
Chapter 2
Background

This chapter covers general background material for the thesis and provides a brief
overview of the related literature. We defer more specific technical details and
discussion of related work to the individual chapters that follow, where it can be
presented in the appropriate context.

Readers familiar with the situation calculus are encouraged to briefly review this
chapter. While it does not present any new results, it does introduce some novel
notation and definitions which will be needed later in the thesis. They are introduced
here to maintain consistency of the presentation. The introductory material on the
Mozart programming platform may also be helpful.

We begin by introducing the base language of the situation calculus in Sec-
tion 2.1, illustrated using examples from the “cooking agents” domain. Section 2.2
introduces the Golog family of programming languages, which are the standard for-
malism for representing complex tasks in the situation calculus. Reasoning about
the knowledge of an agent, or epistemic reasoning, is covered in Section 2.3. Related
formalisms for reasoning about action and change are briefly discussed in Section
2.4. Finally, Section 2.5 introduces the Mozart programming system, which will be
used to implement our multi-agent Golog variant. Basic familiarity with formal logic
is assumed throughout; readers requiring background on such material may find a
gentle introduction in [43] and a more detailed treatment in [31].

2.1 The Situation Calculus

The situation calculus is a powerful formalism for describing and reasoning about
dynamic worlds. It was first introduced by McCarthy and Hayes [70] and has since
been significantly expanded and formalised [85, 92]. We use the particular variant

9

CHAPTER 2. BACKGROUND

due to Reiter et. al. at the University of Toronto, sometimes called the “Toronto
school” or “situations-as-histories” version. The formalisation below is based on
the standard definitions from [59, 85, 91], but has been slightly generalised to ac-
commodate several existing extensions to the situation calculus, as well as our own
forthcoming extensions, in a uniform manner.

Readers familiar with the situation calculus should therefore note some modified
notation: the unique names axioms Duna are incorporated into a general background
theory Dbg; the Poss fluent is subsumed by a general class of action description
predicates defined in Dad; we parameterise the “future situations” predicate s @ s′

to assert that all intermediate actions satisfy a given predicate using s <α s′; and we
use the single-step variant of the regression operator, with corresponding definitions
of regressable formulae.

2.1.1 Notation

The language Lsitcalc of the situation calculus is a many-sorted language of first-order
logic with equality, augmented with a second-order induction axiom, containing the
following disjoint sorts:

• Action terms are functions denoting individual instantaneous events that can
cause the state of the world to change;

• Situation terms are histories of the actions that have occurred in the world,
with the initial situation represented by S0 and successive situations built using
the function do : Action× Situation→ Situation;

• Object terms represent any other object in the domain.

Fluents are predicates or functions that represent properties of the world that may
change between situations, and so take a situation term as their final argument.
Predicates and functions that do not take a situation term are called rigid. We use
the term primitive fluent to describe fluents that are directly affected by actions,
rather than being defined in terms of other fluents. No functions other than S0 and
do produce values of sort Situation.

For concreteness, let us present some formulae from an example domain that will
be used throughout the thesis. In the “cooking agents” domain a group of robotic
chefs inhabit a kitchen containing various ingredients and utensils, and they must
cooperate to prepare a meal. Some example statements from this domain include
“Joe does not have the knife initially”, “Jim has the knife after he acquires it” and

10

2.1. THE SITUATION CALCULUS

“It is only possible to acquire an object if nobody else has it”. Formally:

¬HasObject(Joe,Knife1, S0)

HasObject(Jim,Knife1, do(acquire(Jim,Knife1), S0))

Poss(acquire(agt, obj), s) ≡ ¬∃agt2 : HasObject(agt2, obj, s)

Here HasObject is a primitive fluent, while Poss is defined in terms of it.

Lsitcalc contains the standard alphabet of logical connectives, constants > and
⊥, countably infinitely many variables of each sort, countably infinitely many pred-
icates of each arity, etc; for a complete definition, consult the foundational paper
by Pirri and Reiter [85]. We follow standard naming conventions for the situation
calculus: upper-case roman names indicate constants; lower-case roman names in-
dicate variables; greek characters indicate meta-variables or formula templates. All
axioms universally close over their free variables at outermost scope. The notation
t̄ indicates a vector of terms of context-appropriate arity and type. The connectives
∧, ¬, ∃ are taken as primitive, with ∨, →, ≡, ∀ defined in the usual manner.

In multi-agent domains it is customary to introduce a distinct sort Agent to
explicitly represent the agents operating in the world, and we will do so here. As
seen in the example formulae above, the first argument of each action term gives the
performing agent, which can be accessed by the function actor(a).

Complex properties of the state of the world are represented using uniform for-
mulae. These are basically logical combinations of fluents referring to a common
situation term.

Definition 1 (Uniform Terms). Let σ be a fixed situation term, r an arbitrary
rigid function symbol, f an arbitrary fluent function symbol, and x a variable that
is not of sort Situation. Then the terms uniform in σ are the smallest set of
syntactically-valid terms satisfying:

τ ::= x | r(τ̄) | f(τ̄ , σ)

Definition 2 (Uniform Formulae). Let σ be a fixed situation term, R an arbitrary
rigid predicate, F an arbitrary primitive fluent predicate, τ an arbitrary term uni-
form in σ, and x an arbitrary variable that is not of sort Situation. Then the
formulae uniform in σ are the smallest set of syntactically-valid formulae satisfying:

φ ::= F (τ̄ , σ) |R(τ̄) | τ1 = τ2 |φ1 ∧ φ2 | ¬φ | ∃x : φ

11

CHAPTER 2. BACKGROUND

We will call a formula uniform if it is uniform in some situation. The important
aspect of this definition is that the formula refers to no situation other than σ, which
appears as the final argument of all fluents in the formula. In particular, uniform
formulae cannot quantify over situations or compare situation terms, and cannot
contain non-primitive fluents.

The meta-variable φ is used throughout to refer to an arbitrary uniform formula.
Since they represent some aspect of the state of the world, it is frequently useful
to evaluate uniform formulae at several different situation terms. The notation
φ[s′] represents a uniform formula with the particular situation s′ inserted into all
its fluents. We may also completely suppress the situation term to simplify the
presentation, using φ−1 to represent a uniform formula with the situation argument
removed from all its fluents. For example, given:

φ = HasObject(Jim,Knife1, s) ∧HasObject(Joe,Bowl2, s)

Then we have:

φ[s′] = HasObject(Jim,Knife1, s′) ∧HasObject(Joe,Bowl2, s′)

φ−1 = HasObject(Jim,Knife1) ∧HasObject(Joe,Bowl2)

Note that these are strictly meta-level operations, corresponding to possibly quite
complex sentences from the underlying logic. They are not terms or operators from
the logic itself.

2.1.2 Axioms

The dynamics of a particular domain are captured by a set of sentences from Lsitcalc
called a basic action theory. Queries about the behaviour of the world are posed as
logical entailment queries relative to this theory.

Definition 3 (Basic Action Theory). A basic action theory, denoted D, is a set of
situation calculus sentences (of the specific syntactic form outlined below) describing
a particular dynamic world. It consists of the following disjoint sets: the founda-
tional axioms of the situation calculus (Σ); action description axioms defining pre-
conditions etc for each action (Dad); successor state axioms describing how primitive
fluents change between situations (Dssa); axioms describing the value of primitive
fluents in the initial situation (DS0); and axioms describing the static background
facts of the domain (Dbg):

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg

12

2.1. THE SITUATION CALCULUS

These axioms must satisfy some simple consistency criteria to constitute a valid
domain description; see [85] for the details. This definition is slightly broader than
the standard definitions found in the literature [59, 85, 91] and is designed to ac-
commodate a variety of extensions to the situation calculus in a uniform manner.

We assume an arbitrary, but fixed, basic action theory D.

Background Axioms

The set Dbg characterises the static aspects of the domain, and contains all axioms
defining rigid predicates or functions. In particular, it must contain a set of unique
names axioms asserting that action terms with different types or arguments are in
fact different, e.g.:

acquire(agt, obj) 6= release(agt, obj)

acquire(agt1, obj1) = acquire(agt2, obj2) → agt1 = agt2 ∧ obj1 = obj2

It also contains domain closure axioms for the sorts Action, Agent and Ob-

ject, and defines the function actor(a) to give the agent performing an action.
The background axioms are a generalisation of the set Duna commonly found in the
literature, which contains only the unique names axioms.

Successor State Axioms

The set Dssa contains one successor state axiom for each primitive fluent in the
domain. These axioms provide an elegant monotonic solution to the frame problem
for that fluent [92] which has been instrumental to the popularity and utility of the
situation calculus. They have the following general form:

F (x̄, do(a, s)) ≡ ΦF (x̄, a, s)

Here ΦF is uniform in s. While we will make no assumptions about the internal
structure of ΦF , it typically takes the form shown below, which may help elucidate
the purpose of these axioms:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a, s) ∨ F (x̄, s) ∧ ¬Φ−F (x̄, a, s)

Here Φ+
F and Φ−F are formulae uniform in s, representing the positive and negative

effect axioms for that fluent. This may be read as “F is true after performing a if a
made it true, or it was previously true and a did not make it false”. For example,

13

CHAPTER 2. BACKGROUND

the dynamics of the HasObject fluent may be specified using:

HasObject(agt, obj, do(a, s)) ≡ a = acquire(agt, obj)

∨ HasObject(agt, obj, s) ∧ a 6= release(agt, obj)

For functional fluents, Dssa contains a similar axiom to specify the value v of the
fluent after an action has occurred:

f(x̄, do(a, s)) = v ≡ Φf (v, x̄, a, s)

Action Description Predicates

The set Dad generalises the standard action precondition axioms [85] to define fluents
that describe various aspects of the performance of an action, which we call action
description predicates. These are the only non-primitive fluents permitted in a basic
action theory. The predicate Poss(a, s) is the canonical example, indicating whether
it is possible to perform an action in a given situation. The set Dad contains a single
axiom of the following form, defining the complete set of preconditions for the action
variable a, where ΠPoss is a formula uniform in s:

Poss(a, s) ≡ ΠPoss(a, s)

Note that this is a slight departure from the standard approach of [85], in which
the preconditions for each action type are enumerated individually. The more re-
strictive approach presented here embodies a domain-closure assumption on the
Action sort. If there are finitely many action types then ΠPoss is simply the com-
pletion of the precondition axioms for each action type. The single-axiom form is
necessary when quantifying over “all possible actions” and has been widely used in
the literature [96, 124].

In principle, any number of predicates and functions can be defined in this way;
a common example is the sensing-result function SR(a, s) which we will describe in
Chapter 4. The general notion of an action description predicate allows us to treat
all of them in a uniform manner. We will use the meta-variable α to represent an
arbitrary action description predicate, and allow the action and situation arguments
to be suppressed in a similar way to situation-suppressed uniform formulae.

In preparation for the coming material on extensions to the situation calculus in
Section 2.1.4, let us introduce an action description predicate Legal that identifies
actions that can be legally executed in the real world. In the basic situation calculus,

14

2.1. THE SITUATION CALCULUS

it is simply equivalent to Poss:

Legal(a, s) ≡ Poss(a, s)

As shown by the above, it is often useful to define new action description predi-
cates in terms of simpler existing ones, rather than directly in terms of the primitive
fluents of the domain. As long as these definitions are well-founded they can be
expanded down to primitive fluents when constructing the basic action theory.

Foundational Axioms

The foundational axioms Σ ensure that situations form a branching-time account
of the world state. There is a distinguished situation S0 called the initial situation.
Situations in general form a tree structure with the initial situation at the root and
do(a, s) constructing the successor situation resulting when the action a is performed
in situation s. All situations thus produced are distinct:

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

We abbreviate the performance of several successive actions by writing:

do([a1, . . . , an], s) def= do(an, do(. . . , do(a1, s)))

There is also a second-order induction axiom asserting that all situations must
be constructed in this way, which is needed to prove statements that universally
quantify over situations [89]:

∀P : [P (S0) ∧ ∀s, a : (P (s)→ P (do(a, s)))] → ∀s : P (s)

The relation s @ s′ indicates that s′ is in the future of s and is defined as follows:

¬(s @ S0)

s @ do(a, s′) ≡ s v s′

Here s v s′ is the standard abbreviation for s @ s′ ∨ s = s′. This notion of “in
the future of” can be extended to consider only those futures in which all actions
satisfy a particular action description predicate. We define as a macro the relation
<α for an arbitrary action description predicate α, with the following definition:

s <α s
′ def= s @ s′ ∧ ∀a, s′′ :

(
s @ do(a, s′′) v s′ → α[a, s′′]

)
15

CHAPTER 2. BACKGROUND

It is straightforward to demonstrate that this macro satisfies the following prop-
erties, which are analogous to the definition of @:

¬ (s <α S0)

s <α do(a, s′) ≡ s ≤α s′ ∧ α[a, s′]

The legal situations are those in which every action was legal to perform in the
preceding situation. These are of fundamental importance, as they are the only
situations that could be reached in the real world:

Legal(s) def= S0 ≤Legal s

Initial State Axioms

The set DS0 describes the actual state of the world before any actions are performed.
It is a collection of sentences uniform in S0 stating what holds in the initial situation.
In many domains the initial state can be completely specified, so DS0 is often in a
closed form suitable for efficient automated reasoning.

Note that, unlike [59, 85, 91], we include static facts about the domain in Dbg
rather than DS0 . This is entirely a cosmetic change to allow us to talk about these
static facts separately from the initial database.

2.1.3 Reasoning

An important feature of the situation calculus is the existence of effective reasoning
procedures for certain types of query. These are generally based on syntactic ma-
nipulation of a query into a form that is more amenable to reasoning, for example
because it can be proven without using some of the axioms from D.

Types of Reasoning

In the general case, answering a query about a basic action theory D is a theorem-
proving task in second-order logic (denoted SOL) due to the induction axiom in-
cluded in the foundational axioms:

D |=SOL ψ

This is clearly problematic for effective automated reasoning, but fortunately there
exist particular syntactic forms for which some of the axioms in D are not required.

16

2.1. THE SITUATION CALCULUS

If a query only performs existential quantification over situation terms, it can be
answered without the induction axiom (denoted I) and thus using only first-order
logic (FOL) [85]:

D |=SOL ∃s : ψ(s) iff D − {I} |=FOL ∃s : ψ(s)

While this is a substantial improvement over requiring a second-order theorem
prover, it is still far from an effective technique. Effective reasoning requires that
the set of axioms be reduced as much as possible.

In their work on state constraints, Lin and Reiter [66] show how to reduce the task
of verifying a state constraint to a reasoning task we call static domain reasoning,
where only the background axioms need to be considered:

Dbg |=FOL ∀s : φ[s]

Since the axioms in Dbg do not mention situation terms, the leading quantifica-
tion in such queries has no effect – φ will be entailed for all s if and only if it is
entailed for some s. This is a major improvement because universal quantification
over situation terms usually requires the second-order induction axiom. Their work
has shown that this requirement can be circumvented in some cases.

Simpler still are queries uniform in the initial situation, which can be answered
using only first-order logic and a limited set of axioms:

D |=SOL φ[S0] iff DS0 ∪ Dbg |=FOL φ[S0]

We call such reasoning initial situation reasoning. Since the axioms DS0 ∪ Dbg
often satisfy the closed-world assumption, provers such as Prolog can be employed
to handle this type of query quite effectively.

Regression

The principle tool for effective reasoning in the situation calculus is the regression
meta-operator RD, a syntactic manipulation that encodes the preconditions and
effects of actions into the query itself, meaning fewer axioms are needed for the final
reasoning task [85]. The idea is to reduce a query about some future situation to a
query about the initial situation only.

There are two styles of regression operator commonly defined in the literature:
the single-pass operator as defined in [85] which reduces to S0 in a single application,
the the single-step operator as defined in [98] which operates one action at a time.

17

CHAPTER 2. BACKGROUND

We use the single-step variant because it is the more expressive of the two – while
it is straightforward to define the single-pass operator in terms of the single-step
operator, the reverse is not the case.

Regression is only defined for a certain class of formulae, the regressable formulae.

Definition 4 (Regressable Terms). Let σ be an arbitrary situation term, x an arbi-
trary variable not of sort situation, r an arbitrary rigid function and f an arbitrary
fluent function. Then the regressable terms are the smallest set of syntactically-valid
terms satisfying:

ν ::= σ |x | f(ν̄, σ) | r(ν̄)

Definition 5 (Regressable Formulae). Let σ be an arbitrary situation term, x an
arbitrary variable not of sort situation, ν an arbitrary regressable term, R an arbi-
trary rigid predicate, F an arbitrary primitive fluent predicate, and α an arbitrary
action description predicate. Then the regressable formulae are the smallest set of
syntactically-valid formulae satisfying:

ϕ ::= F (ν̄, σ) |α(ν̄, a, σ) |R(ν̄) | ν1 = ν2 | ¬ϕ |ϕ1 ∧ ϕ2 | ∃x : ϕ

Regressable formulae are more general than uniform formulae. In particular,
they can contain action description predicates and may mention different situation
terms. They cannot, however, quantify over situation terms or compare situations
using the @ predicate.

The regression operator is then defined using a series of regression rules such as
those shown below, which mirror the structural definition of regressable formulae.

Definition 6 (Regression Operator). Let R be a rigid predicate, α be an action
description predicate with axiom α(ν̄, a, s) ≡ Πα(a, s) in Dad, and F be a primitive
fluent with axiom F (x̄, s) ≡ ΦF (x̄, s) in Dssa. Then the regression of φ, denoted
RD(φ), is defined according to the following structural rules:

RD(ϕ1 ∧ ϕ2) def= RD(ϕ1) ∧RD(ϕ2)

RD(∃x : ϕ) def= ∃x : RD(ϕ)

RD(¬ϕ) def= ¬RD(ϕ)

RD(α(ν̄, a, σ)) def= RD(Πα(ν̄, a, σ))

RD(F (ν̄, do(a, σ))) def= ΦF (ν̄, a, σ)

RD(F (ν̄, s)) def= ΦF (ν̄, a, s)

RD(F (ν̄, S0)) def= ΦF (ν̄, a, S0)

18

2.1. THE SITUATION CALCULUS

We have omitted some technical details here, such as the handling of functional
fluents; consult [85] for the details. The key point is that each application of the
regression operator replaces action description predicates with their definitions from
Dad and primitive fluents with their successor state axioms from Dssa, “unwinding”
a single action from each do(a, σ) situation term in the query. If the situation term
is not constructed using do, it is left unchanged.

Since D is fixed, we will henceforth drop the subscript and simply write R for
the regression operator. When dealing with situation-suppressed uniform formulae,
we will use a two-argument operator R(φ, a) to indicate the regression of φ over the
action a. It should be read as a shorthand for R(φ[do(a, s)])−1 using the situation-
suppression operator from Section 2.1.1.

Let us briefly state some important properties of the regression operator. First,
and most importantly, it preserves equivalence of formulae:

Proposition 1. Let ϕ be a regressable formula, then D |= ϕ ≡ R(ϕ)

Any formula uniform in do(a, s) is regressable, and the result is uniform in s:

Proposition 2. Let φ be uniform in do(a, s), then R(φ) is uniform in s

Let R∗ denote repeated applications of R until the formula remains unchanged.
Such applications can transform a query about some future situation into a query
about the initial situation only:

Proposition 3. Let φ be uniform in do([a1 . . . an], S0), then R∗(φ) is uniform in S0

This last property is key to effective reasoning in the situation calculus, as it
allows one to answer the projection problem. To determine whether φ holds in a
given future situation, it suffices to determine whether R∗(φ) holds in the initial
situation. As discussed above, queries uniform in S0 are much easier to answer. The
axioms Dad and Dssa are essentially “compiled into the query” by the R∗ operator.
While an efficiency gain is not guaranteed, regression has proven a very effective
technique in practice [62, 85].

Decidability

Even given the use of regression to reduce the number of axioms required, reasoning
still requires first-order logic and is thus only semi-decidable in general. Practical
systems implemented on top of the situation calculus typically enforce additional
restrictions on the domain in order to gain decidability.

A common restriction is to assume that the Action and Object domains are
finite. This allows quantification over these variables to be replaced with finite

19

CHAPTER 2. BACKGROUND

conjunctions or disjunctions, essentially “propositionalising” the domain [13, 20, 91].
Both static domain and initial situation reasoning can then be performed using
propositional logic, which is decidable. This may also be combined with special-
purpose decision procedures for particular objects in the domain, such as deciding
linear constraints over the integers or reals [91, 93].

A similar, but slightly less onerous restriction, is to ensure that the construction
of function terms is well-founded [13]. This prevents building the arbitrarily-nested
terms from the Herbrand universe that cause non-termination in first-order theorem
provers, again gaining decidability.

Recent work by Gu and Soutchanski [38] has shown how to model some situation
calculus domains using to the two-variable fragment of first-order logic. Since this
fragment is decidable in general, both static domain and initial situation reasoning
are decidable in such domains.

Inductive Reasoning

One class of query that cannot be answered effectively using regression are formulae
that universally quantify over situations. Examples of such queries include verifying
state constraints (“for all situations, the constraint is satisfied”) and determining the
impossibility of a goal (“for all situations, the goal is not satisfied”). The difficulty
here comes from the induction axiom.

Reiter [89] has shown why the induction axiom is necessary to prove statements
that universally quantify over situation terms. This work demonstrates the use of
the axiom in manual proofs, but offers no procedure for answering such queries au-
tomatically. Other work considering inductive reasoning has focused exclusively on
verifying state constraints [11, 66]. While it is possible to automate this verification
in some cases, there are currently no general-purpose tools for effectively handling
queries that universally quantify over situation terms.

It is this limitation, more than any other, that has restricted the situation cal-
culus to synchronous domains. In asynchronous domains agents must account for
potentially arbitrarily-long sequences of hidden actions, which requires universal
quantification over situation terms. In Chapter 6 we develop a new reasoning tech-
nique to help overcome this limitation.

Progression

While regression has proven quite an effective technique in practice, it has an obvious
shortcoming in domains with long histories – the computation required to reason
about the current state of the world increases with each action performed.

20

2.1. THE SITUATION CALCULUS

An alternative approach is progression, in which the initial state of the world
DS0 is updated with each action performed, to give a new set of axioms describing
the state of the current situation. Although this increases the upfront complexity
when an action is performed, this work is amortised over many queries about the
updated state. Thielscher [114] makes a compelling case that progression gives better
runtime performance in domains with many actions. Why, then, do we focus only
on regression in this thesis?

The theoretical foundations of progression in the situation calculus were laid out
by Lin and Reiter [67] and come with an important caveat: the progression of a
first-order database is not always first-order definable. This conjecture was recently
proven by Vassos and Levesque [124], who show that while it is possible to define
first-order progressions of a database that are valid for restricted classes of query,
a first-order progressed database cannot be complete in general. As such, work on
progression in the situation calculus has focused on restricted queries or restricted
databases for which first-order progressions exist [68, 123, 125]. By contrast, the
regression operator is sound and complete for answering a broad range of queries.

In this thesis, we develop formalisms and reasoning techniques for problems
which have not been approached before in the situation calculus. Our first priority
must be a sound and complete reasoning tool, for which regression is a good match.
Advanced techniques such a progression are considered future work at this stage.

2.1.4 Extensions

The base language of the situation calculus may seem simplistic, lacking many fea-
tures that would be desirable for modelling rich multi-agent domains. However, it is
possible to significantly enrich the domain features that can be modelled while main-
taining the elegance and simplicity of the base situation calculus. We now discuss
several such extensions that are important in multi-agent domains.

Concurrent Actions

In the basic situation calculus only a single action can occur at any instant. While
suitable for most single-agent domains, this limitation is emphatically not suitable
for multi-agent systems – several actions can easily occur simultaneously if performed
by different agents. Modelling this true concurrency is necessary to avoid problems
with conflicting or incompatible actions. There is also the potential to utilise con-
currency to execute tasks more efficiently. Clearly a solid account of concurrency is
required for reasoning about multi-agent teams.

The work of [65, 83, 93] adds true concurrency to the situation calculus by

21

CHAPTER 2. BACKGROUND

replacing action terms with sets of actions that are performed simultaneously. The
additional sort Concurrent is added to Lsitcalc, and the appropriate axioms for set
theory are added to Dbg. All functions and predicates that take an Action term are
are modified to take a Concurrent term instead. For example, do(a, s) becomes
do({a1, a2, ...}, s). Successor state axioms are modified to test for set membership
rather than equality of action terms. For example, the successor state axiom for
HasObject would become:

HasObject(agt, obj, do(c, s)) ≡ acquire(agt, obj) ∈ c

∨ HasObject(agt, obj, s) ∧ release(agt, obj) 6∈ c

Since it operates solely by replacing formulae with their equivalents, the regres-
sion operator is unchanged by this extension and effective reasoning is still possible.

There is, however, a subtle complication in axiomatising action description pred-
icates such as Poss: interaction between primitive actions. A combination of actions
is not guaranteed to be possible even if each of the individual actions are. For ex-
ample, two agents may not be able to acquire the same resource at the same time.
This is known as the precondition interaction problem and has undergone extensive
research [79, 80, 83]. We make no explicit commitment towards a solution for this
problem. Rather, we assume that the axioms in Dad contain the necessary logic to
account for interaction for all action description predicates.

To avoid unintuitive behaviour, we assume that the domain entails the following
consistency requirements for the empty set of actions:

Definition 7 (Empty Action Consistency). A basic action theory D using concur-
rent actions must entail the following consistency requirements for the empty set of
actions:

D |= ∀s : ¬Legal({}, s)

D |= ∀s : φ[do({}, s)] ≡ φ[s]

Since true concurrency is such an important aspect of multi-agent systems, we
will assume concurrent actions are in use throughout the rest of the thesis.

Time

An explicit notion of time can make coordination between agents easier, as joint
actions may be performed at a particular time. It also allows a richer description of
the world, particularly in domains such as the cooking agents where time can play

22

2.1. THE SITUATION CALCULUS

an important part in tasks to be performed.

The standard approach to time in the situation calculus is that of [82, 83, 93]. An
additional sort Timepoint is introduced, which can be any appropriately-behaved
sequence such as integers or reals. The axiomatisation of timepoints is added to
Dbg, and each action gains an extra argument indicating the time at which is was
performed. The functions time and start are introduced to give the performance
time of an action and the start time of a situation respectively. The start time of
the initial situation may be defined arbitrarily, but is typically taken to be zero.

However, this approach does not integrate cleanly with concurrent actions: it
requires an additional predicate Coherent to ensure that the performance time is
the same for all members in a set of concurrent actions [93]. The legal situations
must be restricted to those in which all actions are coherent.

To avoid this extra complexity, we follow the approach taken in the related
formalism of the fluent calculus [69] and attach the temporal component to the set
of concurrent actions itself, rather than to each individual action. A similar approach
is used in [97] to avoid problems when combining knowledge and time.

Predicates and functions taking terms of sort Action are modified to take Con-

current#Timepoint pairs, e.g. do(c, s) becomes do(c#t, s). The new function
start is added to the foundational axioms with the following definition:

start(do(c#t, s)) = t

We must ensure that successor situations have later start times than their pre-
ceding situations, by modifying the definition of Legal:

Legal(c#t, s) ≡ Poss(c#t, s) ∧ start(s) < t

Introducing timepoints does not affect the regression operator, but does increase
the complexity of reasoning as Dbg now contains the axioms of number theory.
In practice, we limit predicates about time to express only linear relationships,
and employ a linear constraint solver for decidable reasoning over the temporal
component.

Natural Actions

Natural actions are a special class of exogenous actions, those actions which occur
outside of an agent’s control [93]. They are classified according to the following
requirement: natural actions must occur if it is possible for them to occur, unless
an earlier action prevents them. For example, a timer will ring at the time it was

23

CHAPTER 2. BACKGROUND

set for, unless it is switched off. Such actions are used to model the predictable
behaviour of the environment.

Natural actions are identified by the truth of the predicate Natural(a). The
times at which natural actions may occur are specified by the Poss predicate. For
example, suppose that the fluent TimerSet(m, s) represents the fact that a timer is
set to ring in m minutes in situation s. The possibility predicate would entail:

Poss(ringT imer#t, s) ≡ ∃m : [TimerSet(m, s) ∧ t = start(s) +m]

The timer may thus ring only at its predicted time. To enforce the requirement
that natural actions must occur whenever possible, the action description predicate
Legal(c#t, s) is adjusted to ensure that c#t is not legal if natural actions could
occur at some earlier time:

Legal(c#t, s) ≡ Poss(c#t, s)

∧ ∀a, t′ :
[
Natural(a) ∧ Poss({a}#t′, s) →

(
a ∈ c ∨ t < t′

)]
Thus it is only legal to perform actions c at time t if no natural actions can occur
in s at a time less than t.

Following this intuition, the least natural time point (or “LNTP”) of a situation
is defined as the earliest time at which a natural action may occur [91]. Rather than
adding another axiom, this can be defined using a simple macro:

LNTP(s, t) def= ∃a : [Natural(a) ∧ Poss({a}#t, s)]∧

∀a′, t′ :
[
Natural(a′) ∧ Poss({a′}#t, s)→ t ≤ t′

]
We assume that the theory of action avoids certain pathological cases identified

in [91], so that absence of an LNTP implies that no natural actions are possible.
That is to say, we assume the following is a consequence of the basic action theory:

D |= [∃a, t : Natural(a) ∧ Poss({a}#t, s)]→ [∃t : LNTP(s, t)]

The LNTP is important when planning in the presence of natural actions – one
cannot plan to perform some actions at time t if t is greater than the least natural
timepoint of the current situation. We also define a related concept, the set of
pending natural actions, as the set of all natural actions that are possible at the
least natural time point:

PNA(s, c) def= ∃t : LNTP(s, t) ∧ ∀a : [Natural(a) ∧ Poss({a}#t, s) ≡ a ∈ c]

24

2.2. GOLOG

Long-Running Tasks

Although all actions in the situation calculus are instantaneous, it is still possible
to model long-running tasks that have a finite duration. They are modelled by
decomposing them into instantaneous beginTask and endTask actions, and a fluent
DoingTask indicating that a task is in progress [83].

In the presence of long-running tasks, a robust account of natural actions is
very important – endTask must be a natural action to ensure that any task that is
initiated eventually terminates at the appropriate time.

Summary

As can be seen from the discussion above, it is possible to enrich the situation
calculus with some very powerful domain features while still maintaining the basic
structure of the language, and retaining regression as the principle tool for effective
automated reasoning.

While we assume concurrent actions are in use through the rest of this thesis, we
shall only refer explicitly to other rich domain features – such as time and natural
actions – when we wish to make a special point about their treatment. By uni-
formly using the predicate Legal to identify actions that can legally be performed
in the world, rather than the base Poss predicate, we ensure that our techniques
are applicable regardless of the particular domain features being used.

2.2 Golog

Golog is a declarative agent programming language that is the standard approach
to specifying complex behaviours in the situation calculus [62]. Testimony to its
success are its wide range of applications and many extensions to provide additional
functionality [17, 21, 27]. For simplicity, we use the general name “Golog” to refer
to the standard family of languages based on this technique, including ConGolog
[21] and IndiGolog [17].

2.2.1 Notation

To program an agent using Golog one specifies a situation calculus theory of action,
and a program consisting of actions from the theory connected by programming
constructs such as if-then-else, while loops, and nondeterministic choice. Table 2.1
lists the standard operators available in various incarnations of the language.

Readers familiar with dynamic logic will recognise some of these operators, but
others are unique to first-order formalisms such as Golog. Many Golog operators are

25

CHAPTER 2. BACKGROUND

Operator Meaning
Nil The empty program
a Execute action a in the world
φ? Proceed if condition φ is true
δ1; δ2 Execute δ1followed by δ2
δ1|δ2 Execute either δ1 or δ2

π(x, δ(x)) Nondet. select arguments for δ
δ∗ Execute δ zero or more times

if φ then δ1 else δ2 Exec. δ1 if φ holds, δ2 otherwise
whileφdo δ Execute δ while φ holds

procP (−→x)δ(−→x)end Procedure definition
δ1||δ2 Concurrent execution
δ1 � δ2 Prioritised concurrency
δ|| Concurrent iteration

Σ(δ) Plan execution offline

Table 2.1: Operators used in Golog and its descendants

nondeterministic and may be executed in several different ways. It is the task of the
agent to plan a deterministic instantiation of the program, a sequence of actions that
can legally be performed in the world. Such a sequence is called a legal execution of
the program.

To get a feel for how these operators can be used, consider some example pro-
grams. Figure 2.1 shows a simple program for Jim to wash the dishes. It makes
use of the nondeterministic “pick” operator to select and clean a dish that needs
washing, and does so in a loop until no dirty dishes remain. The legal executions of
this program are sequences of clean(Jim, d) actions, one for each dirty dish in the
domain, performed in any order.

while∃d : Dirty(d) do

π(d, clean(Jim, d))
end

Figure 2.1: A Golog program for washing the dishes

Figure 2.2 shows a program that we will return to in subsequent chapters, giving
instructions for how to prepare a simple salad. The procedure ChopTypeInto (not
shown) directs the specified agent to acquire an ingredient of the specified type,
chop it, and place it into the indicated bowl. The procedure MakeSalad nondeter-
ministically selects an agent to do this for a lettuce, a carrot, and a tomato. Note
the nondeterminism in this program: the agent assigned to handling each ingredient

26

2.2. GOLOG

is not specified (π construct), nor is the order in which they should be processed
(|| construct). There is thus considerable scope for cooperation between agents to
effectively carry out this task.

procMakeSalad(dest)
[π(agt, ChopTypeInto(agt, Lettuce, dest)) ||
π(agt, ChopTypeInto(agt, Carrot, dest)) ||
π(agt, ChopTypeInto(agt, Tomato, dest))] ;

π(agt, [acquire(agt, dest) ;
beginTask(agt,mix(dest, 1)) ;
endTask(agt,mix(dest, 1)) ;
release(agt, dest)]) end

Figure 2.2: A Golog program for making a salad

2.2.2 Semantics

The original semantics of Golog were defined using macro-expansion [62]. The macro
Do(δ, s, s′) was defined to be true if program δ could be successfully executed in sit-
uation s, leaving the world in situation s′. However, these semantics could not
support the concurrent execution of two programs and were modified with the in-
troduction of ConGolog [21] to use two predicates Trans(δ, s, δ′, s′) and Final(δ, s)
which are capable of representing single steps of execution of the program.

The predicate Trans(δ, s, δ′, s′) holds when executing a step of program δ can
cause the world to move from situation s to situation s′, after which δ′ remains
to be executed. It thus characterises single steps of computation. The predicate
Final(δ, s) holds when program δ may legally terminate its execution in situation
s. We base our work on the semantics of IndiGolog [17], which builds on ConGolog
[21] and is the most feature-full of the standard Golog variants. The full semantics
are available in the references, but we present some illustrative examples below.

The transition rule for a program consisting of a single action is straightforward
– it transitions by performing the action, provided it is possible in the current
situation. Such a program may not terminate its execution since the action remains
to be performed:

Trans(a, s, δ′, s′) ≡ Poss(a, s) ∧ δ′ = Nil ∧ s′ = do(a, s)

Final(a, s) ≡ ⊥

27

CHAPTER 2. BACKGROUND

The transition rule for a test operator proceeds only if the test is true, leaving
the situation unchanged, and likewise cannot terminate execution until the test has
been satisfied:

Trans(?φ, s, δ′, s′) ≡ φ[s] ∧ δ′ = Nil ∧ s′ = s

F inal(?φ, s) ≡ ⊥

Now consider a simple nondeterministic operator, the “choice” construct that
executes one of two alternate programs:

Trans(δ1|δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′, s′) ∨ Trans(δ2, s, δ′, s′)

Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

It is possible for this operator to transition in two different ways - by executing
a step of execution from the first program, or a step of execution from the second
program. Slightly more complicated, but of fundamental important in the next
chapter, is the semantics of the concurrency operator:

Trans(δ1||δ2, s, δ′, s′) ≡ ∃γ : Trans(δ1, s, γ, s′) ∧ δ′ = (γ||δ2)

∨ ∃γ : Trans(δ2, s, γ, s′) ∧ δ′ = (δ1||γ)

Final(δ1||δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

This rule specifies the concurrent-execution operator as an interleaving of com-
putation steps. It states that it is possible to single-step the concurrent execution of
δ1 and δ2 by performing either a step from δ1 or a step from δ2, with the remainder
γ left to execute concurrently with the other program

Clearly there are two notions of concurrency to be considered in the situation
calculus: the possibility of performing several actions at the same instant (true con-
currency), and the possibility of interleaving the execution of several programs (in-
terleaved concurrency). Baier and Pinto [5] have modified ConGolog to incorporate
sets of concurrent actions in an attempt to integrate these two forms of concurrency.
However, their semantics may call for actions to be performed that are not possible
and can also produce unintuitive program behaviour in some cases. A key aspect of
our work in Chapter 3 is a robust integration of these two notions of concurrency.

We have omitted many details here that are not relevant to this thesis, such as
the second-order axioms necessary to handle recursive procedure definitions. We
will denote by Dgolog the standard axioms defining Trans and Final [17, 21].

28

2.2. GOLOG

Algorithm 1 The Golog/ConGolog Execution Algorithm for program δ

Find a situation s such that:

D ∪Dgolog |= ∃s : Do(δ, S0, s)

for each action in the resulting situation term do
execute that action

end for

2.2.3 Execution Planning

Planning an execution of a Golog program δ can be reduced to a theorem proving
task as shown in equation (2.1). Here Trans∗ indicates the standard second-order
definition for the reflexive transitive closure of Trans.

D ∪Dgolog |= ∃s, δ′ :
[
Trans∗(δ, S0, δ

′, s) ∧ Final(δ′, s)
]

(2.1)

A constructive proof of this query would produce an instantiation of s, a situa-
tion term giving a sequence of actions constituting a legal execution of the program.
These actions are then executed one-by-one in the world. Since the program remain-
ing after termination is often not important, the macro Do is re-defined in terms of
Trans and Final to specify only the resulting situation:

Do(δ, s, s′) def= ∃δ′ : Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

In the original Golog and in ConGolog this forms the entirety of the execution
planning process, as these variants require a full legal execution to be planned before
any actions are performed in the world. This is referred to as offline execution. The
Golog execution algorithm is presented in Algorithm 1.

By contrast, IndiGolog allows agents to proceed without planning a full termi-
nating execution of their program, instead searching for a legal next step a in the
current situation σ such that:

D ∪Dgolog |= ∃a, δ′ : Trans∗(δ, σ, δ′, do(a, σ))

This next step is then performed immediately, and the process repeats until a
terminating configuration is reached. This is referred to as online execution. The
IndiGolog execution algorithm is presented in Algorithm 2.

In order to incorporate planning into this execution algorithm, IndiGolog intro-
duces an explicit “search” operator Σ(δ), which can only make a transition if the

29

CHAPTER 2. BACKGROUND

Algorithm 2 The IndiGolog Execution Algorithm for program δ

σ ⇐ S0

while D ∪Dgolog 6|= Final(δ, σ) do
Find an action a and program δ′ such that:

D ∪Dgolog |= Trans∗(δ, σ, δ′, do(a, σ))

Execute the action a
σ ⇐ do(a, σ)
δ ⇐ δ′

end while

program is guaranteed to eventually terminate successfully:

Trans(Σ(δ), s, δ′, s′) ≡ ∃s′′, δ′′ : Trans(δ, s, δ′′, s′) ∧Do(δ′′, s′, s′′) ∧ δ′ = Σ(δ′′)

This approach gives the programmer powerful control over the amount of non-
determinism in the program, and the amount of planning required to find a legal
execution. It also allows the programmer to avoid planning over sensing actions,
which can cause an exponential blowup in planning complexity. Sensing actions are
simply performed outside the scope of a search operator.

2.2.4 Extensions

There have been a wide range of Golog extensions developed which we will not
consider in this thesis. Among them have been extensions to include decision-
theoretic [12] and game-theoretic aspects [28, 29], additional control operators such
as partially-ordered sequences of actions [6] and hierarchical task networks [34, 111],
synchronisation between the individual programs of a team of agents [26], and ac-
counting for continuous change and event triggering [36].

While we will not consider these Gologs in any detail, we do note that each
has been a relatively straightforward matter of extending the underlying situation
calculus theory and/or the semantics of the Golog operators, and as a result there
has been rich cross-pollination between these different works. We therefore hope
that our work may in turn be combined with some of these extensions to provide an
even richer formalism.

2.3 Epistemic Reasoning

Reasoning about the knowledge of an agent and the combined knowledge of a group
of agents, referred to in general as epistemic reasoning, is a fundamental aspect of

30

References

[1] P. Abate, R. Gore, and F. Widmann. An On-the-fly Tableau-based Decision
Procedure for PDL-Satisfiability. In Proceedings of the Fifth Workshop on
Methods for Modalities, 2007.

[2] Pietro Abate and Rajeev Gor. System Description: The Tableau Work Bench.
In Proc. Fifth Workshop on Methods for Modalities, 2007.

[3] C. Backstrom. Computational Aspects of Reordering Plans. Journal of Arti-
ficial Intelligence Research, 9:99–137, 1998.

[4] J. Baier and S. McIlraith. On Planning with Programs what Sense. In Pro-
ceedings of the 10th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’06), pages 492–502, 2006.

[5] Jorge Baier and Javier Pinto. Integrating True Concurrency into the Robot
Programming Language GOLOG. In Proceedings of the XIX International
Conference of the Chilean Computer Science Society, pages 179–186, 1999.

[6] C. Baral and T. Son. Extending ConGolog to allow partial ordering. In Pro-
ceeings of the 6th International Workshop on Agent Theories, Architectures,
and Languages, pages 188–204, 2000.

[7] Bradley Bart, James P. Delgrande, and Oliver Schulte. Knowledge and Plan-
ning in an Action-Based Multi-agent Framework: A Case Study. In Advances
in Artificial Intelligence, volume 2056 of LNAI, pages 121–130. Springer, 2001.

[8] Alexandru Batlag, Lawrence S. Moss, and Slawomir Solecki. The Logic of
Public Announcements and Common Knowledge and Private Suspicions. In
Proceedings of the 7th conference on Theoretical Aspects of Rationality and
Knowledge (TARK’98), pages 43–56, 1998.

[9] Kristof Van Belleghem, Marc Denecker, and Danny De Schreye. Combining
Situation Calculus and Event Calculus. In Proceedings of the 12th Interna-
tional Conference on Logic Programming, pages 83–97, 1995.

[10] Kristof Van Belleghem, Marc Denecker, and Danny De Schreye. On the rela-
tion between situation calculus and event calculus. Journal of Logic Program-
ming, 31:3–37, 1997.

193

REFERENCES

[11] Leopoldo E. Bertossi, Javier Pinto, Pablo Saez, Deepak Kapur, and Mahade-
van Subramaniam. Automating Proofs of Integrity Constraints in Situation
Calculus. In Proceedings of the 9th International Syposium on Methodologies
for Intelligent Systems, Lecture Notes in Artificial Intelligence, pages 212–222.
Springer, 1996.

[12] Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun.
Decision-Theoretic, High-Level Agent Programming in the Situation Calcu-
lus. In Proceedings of the 17th National Conference on Artificial Intelli-
gence and 12th Conference on Innovative Applications of Artificial Intelligence
AAAI’00/IAAI’00, pages 355–362, 2000.

[13] Ronald J. Brachman and Hector J. Levesque. Knowledge Representation and
Reasoning. Morgan Kaufmann Publishers, 2004.

[14] Jens Claßen and Gerhard Lakemeyer. A Logic for Non-Terminating Golog
Programs. In Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR’08), pages 589–599, 2008.

[15] Patrick Cousot and Radhia Cousot. Constructive Versions of Tarski’s Fixed
Point Theorems. Pacific Journal of Mathematics, 82(1):43–57, 1979.

[16] Ernest Davis and Leora Morgenstern. A First-order Theory of Communication
and Multi-agent Plans. Journal of Logic and Computation, 15(5):701–749,
October 2005.

[17] Giuseppe De Giacomo and Hector Levesque. An Incremental Interpreter for
High-Level Programs with Sensing. In Logical foundation for cognitive agents:
contributions in honor of Ray Reiter. Springer, 1999.

[18] Giuseppe De Giacomo, Evgenia. Ternovska, and Ray. Reiter. Non-terminating
processes in the situation calculus. In In Proceedings of the AAAI’97 Workshop
on Robots, Softbots, Immobots: Theories of Action, Planning and Control,
1997.

[19] Giuseppe De Giacomo, Raymond Reiter, and Mikhail Soutchanski. Execution
Monitoring of High-Level Robot Programs. In Proceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR’98), pages 453–465, 1998.

[20] Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi, and Riccardo Rosati. A
Theory and Implementation of Cognitive Mobile Robots. Journal of Logic and
Computation, 9:759–785, 1999.

[21] Giuseppe De Giacomo, Yves Lespérance, and Hector Levesque. ConGolog, A
Concurrent Programming Language Based on the Situation Calculus. Artificial
Intelligence, 121(1-2):109–169, 2000.

194

REFERENCES

[22] Keith Decker and Victor Lesser. Designing a Family of Coordination Algo-
rithms. In Proceedings of the 1st International Conference on Multi-Agent
Systems (ICMAS’95), 1995.

[23] Robert Demolombe and Maria del Pilar Pozos Parra. A Simple and Tractable
Extension of Situation Calculus to Epistemic Logic. In Proceedings of the 12th
International Symposium on Foundations of Intelligent Systems (ISMIS’00),
pages 515–524, 2000.

[24] Silvio do Lago Pereira and Leliane Nunes de Barros. High-Level Robot Pro-
gramming: An Abductive Approach Using Event Calculus. In Proceedings of
the 17th Brazilian Symposium on Artificial Intelligence, Advances in Artificial
Intelligence, 2004.

[25] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Rea-
soning about Knowledge. The MIT Press, Cambridge, Massachesetts, 1995.

[26] Alessandro Farinelli, Alberto Finzi, and Thomas Lukasiewicz. Team Pro-
gramming in Golog under Partial Observability. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07), pages
2097–2012, 2007.

[27] A. Ferrein, Ch. Fritz, and G. Lakemeyer. Using Golog for Deliberation and
Team Coordination in Robotic Soccer. Kunstliche Intelligenz, I:24–43, 2005.

[28] Alberto Finzi and Thomas Lukasiewicz. Game-Theoretic Agent Programming
in Golog. In Proceedings of the 16th biennial European Conference on Artificial
Intelligence (ECAI’03), 2003.

[29] Alberto Finzi and Thomas Lukasiewicz. Game-Theoretic Golog under Partial
Observability. In Proceedings of the 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’05), pages 1301–1302,
2005.

[30] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM, 32(2):
374–382, 1985.

[31] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[32] Melvin Fitting and Richard L. Mendelsohn. First-order Modal Logic. Springer,
1998.

[33] Christian Fritz, Jorge A. Baier, and Sheila A. McIlraith. ConGolog, Sin Trans:
Compiling ConGolog into Basic Action Theories for Planning and Beyond. In
Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR’08), 2008.

195

REFERENCES

[34] Alfredo Gabaldon. Programming Hierarchical Task Networks in the Situation
Calculus. In Proceedings of the 6th International Conference on AI Planning
and Scheduling: Workshop on On-line Planning and Scheduling, 2002.

[35] Hojjat Ghaderi, Hector Levesque, and Yves Lespérance. A Logical Theory of
Coordination and Joint Ability. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI’07), pages 421–426, 2007.

[36] Henrik Grosskreutz and Gerhard Lakemeyer. cc-Golog: Towards More Re-
alistic Logic-Based Robot Controllers. In Proceedings of the 17th National
Conference on Artificial Intelligence and 12th Conference on Innovative Ap-
plications of Artificial Intelligence AAAI’00/IAAI’00, pages 476–482, 2000.

[37] Barbara J. Grosz and Sarit Kraus. Collaborative Plans for Complex Group
Action. Artificial Intelligence, 86(2):269–357, 1996.

[38] Yilian Gu and Mikhail Soutchanski. Decidable Reasoning in a Modified Situ-
ation Calculus. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), pages 1891–1897, 2007.

[39] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in
a distributed environment. Journal of the ACM, 37(3):549–587, 1990.

[40] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Comput-
ing. MIT Press, 2000.

[41] Sief Haridi and Nils Franzén. Tutorial of Oz, 1999. available at
http://www.mozart-oz.org/.

[42] L. Kalantari and E. Ternovska. A Model Checker for Verifying ConGolog Pro-
grams. In Proceedings of the 18th AAAI Conference on Artificial Intelligence
(AAAI’02), 2002.

[43] John Kelly. The Essence of Logic. Prentice Hall, Inc., 1996.

[44] Ryan F. Kelly and Adrian R. Pearce. Towards High-Level Programming for
Distributed Problem Solving. In Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT’06), pages 490–497,
2006.

[45] Ryan F. Kelly and Adrian R. Pearce. Knowledge and Observations in the
Situation Calculus. In Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’07), pages 841–
843, 2007.

[46] Ryan F. Kelly and Adrian R. Pearce. Property Persistence in the Situation
Calculus. In Proceedings of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI’07), pages 1948–1953, 2007.

196

REFERENCES

[47] Ryan F. Kelly and Adrian R. Pearce. Complex Epistemic Modalities in the
Situation Calculus. In Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR’08), pages 611–
620, 2008.

[48] S. Khan and Y. Lespérance. ECASL: A Model of Rational Agency for Com-
municating Agents. In Proceedings of the 4th International Joint Conference
on Autonomous Agents and Multiagent Systems, 2005.

[49] Barteld Kooi. Dynamic Term-Modal Logic. In Proceedings of the Workshop
on Logic, Rationality and Interaction, volume 8 of Texts in Computing, pages
173–185, Beijing, 2007. College Publications, London.

[50] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986. ISSN 0288-3635.

[51] Robert Kowalski and Fariba Sadri. Reconciling the Event Calculus with the
Situation Calculus. Journal of Logic Programming, 31:39–58, 1997.

[52] Gerhard Lakemeyer. On sensing and off-line interpreting in Golog. In Log-
ical foundation for cognitive agents: contributions in honor of Ray Reiter.
Springer, 1999.

[53] Martin Lange. Model Checking Propositional Dynamic Logic with All Extras.
Journal of Applied Logic, 4(1):39–49, 2005.

[54] Y. Lespérance, H. J. Levesque, and R. Reiter. A Situation Calculus Approach
to Modeling and Programming Agents. In Rao A. and M. Wooldridge, editors,
Foundations and Theories of Rational Agency, pages 275–299. Kluwer, 1999.

[55] Y. Lespérance, H. J. Levesque, F. Lin, and R. B. Scherl. Ability and Knowing
How in the Situation Calculus. Studia Logica, 66(1):165–186, October 2000.

[56] Yves Lespérance. On the Epistemic Feasibility of Plans in Multiagent Systems
Specifications. In Proceedings of the 8th International Workshop on Agent The-
ories, Architectures, and Languages, volume 2333 of Lecture Notes in Artificial
Intelligence, pages 69–85, 2001.

[57] Yves Lespérance and Ho-Kong Ng. Integrating Planning into Reactive High-
Level Robot Programs. In In Proceedings of the Second International Cognitive
Robotics Workshop, pages 49–54, 2000.

[58] Yves Lespérance, Todd G. Kelley, John Mylopoulos, and Eric S. K. Yu. Mod-
eling Dynamic Domains with ConGolog. In Conference on Advanced Informa-
tion Systems Engineering, pages 365–380, 1999.

[59] H. Levesque, F. Pirri, , and R. Reiter. Foundations for the Situation Calculus.
Electronic Transactions on Artificial Intelligence,, 2(3-4):159–178, 1998.

197

REFERENCES

[60] Hector Levesque. Planning with Loops. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’05), pages 509–515,
2005.

[61] Hector Levesque. What is Planning in the Presence of Sensing? In Proc. of the
13th National Conference on Artificial Intelligence, pages 1139–1146. AAAI,
1996.

[62] Hector J. Levesque, Ray Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A Logic Programming Language for Dynamic
Domains. Journal of Logic Programming, 31(1-3):59–83, 1997.

[63] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, Inc., 1981.

[64] F. Lin and H. Levesque. What robots can do: robot programs and effective
achievability. Artificial Intelligence, 101:201–226, 1998.

[65] F. Lin and Y. Shoham. Concurrent actions in the Situation Calculus. In Pro-
ceedings of the 10th National Conference on Artifical Intelligence (AAAI’92),
1992.

[66] Fangzhen Lin and Ray Reiter. State Constraints Revisited. Journal of Logic
and Computation, 4(5):655–678, 1994.

[67] Fangzhen Lin and Ray Reiter. How to progress a database. Artificial Intelli-
gence, 92:131–167, 1997.

[68] Y. Liu and H. J. Levesque. Tractable reasoning with incomplete first-order
knowledge in dynamic systems with context-dependent actions. In Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence (IJ-
CAI’05), 2005.

[69] Yves Martin. The Concurrent, Continuous FLUX. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI’03), 2003.

[70] John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

[71] Robert C. Moore. Reasoning about Knowledge and Action. Technical Note
191, SRI International, October 1980.

[72] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri Nets, Event
Structures and Domains. In Proceedings of the International Symposium on
Semantics of Concurrent Computation, volume 70 of Lecture Notes in Com-
puter Science, pages 266–284, 1979.

[73] Eric Pacuit. Some Comments on History Based Structures. Journal of Applied
Logic, 5(4):613–624, 2007.

198

REFERENCES

[74] Rohit Parikh and R. Ramanujam. Distributed Processes and the Logic of
Knowledge. In Proceedings of the Conference on Logic of Programs, pages
256–268. Springer-Verlag, 1985.

[75] M. Peot and D. Smith. Conditional Nonlinear Planning. In Proceedings of the
1st International Conference on AI Planning Systems, pages 189–197, 1992.

[76] Ron Petrick and Hector Levesque. Knowledge equivalence in Combined Action
Theories. In Proceedings of the 8th International Conference on Principles of
Knowledge Representation and Reasoning (KR’02), 2002.

[77] Ronald P. A. Petrick. A Knowledge-level approach for effective acting, sensing,
and planning. PhD thesis, Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada, 2006.

[78] Ronald P. A. Petrick. Cartesian Situations and Knowledge Decomposition in
the Situation Calculus. In Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR’08), pages 629–
639, 2008.

[79] Javier Pinto. Concurrency and Action Interaction. Unpub-
lished work, submitted for publication: November, 2000. URL
http://www.scs.carleton.ca/~bertossi/javier/papers/pinto00.ps.gz.

[80] Javier Pinto. Concurrent Actions and Interacting Effects. In Proceedings of
the Sixth International Conference on Principles of Knowledge Representation
and Reasoning (KR’98), pages 292–303, 1998.

[81] Javier Pinto. Using histories to model observations in theories of action. In Se-
lected Papers from the Workshop on Reasoning with Incomplete and Changing
Information and on Inducing Complex Representations: Learning and Reason-
ing with Complex Representations, volume 1359 of Lecture Notes In Computer
Science, pages 221 – 233, 1998.

[82] Javier Pinto and Raymond Reiter. Reasoning About Time in the Situation
Calculus. Annals of Mathematics and Artificial Intelligence, 14(2-4):251–268,
1995.

[83] Javier A. Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,
Department of Computer Science, University of Toronto, Toronto, Ontario,
Canada, 1994.

[84] Fiora Pirri and Ray Reiter. Planning with natural actions in the situation
calculus. In Logic-Based Artificial Intelligence. Kluwer Press, 2000.

[85] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the
situation calculus. Journal of the ACM, 46(3):325–361, 1999.

[86] David A. Plaisted and Yunshan Zhu. Situation Calculus with Aspect. In
Proceedings of the IASTED International Conference on Artificial Intelligence
and Soft Computing, pages 17–20, 1997.

199

REFERENCES

[87] Joachim Posegga and Peter H. Schmitt. Automated Deduction with Shannon
Graphs. Journal of Logic and Computation, 5(6):697–729, 1995.

[88] Vaughan R. Pratt. Modeling Concurrency with Geometry. In Conference
Record of the 18th Annual ACM Symposium on Principles of Programming
Languages, pages 311–322, 1991.

[89] Ray Reiter. Proving Properties of States in the Situation Calculus. Artificial
Intelligence, 64:337–351, 1993.

[90] Ray Reiter. Sequential, Temporal GOLOG. In Proceedings of the Sixth Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR’98), pages 547–556, Trento, Italy, 1998.

[91] Ray Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. The MIT Press, 2001.

[92] Ray Reiter. The frame problem in situation the calculus: a simple solution
(sometimes) and a completeness result for goal regression. In Vladimir Lifs-
chitz, editor, Artificial intelligence and mathematical theory of computation:
papers in honor of John McCarthy, pages 359–380. Academic Press Profes-
sional, Inc., 1991.

[93] Ray Reiter. Natural Actions, Concurrency and Continuous Time in the Situa-
tion Calculus. In Proceedings of the 5th International Conference on Principles
of Knowledge Representation and Reasoning (KR’96), pages 2–13, 1996.

[94] Peter Van Roy. Logic Programming in Oz with Mozart. In Danny De Schreye,
editor, International Conference on Logic Programming, pages 38–51. The
MIT Press, November 1999.

[95] Sebastian Sardina, Giuseppe De Giacomo, Yves Lespénce, and Hector
Levesque. On the Semantics of Deliberation in IndiGolog – From Theory to
Implementation. Annals of Mathematics and Artificial Intelligence, 41(2–4):
259–299, August 2004.

[96] Francesco Savelli. Existential assertions and quantum levels on the tree of the
situation calculus. Artificial Intelligence, 170(6):643–652, 2006.

[97] Richard Scherl. Reasoning about the interaction of knowledge, time and con-
current actions in the situation calculus. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’03), pages 1091–1098,
2003.

[98] Richard Scherl and Hector Levesque. Knowledge, Action, and the Frame
Problem. Artificial Intelligence, 144:1–39, 2003.

[99] S. Schiffel and M Thielscher. Interpreting Golog Programs in Flux. In Proceed-
ings of the 7th International Symposium on Logical Formalizations of Com-
monsense Reasoning, 2005.

200

REFERENCES

[100] S. Schiffel and M. Thielscher. Reconciling Situation Calculus and Fluent Cal-
culus. In Proceedings of the 21st National Conference on Artificial Intelli-
gence and the 18th Innovative Applications of Artificial Intelligence Confer-
ence (AAAI’06/IAAI’06), 2006.

[101] Christian Schulte. Programming Constraint Services. Doctoral disserta-
tion, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät
I, Fachrichtung Informatik, Saarbrücken, Germany, 2000.

[102] Christian Schulte. Parallel Search Made Simple. Technical Report TRA9/00,
School of Computing, National University of Singapore, 55 Science Drive 2,
Singapore 117599, September 2000.

[103] Murray Shanahan. Event calculus planning revisited. In Proceedings of the 4th
European Conference on Planning (ECP’97), number 1348 in Lecture Notes
in Artificial Intelligence, pages 390–402. Springer, 1997.

[104] Murray Shanahan and Mark Witkowski. High-Level Robot Control Through
Logic. In Proceedings of the 7th International Workshop on Agent Theories,
Architectures, and Languages (ATAL2000). Springer, 2000.

[105] S. Shapiro and M. Pagnucco. Iterated Belief Change and Exogenous Actions
in the Situation Calculus. In Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI’04), pages 878–882, 2004.

[106] S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying Communicative
Multi-Agent Systems. In Agents and Multi-Agent Systems - Formalisms,
Methodologies, and Applications, volume 1441 of Lecture Notes in Artificial
Intelligence, pages 1–14, 1998.

[107] S. Shapiro, Y. Lesperance, and H. Levesque. Goal Change in the Situation
Calculus. Journal of Logic and Computation, 17:983–1018, 2007.

[108] Steven Shapiro and Yves Lespérance. Modeling Multiagent Systems with the
Cognitive Agents Specification Language — A Feature Interaction Resolution
Application. In Intelligent Agents Volume VII — Proceedings of the 2000
Workshop on Agent Theories, Architectures, and Languages, pages 244–259.
Springer-Verlag, 2001.

[109] Steven Shapiro, Maurice Pagnucco, and Hector J. Levesque. Iterated Belief
Change in the Situation Calculus. In Proceedings of the 7th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’00),
pages 527–538, 2000.

[110] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. The Cognitive
Agents Specification Language and Verification Environment for Multiagent
Systems. In Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS’02), pages 19–26, 2002.

201

REFERENCES

[111] Tran Cao Son, Chitta Baral, and Le-Chi Tuan. Adding Time and Intervals to
Procedural and Hierarchical Control Specifications. In Proceedings of the 19th
National Conference on Artificial Intelligence (AAAI’04), pages 92–97, 2004.

[112] M. Tambe. Towards Flexible Teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

[113] M. Thielscher. A Unifying Action Calculus. Artificial Intelligence, :, 2007. (in
submission).

[114] Michael Thielscher. Logic-Based Agents and the Frame Problem: A Case for
Progression. In V. Hendricks, editor, First-Order Logic Revisited: Proceedings
of the Conference 75 Years of First Order Logic (FOL75), pages 323–336,
Berlin, Germany, 2004. Logos.

[115] Michael Thielscher. Introduction to the Fluent Calculus. Electronic Transa-
tions on Artificial Intelligence, 2:179–192, 1998.

[116] Michael Thielscher. From Situation Calculus to Fluent Calculus: State update
axioms as a solution to the inferential frame problem. Artificial Intelligence,
111:277–299, 1999.

[117] Johan van Bentham. Modal Logic meets Situation Calculus. Technical Report
PP-2007-04, University of Amsterdam, 2007.

[118] Johan van Benthem and Eric Pacuit. The Tree of Knowledge in Action: To-
wards a Common Perspective. In Advances in Modal Logic, volume 6, pages
87–106, 2006.

[119] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of Communica-
tion and Change. Information and Computation, 204(II):1620–1662, 2006.

[120] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, March 2004.

[121] Peter Van Roy and Seif Haridi. Mozart: A Programming System for Agent
Applications. In Proceedings of the International Workshop on Distributed and
Internet Programming with Logic and Constraint Languages, November 1999.
(ICLP 99).

[122] Peter Van Roy, Per Brand, Denys Duchier, Seif Haridi, Martin Henz, and
Christian Schulte. Logic programming in the context of multiparadigm pro-
gramming: the Oz experience. Theory and Practice of Logic Programming, 3
(6):717–763, 2003.

[123] Stavros Vassos and Hector Levesque. Progression of Situation Calculus Action
Theories with Incomplete Information. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 2024–2029, 2007.

202

REFERENCES

[124] Stavros Vassos and Hector Levesque. On the Progression of Situation Calculus
Basic Action Theories: Resolving a 10-year-old Conjecture. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI’08), pages 1004–
1009, 2008.

[125] Stavros Vassos, Gerhard Lakemeyer, and Hector J. Levesque. First-Order
Strong Progression for Local-Effect Basic Action Theories. In Proceedings of
the 11th International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 662–671, 2008.

203

