
Foundations of The Situation Calculus Reasoning about situations

Situations

Adrian Pearce

13 July 2011

includes slides by Ray Reiter & Ryan Kelly



Foundations of The Situation Calculus Reasoning about situations

Outline

Induction on Situations

Techniques for effective inductive reasoning over situations



Foundations of The Situation Calculus Reasoning about situations

Outline

1 Foundations of The Situation Calculus

2 Reasoning about situations



Foundations of The Situation Calculus Reasoning about situations

Outline

1 Foundations of The Situation Calculus

2 Reasoning about situations



Foundations of The Situation Calculus Reasoning about situations

Motivation

An analogy: The Peano axioms for number theory.

The second order language (with equality):

A single constant 0.
A unary function symbol σ (successor function).
A binary predicate symbol <.

A fragment of Peano arithmetic:

σ(x) = σ(y) ⊃ x = y ,

(∀P).{P(0) ∧ [(∀x).P(x) ⊃ P(σ(x))]} ⊃ (∀x)P(x)

¬x < 0,

x < σ(y) ≡ x ≤ y .

Here, x ≤ y is an abbreviation for x < y ∨ x = y .



Foundations of The Situation Calculus Reasoning about situations

Motivation (continued)

The second sentence (reproduced below) is a second order
induction axiom.

(∀P).{P(0) ∧ [(∀x).P(x) ⊃ P(σ(x))]} ⊃ (∀x)P(x)

It is a second order way of characterising the domain of discourse
as the smallest set such that

1 0 is in the set.

2 Whenever x is in the set, so is σ(x).

Second order Peano arithmetic is categorical (it has a unique
model).



Foundations of The Situation Calculus Reasoning about situations

Motivation (notes)

First order Peano arithmetic: Replace the second order axiom
by an induction schema representing countably infinitely many
first order sentences, one for each instance of P obtained by
replacing P by a first order formula with one free variable.

First order Peano arithmetic is not categorical; it has
(infinitely many) nonstandard models. This follows from the
Gödel incompleteness theorem, which says that first order
arithmetic is incomplete, i.e. there are sentences true of the
principal interpretation of the first order axioms (namely, the
natural numbers) which are false in some of the nonstandard
models, and hence not provable from the first order axioms.



Foundations of The Situation Calculus Reasoning about situations

Motivation (notes)

So why not use the second order axioms? Because second
order logic is incomplete, i.e. there is no “decent”
axiomatisation of second order logic which will yield all the
valid second order sentences!

So why appeal to second order logic at all? Because
semantically, but not syntactically, it characterises the natural
numbers. We’ll find the same phenomenon in semantically
characterising the situation calculus.



Foundations of The Situation Calculus Reasoning about situations

Foundational Axioms for the Situation Calculus

We use a 3-sorted language: The sorts are situation, object and
action.

There is a unique situation constant symbol, S0, denoting the
initial situation (it’s like the number 0 in Peano arithmetic).

We have a family of successor functions (unlike Peano
arithmetic which has a unique successor function).

do : action × situation→ situation.



Foundations of The Situation Calculus Reasoning about situations

Foundational Axioms (continued)

The axioms:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (1)

(∀P).P(S0) ∧ (∀a, s)[P(s) ⊃ P(do(a, s))]

⊃ (∀s)P(s) (2)

¬s < S0, (3)

s < do(a, s ′) ≡ s v s ′, (4)

where s v s ′ is an abbreviation for s < s ′ ∨ s = s ′.

Any model of these axioms will have its domain of situations
isomorphic to the smallest set S satisfying:

1 S0 ∈ S.

2 If S ∈ S, and A ∈ A, then do(A,S) ∈ S, where A is the
domain of actions in the model.



Foundations of The Situation Calculus Reasoning about situations

Foundational Axioms (notes)

Compare with the Peano axioms for the natural numbers.

Axiom (2) is a second order way of limiting the sort situation
to the smallest set containing S0, and closed under the
application of the function do to an action and a situation.

These axioms say that the tree of situations is really a tree.
No cycles, no merging. It does not say that all models of
these axioms have isomorphic trees (because they may have
different domains of actions).



Foundations of The Situation Calculus Reasoning about situations

Foundational Axioms (continued)

Situations are finite sequences of actions.

do(C , do(B, do(A,S0)))

To obtain the action history corresponding to this term,
namely the performance of action A, followed by B, followed
by C , read this list from right to left.

Therefore, when situation terms are read from right to left,
the relation s < s ′ means that situation s is a proper
subhistory of the situation s ′.

The foundation axioms are domain independent.

They will provide the basic properties of situations in any
domain specific axiomatisation of particular fluents and
actions.

Henceforth, call the 4 foundation axioms Σ.



Foundations of The Situation Calculus Reasoning about situations

Some Consequences of these Axioms

S0 6= do(a, s).

s = S0 ∨ (∃a, s ′)s = do(a, s ′). (Existence of a predecessor)

S0 v s.

s1 < s2 ⊃ s1 6= s2. (Unique names)

¬s < s. (Anti-reflexivity)

s < s ′ ⊃ ¬s ′ < s. (Anti-symmetry)

s1 < s2 ∧ s2 < s3 ⊃ s1 < s3. (Transitivity)

s v s ′ ∧ s ′ v s ⊃ s = s ′.



Foundations of The Situation Calculus Reasoning about situations

More Consequences of the Axioms

Definition

The Principle of Double Induction

(∀R).R(S0,S0) ∧
[(∀a, s).R(s, s) ⊃ R(do(a, s), do(a, s))] ∧
[(∀a, s, s ′).s v s ′ ∧ R(s, s ′) ⊃ R(s, do(a, s ′))]

⊃ (∀s, s ′).s v s ′ ⊃ R(s, s ′).



Foundations of The Situation Calculus Reasoning about situations

The Principle of Double Induction (notes)

These inductive invariants might be e.g. integrity constraints
in databases or safety properties in robotics or planning
problems.



Foundations of The Situation Calculus Reasoning about situations

Executable Situations

Definition

Executable bf situations

Action histories in which it is actually possible to perform the
actions one after the other.

s < s ′
def
=s < s ′∧

(∀a, s∗).s < do(a, s∗) v s ′ ⊃ Poss(a, s∗).

s < s ′ means that s is an initial subhistory of s ′, and all the actions
occurring between s and s ′ can be executed one after the other.

s ≤ s ′
def
=s < s ′ ∨ s = s ′, executable(s)

def
= S0 ≤ s.



Foundations of The Situation Calculus Reasoning about situations

Executable Situations (notes)

A situation is a finite sequence of actions. There are no constraints
on the actions entering into such a sequence, so that it may not be
possible to actually execute these actions one after the other.



Foundations of The Situation Calculus Reasoning about situations

Induction for executable situations

executable(do(a, s)) ≡ executable(s) ∧ Poss(a, s),

executable(s) ≡
s = S0∨(∃a, s ′).s = do(a, s ′)∧Poss(a, s ′)∧executable(s ′),

executable(s ′) ∧ s v s ′ ⊃ executable(s).

Definition

The Principle of Induction for Executable Situations

(∀P).P(S0) ∧ (∀a, s)[P(s) ∧ executable(s) ∧ Poss(a, s) ⊃
P(do(a, s))]

⊃ (∀s).executable(s) ⊃ P(s).



Foundations of The Situation Calculus Reasoning about situations

Double induction for executable situations

Definition

The Principle of Double Induction for Executable Situations

(∀R).R(S0,S0) ∧
[(∀a, s).Poss(a, s) ∧ executable(s) ∧ R(s, s) ⊃

R(do(a, s), do(a, s))] ∧
[(∀a, s, s ′).Poss(a, s ′) ∧ executable(s ′) ∧ s v s ′ ∧ R(s, s ′) ⊃

R(s, do(a, s ′))]
⊃ (∀s, s ′).executable(s ′) ∧ s v s ′ ⊃ R(s, s ′).

Frequently, we want to prove sentences (or inductive invariants) of
the form

(∀s, s ′).S0 v s ∧ s v s ′ ⊃ R(s, s ′).



Foundations of The Situation Calculus Reasoning about situations

Outline

1 Foundations of The Situation Calculus

2 Reasoning about situations



Foundations of The Situation Calculus Reasoning about situations

Why Prove Properties of World Situations?

Reasoning about systems.
(∀s).light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

This has the typical syntactic form for a proof by the simple
induction axiom of the foundational axioms.



Foundations of The Situation Calculus Reasoning about situations

Why Prove Properties (notes)?

Integrity constraints in database theory
Some background:

An integrity constraint specifies what counts as a legal
database state. A property that every database state must
satisfy.
Examples:

Salaries are functional: No one may have two different salaries
in the same database state.
No one’s salary may decrease during the evolution of the
database.

The concept of an integrity constraint is intimately connected
with that of database evolution.
No matter how the database evolves, the constraint will be
true in all database futures. =⇒
In order to make formal sense of integrity constraints, need a
prior theory of database evolution.



Foundations of The Situation Calculus Reasoning about situations

Why Prove Properties (notes)?

How do databases change?
One way is via predefined update transactions, e.g.

Change a person’s salary to $.
Register a student in a course.

Transactions provide the only mechanism for such state
changes.

We have a situation calculus based theory of database
evolution, so use it!



Foundations of The Situation Calculus Reasoning about situations

Why Prove Properties (continued)?

Integrity constraints in database theory
Represent integrity constraints, IC , as first order sentences,
universally quantified over situations.

No one may have two different grades for the same course in
any database state:

(∀s)(∀st, c , g , g ′).S0 ≤ s ∧ grade(st, c , g , s) ∧ grade(st, c , g ′, s)
⊃ g = g ′.

Salaries must never decrease:

(∀s, s ′)(∀p, $, $′).S0 ≤ s ∧ s ≤ s ′ ∧ sal(p, $, s) ∧ sal(p, $′, s ′)
⊃ $ ≤ $′.

Constraint satisfaction defined: A database satisfies an integrity
constraint IC iff

Database |= IC .



Foundations of The Situation Calculus Reasoning about situations

Planning

The standard logical account of planning views this as a
theorem proving task.

To obtain a plan whose execution will lead to a world
situation s in which the goal G (s) will be true, establish that

Axioms |= (∃s).executable(s) ∧ G (s).

Sometimes we would like to establish that no plan could
possibly lead to a given world situation. This is the problem of
establishing that

Axioms |= (∀s).executable(s) ⊃ ¬G (s),

i.e. that in all possible future world situations, G will be false.



Foundations of The Situation Calculus Reasoning about situations

Programming

Model checking for executions of program relative to
(potentially non-deterministic) domain.

Synthesis of programs and orchestration.

High-level programming, including Golog, ConGolog,
IndiGolog, MIndiGolog



Foundations of The Situation Calculus Reasoning about situations

Proving Invariants in Programs & Plans

Goal Impossibility: Given a goal G , establish that there is no
legal situation in which that goal is achieved:

D |= ∀s : S0 ≤Legal s → ¬G (s)

Goal Futility: Given a goal G and situation σ, establish that the
goal cannot be achieved in any legal future of σ:

D |= ∀s : σ ≤Legal s → ¬G (s)

Checking State Constraints: Given a state constraint SC , show
that the constraint holds in every legal situation:

D |= ∀s : S0 ≤Legal s → SC (s)

This can be seen as a variant of goal impossibility, by showing that
the constraint can never be violated.



Foundations of The Situation Calculus Reasoning about situations

Proving Invariants in Programs & Plans (Continued)

Note that we define a relation <α for each action description
predicate α, with the following definitions:

¬ (s <α S0)

s <α do(a, s ′) ≡ s ≤α s ′ ∧ α(a, s ′)

For example, by stating that s <Poss s ′ we assert that not only is s ′

in the future of s, but that all actions performed between s and s ′

were actually possible;



Foundations of The Situation Calculus Reasoning about situations

Why Prove Properties of World Situations? (notes)

Note how futility differs from goal impossibility: while the agent
may have initially been able to achieve its goal, the actions that
have subsequently been performed have rendered the goal
unachievable. Agents would be well advised to avoid such
situations.



Foundations of The Situation Calculus Reasoning about situations

Summary (so far)

Both dynamically changing worlds and databases evolving under
update transactions may be represented in the situation calculus.

In general, we assume given some situation calculus
axiomatisation, with a distinguished initial situation S0.

Objective is to prove properties true of all situations in the
future of S0.

Examples:

(∀s).light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

(∀s, s ′, p, $, $′).executable(s ′) ∧ s v s ′ ∧ sal(p, $, s)∧
sal(p, $′, s ′) ⊃ $ ≤ $′.

These are sentences universally quantified over situations.
Normally, such sentences requires induction!



Foundations of The Situation Calculus Reasoning about situations

Proving Properties of Situations: An Example

(∀s).light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

Assume this is true of the initial situation:

light(S0) ≡ [open(Sw1,S0) ≡ open(Sw2,S0)].

Successor state axioms for open, light:

open(sw , do(a, s)) ≡ ¬open(sw , s) ∧ a = toggle(sw) ∨
open(sw , s) ∧ a 6= toggle(sw).

light(do(a, s)) ≡
¬light(s) ∧ [a = toggle(Sw1) ∨ a = toggle(Sw2)] ∨
light(s) ∧ a 6= toggle(Sw1) ∧ a 6= toggle(Sw2).

Simple induction principle:

P(S0) ∧ [(∀a, s).P(s) ⊃ P(do(a, s))] ⊃ (∀s).P(s).

So, take P(s) to be:
light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

QED



Foundations of The Situation Calculus Reasoning about situations

Proving Properties of Situations: Another Example

Salaries must never decrease:
(∀s, s ′, p, $, $′).executable(s ′) ∧ s v s ′

∧sal(p, $, s) ∧ sal(p, $′, s ′) ⊃ $ ≤ $′.

To change a person’s salary, the new salary must be greater
than the old:

Poss(change-sal(p, $), s) ≡ (∃$′).sal(p, $′, s) ∧ $′ < $.

Successor state axiom for sal:

sal(p, $, do(a, s)) ≡ a = changeSal(p, $) ∨
sal(p, $, s) ∧ (∀$′)a 6= changeSal(p, $′).

Initially, the relation sal is functional in its second argument:

sal(p, $,S0) ∧ sal(p, $′,S0) ⊃ $ = $′.

Unique names axiom for change-sal:

change-sal(p, $) = change-sal(p′, $′) ⊃ p = p′ ∧ $ = $′.



Foundations of The Situation Calculus Reasoning about situations

Proving Properties of Situations: Another Example

Double induction principle:

(∀R).R(S0, S0) ∧
[(∀a, s).Poss(a, s) ∧ executable(s) ∧ R(s, s) ⊃
R(do(a, s), do(a, s))] ∧
[(∀a, s, s ′).Poss(a, s ′) ∧ executable(s ′) ∧ s v s ′ ∧ R(s, s ′) ⊃
R(s, do(a, s ′))]

⊃ (∀s, s ′).executable(s ′) ∧ s v s ′ ⊃ R(s, s ′).

The sentence to be proved is logically equivalent to:

(∀s, s ′).executable(s ′) ∧ s v s ′ ⊃
(∀p, $, $′).sal(p, $, s) ∧ sal(p, $′, s ′) ⊃ $ ≤ $′.

So, take R(s, s ′) to be:

(∀p, $, $′).sal(p, $, s) ∧ sal(p, $′, s ′) ⊃ $ ≤ $′.

QED



Foundations of The Situation Calculus Reasoning about situations

References

Ray Reiter. Knowledge in Action: Logical Foundations for
Specifying and implementing Dynamical Systems, The MIT
Press, 2001

Ray Reiter. The frame problem in situation the calculus: a
simple solution (sometimes) and a completeness result for
goal regression. In Vladimir Lifschitz, editor, Artificial
intelligence and mathematical theory of computation: papers
in honor of John McCarthy, pages 359-380. Academic Press
Professional, Inc., 1991.

Fiora Pirri and Ray Reiter. Some contributions to the
metatheory of the situation calculus. Journal of the ACM,
46(3):325-361, 1999.

Ray Reiter. Proving Properties of States in the Situation
Calculus. Artificial Intelligence, 64:337-351, 1993.



Foundations of The Situation Calculus Reasoning about situations

References (continued)

Ryan Kelly. ”Asynchronous Multi-Agent Reasoning in the
Situation Calculus”, PhD Thesis, The University of
Melbourne, 2009



Foundations of The Situation Calculus Reasoning about situations

Summary

1 Foundations of The Situation Calculus

2 Reasoning about situations


	Foundations of The Situation Calculus
	Reasoning about situations

