X =< Y, ordered([Y|Tail]).

select(Elem,[Elem|Tail],Tail).
select(Elem,[Head|Tail1],[Head|Tail2]) :-

select(Elem,Tail1,Tail2).

Agent k
-----------------------------------------------------------------
is_set(List) :- \+ repeated(List).

+ -
same([]). same([5]). same([1,2]). same([1,1,1,2]).
same([0,0,0]). same([5,4,3,2,1]).
same([1,1,1,1,1,1]). same([2,3,3,3,3,3]).

repeated([1,1]). repeated([]).
repeated([1,2,1]). repeated([1]).
repeated([3,3,3]). repeated([1,2,3]).
repeated([3,5,7,5]). repeated([1,3,5,2,4]).

Table 1: Example to illustrate multi-agent inductive learning
with three agents, each contains some background knowl-
edge, positive and negative examples.

Capability Set C = C+ ∪ C− The set of capabilities
C+ = {c+

1 , · · · , c+
n } and incapabilities C− = {c−1 , · · · , c−n }

contains modal representation corresponding to what atomic
actions (with respect to the background set) an agent is able
(or unable) to perform while abstracting away the detailed
definition. (We tend to use the word ‘capability’ to mean
both capability and incapability unless explicitly differenti-
ated.) Each c+

x is in the form of Aiα and each c−x is in the
form of ¬Aiα. Aiα holds iff agent i is able to perform the
atomic action α.

Take the example in Table 1, for agent i to be able to
perform min, it clearly depends on some agent (including
itself) being able to perform sort and first. In another
words, the agent can perform min if all the atomic actions
that min can possibly depend on can be performed. An
agent’s capability can be systematically reasoned by per-
forming a slightly modified linear resolution technique as
specified later in the paper. For this naive example, it is clear
that the agent is able to perform the action first, but not the
action min as it can’t perform the action sort that min de-
pends on. In summary, the capability set for agent i, is:

C = {Aifirst, Ailast,¬Aisort,¬Aimin,¬Aimax,¬Airange}
If, however, it is already known by agent i that another agent
j is able to perform the action sort, the capability set for
agent i will instead be:

C = {Aifirst, Ailast, Ajsort, Aimin, Aimax, Airange}

In another word, agents increase their capabilities by taking
other agents’ capabilities into consideration, which is what

would be expected for a team consisting of multiple agents.
Note that the capability set of one agent can contain capa-
bilities of other agents in the team iff the agent is aware of
them, and agents do become aware of other agents’ capabil-
ities over time, which will be detailed later in the paper.

Knowledge Base K = KP ∪KE∪KC An agent’s knowl-
edge base contains everything that the agent knows, includ-
ing: KP : the semantics of its background set; KE : the ex-
amples from its examples set, e ∈ E iff Kie ∈ KE ; KC :
its capabilities as well as the capabilities of other agents,
c ∈ C iff Kic ∈ KC .

That is saying, agents know what their background
knowledge implies, they know the positive and negative in-
stances of various concepts and they know the capabilities
of themselves and of others that they are aware of. They can
perform epistemic reasoning based on their knowledge set.

The semantics of the agent’s background set capture the
meaning of its background knowledge by viewing it as ca-
pability dependencies. For example, if agent i has the back-
ground knowledge mentioned in Table 1, its semantics are
Airange← Aimin∧Aimax etc. And by ‘agent knows the
semantics of its programs’, we mean agent i’s knowledge
contains Ki(Airange ← Aimin ∧ Aimax). That is, the
agent knows that being able to do min and max leads it to
be able to do range.

An agent’s capability set is populated initially by deriving
the action dependency clauses from its program semantics
and then performing a resolution technique similar to classi-
cal linear input resolution on the action dependency clauses.
The resolution process attempts to establish a refutation for
each atomic action in the agent’s program. If successful, the
agent is capable of performing that action, incapable other-
wise.

Take the program from Table 1. It is illustrated below how
agent i reasons about whether it is capable of performing
the action range. The following capability dependency is
directly obtained from its program:

Airange ← Axmin ∧ Aymax (1)
Aimin ← Axsort ∧ Ayfirst (2)
Aimax ← Axsort ∧ Aylast (3)
Aifirst (4)
Ailast (5)

The above clauses are then resolved with the goal clause
¬Airange as illustrated in Table 2. The Ai operator is omit-
ted to keep the resolution clear. As can be seen, the resolu-
tion without the Ai modality is exactly the SLD resolution
for classical propositional logic.

We fail to obtain a refutation for the goal and thus con-
clude that the agent is unable to perform range. What is
more, the resolution indicates that the reason for not being
able to resolve ¬sort to get the empty clause is due to not
having a definition for sort. The agent can then proactively
seek out the definition for sort in the team.

Apart from reasoning about its abilities and inabilities, an
agent can also reason based on its knowledge about other



{¬range} {¬min,¬max, range}

((((((((

{¬min,¬max} {¬sort,¬first, min}

((((((((

{¬max,¬sort,¬first} {¬sort,¬last, max}

((((((((

{¬sort,¬first,¬last} {first}

((((((((

{¬sort,¬last} {last}

((((((((

{¬sort}

Table 2: Resolution for reasoning about capability

agents’ knowledge status, e.g. “He knows that I know that
he knows ...”; and whether, when, who and what to commu-
nicate.

For example, if agent i asks agent k the definition of
sort, agent k can deduce that agent i doesn’t know sort,
i.e. Kk(¬Aisort). Furthermore, if agent k knows that agent
j knows about sort it can communicate this information to
agent i.

Over time, an agent’s capability set expands as new pred-
icates are induced by itself and other agents. Here we exam-
ine what updates to the sets need to be carried out whenever
a new predicate is induced. For example, agent i has a pro-
gram α ← β, γ and requires a definition for β, which has
been induced by agent j. The following updates need to be
done to agent i’s sets:

1. Program Set P: no change.

2. Example Set E: no change.

3. Capability Set C: C = C ∪ {Ajβ}, and the resolution
described previously will be run to re-assess its capabili-
ties since new atomic actions which it wasn’t previously
capable of might now be enabled.

4. Knowledge Set K: K = K ∪ {CijAjβ} ∪ {Kic1} · · · ∪
{Kicn}, where ci are the new capability after updating
the capability set. {CijAjβ} indicates it is now common
knowledge between agent i and agent j that Ajβ.

Similar updates need to be performed for agent j:

1. Program Set P: P = P ∪ {p′}, where p′ is the definition
induced for β.

2. Example Set E: E = E ∪ E′, where E′ is the examples
for β that was obtained from agent i.

3. Capability Set C: C = C ∪ {Ajβ}. No resolution needs
to be performed, since there can’t possibly be any inca-
pabilities previously existing that depends on the action
β.

4. Knowledge Set K: K = K ∪ {CijAjβ}, as before.

Inductive Learning through Interaction
Based on the formalism detailed in the previous section, we
illustrate how a team of agents interact while collaborating

DEDUCE(Goal)

0: initialize goal list with Goal
1: while goal list is not empty do
1: pick the first goal g
2: if g is defined then
3: if g is resolvable then
3: replace g with its body
4: else
5: return FAIL
6: end if
7: else
7: INDUCE(g, example(g))
8: if g is induced then
8: continue
9: else

10: return FAIL
11: end if
12: end if
13: end while
14: return SUCCEED

Table 3: Algorithm for deduction

in inductive learning. As mentioned in the introduction,
in order to utilize the full power of inductive learning in a
multi-agent system, we view induction as part of deduction
for acquiring missing knowledge to overcome the problem
of knowledge being distributed. Here we present a generic
algorithm to be followed by the agents that facilitates sys-
tematic acquisition of missing knowledge and allows execu-
tion based on incomplete knowledge.

Table 3 outlines the algorithm for the deduction process.
When asked to prove a goal, an agent keeps replacing the
first goal in the goal list by its body, just like the Prolog in-
terpreter, unless it encounters a goal for which it fails to find
a corresponding definition. Then it invokes the induction
process and either returns back with the induced definition
or fails if the induction fails.

Table 4 outlines the algorithm for induction. During in-
duction, an agent first induces any undefined predicates be-
fore using them as background knowledge. It then calls an
ILP system to induce the definition of the predicate based
on its own background knowledge. Upon failing, it asks the
rest of the team, one by one to, induce the definition and the
induction process will be called recursively until either the
definition is obtained or all agents have tried and failed.

If all agents have tried and failed, this indicates that some
background knowledge is missing and the hypothesis does
not exist. This is because the induction algorithm constructs
the hypothesis in a bottom up fashion, i.e. it tries to re-
solve all undefined predicates that the hypothesis may possi-
ble rely on first, and uses them as background knowledge to
induce more background knowledge recursively. This thus
guarantees that the hypothesis will be found so long as all
necessary low level ingredients exist in the team.

Given that the algorithm doesn’t require the communica-
tion of background knowledge (only examples), one excep-
tional situation is when background knowledge needed to
induce a definition is distributed over multiple agents. We



INDUCE(Pred, Example)

1: for all background predicate b do
2: if b does not depend on Pred then
3: if b is not defined then
3: INDUCE(b, example(b))
4: end if
4: Background← Background ∪ b
5: end if
6: end for
6: ILP(Pred, Background, Example)
7: if Pred is induced then
8: return SUCCEED
9: else

10: for each agent i in the team do
10: ASK(i, P red, Example)
11: if Pred is induced then
12: return SUCCEED
13: end if
14: end for
14: invoke distributed ILP process
15: if Pred is induced then
16: return SUCCEED
17: else
18: return FAIL
19: end if
20: end if

Table 4: Algorithm for induction

consider it an open solution to this that the ILP be run in a
distributed fashion to allow different agents to participate in
the process.

In a team consisting of many agents, the interaction strat-
egy can potentially involve as many agents as necessary to
learn a peace of missing knowledge. To illustrate this, con-
sider a sample scenario as follows:

Imagine agent k from Table 1 is asked to prove
same([2,2,2,2]), if a list contains the same number
2, and is given a number of positive and negative exam-
ples. As one known definition for same is same(L) :-
range(L,0) and agent i knows the definition for range,
which in turn relies on j’s definition of sort, ideally we ex-
pect the agents to figure this out through interaction. This
can indeed be achieved using the algorithms described above
as illustrated in Figure 1.

The interactive model is also resource conservative in a
sense that it does not require an unrestricted exchange of
knowledge between agents nor does it require agents to ob-
tain full awareness of other agents’ knowledge status. In-
stead, every agent starts by attempting to induce the missing
definition alone and passes the task to another if it fails. And
at any time only limited information, the examples, need to
be communicated between agents.

At the current stage of the research, ILP is viewed as a
centralized process and is thus treated as a black box process
equipped by each agent to run given background knowledge
and examples. Although this simplifies the problem so that
we are abstracted away from the internal details of the ILP
system, it also imposes further restrictions to us such that
whenever the ILP system is called, the background knowl-

Figure 1: Agent interaction for sample scenario

edge has to be congregated into one agent already. Research
has been done to distribute hypothesis searching for ILP,
but only allowing partitioning of the example space. To our
knowledge, there hasn’t been a concurrent version of the ILP
system that allows background knowledge to be distributed.

Consider again the example in Table 1. If agent k has the
background knowledge ordered instead of agent j, none of
agent i, j or k would be able to accomplish the task of in-
ducing the definition for sort alone without the involvement
of the others. This requires agents j and k to combine their
background knowledge in the inductive learning process. So
far, we have avoided the discussion of such situations but the
model we have proposed does handle this type of knowledge
distribution. Therefore decentralized execution of the ILP
process, allowing hypothesis searching involving distributed
background knowledge, is potentially important towards a
more complete model for multi-agent inductive learning.

Experimental Results
In order to test the proposed formalism and algorithms, we
have implemented a system in Prolog to simulate a multi-
agent environment and agent interaction. The existence of
agents is simulated by having a background file, an example
file and a knowledge file for each agent in the team. The
communication between agents and information passing are
simulated by having the interpreter invoke and pass the in-
formation to the relevant agents. The context switching from
the execution of one agent to another is simulated by load-
ing and unloading background knowledge of relevant agent
into the interpreter. The user may issue a query to a speci-
fied agent through the interpreter. The agent would deduce
based on its local background knowledge and, if necessary,
induce missing knowledge in order to answer the query and
may potentially invoke other agents in the team. The in-
duced knowledge will be added into the background file of
the inducer and will be used as background knowledge in
the future. In some cases, agents other than the inducer may
be aware of the knowledge being induced, it would record
this fact in its knowledge file and further queries about this
induced knowledge would be directed to the relevant agent.

The ILP system Aleph has been used in experiments for



?- deduce(i,range([2,5,8],Range)).
---------------- Deduction Attempt ----------------
Agent: i, Goal: range([2, 5, 8], _G378)
---------------------------------------------------
Current Goals: [pmin([2, 5, 8], _G1020), pmax([2, 5, 8], _G1023),
_G378 is _G1023-_G1020]
Current Goals: [psort([2, 5, 8], _G1069), first(_G1069, _G1020),
pmax([2, 5, 8], _G1023), _G378 is _G1023-_G1020]
---------------- Induction Attempt ----------------
Agent: i, Predicate: psort
Background: [last(_G1461, _G1462), range(_G1452, _G1453),
first(_G1443, _G1444), pmin(_G1434, _G1435), pmax(_G1425, _G1426)]
---------------- Induction Attempt ----------------
Agent: j, Predicate: psort
Background: [permutation(_G1789, _G1790), ordered(_G1781)]
---------------- Induction Success ----------------
Predicate: psort
Hypothesis: [(psort([_G188|_G189], [_G191|_G192]):-
permutation([_G188|_G189], [_G191|_G192]),
ordered([_G191|_G192])), psort([], [])]
---------------- Deduction Attempt ----------------
Agent: j, Goal: psort([2, 5, 8], _G100)
---------------------------------------------------
Current Goals: [permutation([2, 5, 8], [_G1665|_G1666]),
ordered([_G1665|_G1666])]
...
Current Goals: []
---------------- Deduction Success ----------------
Current Goals: [first([2, 5, 8], _G62), pmax([2, 5, 8], _G65),
_G22 is _G65-_G62]
Current Goals: [pmax([2, 5, 8], _G65), _G22 is _G65-2]
Current Goals: [psort([2, 5, 8], _G2601), last(_G2601, _G65),
_G22 is _G65-2]
...
Current Goals: [last([8], _G65), _G22 is _G65-2]
Current Goals: [_G22 is 8-2]
Current Goals: []
---------------- Deduction Success ----------------

Range = 6

Table 5: Output showing the execution trace when agent i is
asked to deduce range([2,5,8],Range).

inducing predicate definition given background knowledge
and examples. We have observed that although Aleph is the
state-of-art ILP system available, it does require some fine-
tuning of the settings and this make it difficult to guarantee
success given the right inputs when being integrated into the
whole system.

The query deduce(i,range([2,5,8],Range))
is executed as an example and a trace is shown in Table
5, formatted slightly for presentation. In the sample, we
have asked agent i to deduce range([2,5,8],Range).
Agent i keeps replacing goals until the point where it fails to
find a definition for psort. It first attempts to induce the def-
inition for it based on its own background knowledge, but
fails. It then turns to agent j for the definition, who suc-
cessfully induces it and gets back to agent i. Agent i then
proceeds with the rest of the goals. Note here that since
agent i has acquired the knowledge that agent j knows the
definition for psort, it directs the current goal to agent j to
deduce. Sure enough, agent j has the definition and returns
success for the goal psort([2,5,8], G100). Agent
i keeps going with the rest, and turns to agent j again the
second time for the query regarding psort. After receiving
the result, agent i finally finishes replacing all goals in the
list and successfully determines that Range = 6.

Conclusion
In this paper, we present an inductive learning model that
takes advantage of background knowledge of other agents

in the team while learning new concepts. Although early
work by Davies (Davies 1993) has looked at the problem of
learning new concepts among collaborative agents, his work
did not concern the type of ILP developed later (Muggleton
1995). In contrast, our work develops multi-agent induc-
tion based on integrating (Srinivasan 2001) and (Fagin et
al. 1997) towards the aims of true mutli-agent learning, as
identified by (Kazakov & Kudenko 2001). In addition, our
model guarantees to find hypotheses as long as background
knowledge exists and is also conservative of resources.

References
Davies, W. 1993. ANIMALS A Distributed Heterogeneous
Multi-Agent Machine Learning System. Ph.D. Dissertation,
University of Aberdeen.
Dejong, G., and Mooney, R. J. 1986. Explanation-based
learning: An alternative view. Machine Learning 1(2):145–
176.
Fagin, R.; Moses, Y.; Halpern, J. Y.; and Vardi, M. Y.
1997. Knowledge-based programs. Distributed Comput-
ing 10(4):199–225.
Georgeff, M., and Lansky, A. 1986. Procedural knowledge.
Proceedings of the IEEE (Special Issue on Knowledge Rep-
resentation) 74:1383–1398.
Kazakov, D., and Kudenko, D. 2001. Machine learning
and inductive logic programming for multi-agent systems.
In Luck, M.; Marik, V.; and Stepankova, O., eds., Multi-
Agent Systems and Applications, volume 2086. Springer.
246–270.
Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T.
1986. Explanation based learning A unifying view. Ma-
chine Learning 1(1):47–80.
Muggleton, S., and Raedt, L. D. 1994. Inductive logic
programming: Theory and methods. Journal of Logic Pro-
gramming 19/20:629–679.
Muggleton, S. 1995. Inverse entailment and progol. New
Generation Computing, Special issue on Inductive Logic
Programming 13:245–286.
Singh, M. P. 1999. Know-how. In Rao, A. S., and
Wooldridge, M. J., eds., Foundations of Rational Agency,
Applied Logic Series. Kluwer. 105–132.
Srinivasan, A. 2001. Extracting context-sensitive mod-
els in inductive logic programming. Machine Learning
44(3):301–324.
Stone, P., and Veloso, M. 2000. Multiagent systems: A
survey from a machine learning perspective. Autonomous
Robots 8(3):345–383.
van Linder, B.; van der Hoek, W.; and Meyer, J.-J. C. 1998.
Formalising abilities and opportunities of agents. Funda-
menta Informaticae 34(1-2):53–101.
Weiß, G., and Dillenbourg, P. 1999. What is ’multi’ in
multiagent learning? In Dillenbourg, P., ed., Collaborative
learning. Cognitive and computational approaches. Perga-
mon Press. 64–80.


