
Software Agents **Problem Set II: Heuristic Search Continued**

1. Consider the following state space S, where $s_0 = s_1$ and $S_G = \{s_7\}$

where actions changing a state s into another state s' are given by the edges. The cost to transition from state s to s' is given by the following table:

s	s'	c(s,s')	s	s'	c(s,s')
s_1	s_2	2	s_3	s_7	10
s_1	s_3	2	s_4	s_6	1
s_1	s_4	1	s_5	s_7	3
s_2	s_5	2	s_6	s_7	4

and heuristic estimates for each state:

	s	$h_1(s)$	$h_2(s)$	$h_3(s)$
s	1	4	6	6
s	\mathbf{i}_2	3	5	1
s	3	5	10	1
s	3_4	3	5	5
s	5	2	3	3
s	4 5 6 7	2	4	4
s	7	0	0	0

- Which heuristics are admissible?
- Which are consistent?
- Does any heuristic *dominate* any other?

Describe the execution of one of the following algorithms in this problem using h_1 as the heuristic. Fill in a table like the one below, showing the contents of the OPEN and CLOSED lists at the end of each iteration.

	Iteration 1	Iteration 2
Open	$n_1 = \langle s_1, 4, 0, nil \rangle$	$n_2 = \langle s_2, 5, 2, n_1 \rangle$
		$n_3 = n_4 =$
		$n_4 =$
Closed		$n_1 = \langle s_1, 4, 0, nil \rangle$

Choose one of: A*, WA* (w = 5), EHC, or Greedy Best-First Search.

- Which is the path returned as a solution?
- Is this the optimal plan? Has the algorithm proved this?
- 2. Consider an $m \times m$ manhattan grid, and a set of coordinates G to visit in any order.
 - Formulate a state-based search problem to find a tour of all the desired points (i.e. define a state space, applicable actions, transition and cost functions).
 - What is the branching factor of the search?
 - What is the size of the state space in terms of m and G.
 - Define an admissible heuristic function.