
Software Agents

Problem Set VI: MIndiGolog and PDDL

1. Discuss in your group the heuristics you used in project 1. Are any of them related to the domain
independent heuristics we have covered in class?

• What is the (optimal) delete relaxation heuristic h+? How would it be interpreted in pacman?

• What is the critical path heuristic hm? How would it be interpreted in pacman how does it change
with m?

• What is the relationship between h1 and hmax?

• What is the relationship between hmax, h+, and hadd? What about h∗?

2. Simplified blocks-world in Golog:

BC

A

Table

Figure 1: A blocks-world problem.

The robot has two actions

• PutOn(x, y) - which picks up block x and puts it on top of block y

• PutOnTable(x) - which picks up block x and puts it on the table

There are two fluents

• On(x, y, s) - block x is on block y in situation s

• OnTable(x, s) - block x is on the table in situation s

Write down: the initial conditions; the effect axioms; and the precondition axioms. Transform your
effect axioms from into successor state axioms, then implement this action theory in prolog. (homework)

3. Implement a STRIPS model of this “2-operation” blocks-world in PDDL. Use Metric-FF to test
your model http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html this solver is available on
the department machines at /home/subjects/482/local/project/ff

The example TSP of Australia from Nir’s lectures is implemented in PDDL below.

See http://www.hakank.org/pddl/ for more examples.

http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
http://www.hakank.org/pddl/


(define (domain tsp)

(:requirements :typing)

(:types node)

;; Define the facts in the problem

;; "?" denotes a variable, "-" a type

(:predicates (move ?from ?to - node)

(at ?pos - node)

(connected ?start ?end - node)

(visited ?end - node))

;; Define the action(s)

(:action move

:parameters (?start ?end - node)

:precondition (and (at ?start)

(connected ?start ?end))

:effect (and (at ?end)

(visited ?end)

(not (at ?start)))))

Figure 2: tsp-domain.pddl

(define (problem tsp-01)

(:domain tsp)

(:objects Sydney Adelade Brisbane Perth Darwin - node)

;; Define the initial situation

(:init (connected Sydney Brisbane)

(connected Brisbane Sydney)

(connected Adelade Sydney)

(connected Sydney Adelade)

(connected Adelade Perth)

(connected Perth Adelade)

(connected Adelade Darwin)

(connected Darwin Adelade)

(at Sydney))

(:goal

(and (at Sydney)

(visited Sydney)

(visited Adelade)

(visited Brisbane)

(visited Perth)

(visited Darwin))))

Figure 3: tsp-problem.pddl


