
COMP90054 Software Agents:
Projection and Regression

Adrian Pearce

includes slides by Ray Reiter & Ryan Kelly

Outline

Projection and Regression on Situations

Techniques for effective inductive reasoning over situations
continued

Outline

Basic theories of actions

Recall that Σ denotes the four foundational axioms for situations.

We now consider some metamathematical properties of these
axioms when combined with successor state and action
precondition axioms, and unique names axioms for actions.

Such a collection of axioms will be called a basic theory of
actions.

First we must be more precise about what counts as successor
state and action precondition axioms.

Uniform Formulae

Let σ be a term of sort situation .

Definition (Uniform Formulae)

A formula is uniform in σ iff it does not mention the predicates
Poss or <, it does not quantify over variables of sort situation, it
does not mention equality on situations, and whenever it mentions
a term of sort situation in the situation argument position of a
fluent, then that term is σ.

Formulas uniform in s = Markov property. The future (states)
are determined by the present (state).

Action precondition and successor state axioms

Definition: Action Precondition Axiom
An action precondition axiom is a sentence of the form:

(∀x1, · · · , xn, s).Poss(A(x1, · · · , xn), s) ≡ ΠA(x1, · · · , xn, s),

where A is an n-ary action function, and ΠA is a formula that
is uniform in s and whose free variables are among
x1, · · · , xn, s.
Definition: Successor State Axiom A successor state axiom
for an (n + 1)-ary fluent F is a sentence of the form:

(∀a, s)(∀x1, . . . , xn).F (x1, . . . , xn, do(a, s)) ≡ ΦF , (1)

where ΦF is a formula uniform in s, all of whose free variables
are among a, s, x1, . . . , xn.

Basic Action Theories

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 where

Σ are the foundational axioms for situations.

Dss is a set of successor state axioms.

Dap is a set of action precondition axioms.

Duna is the set of unique names axioms for actions.

DS0 is a set of first order sentences with the property that S0

is the only term of sort situation mentioned by the fluents of a
sentence of DS0 . Thus, no fluent of a formula of DS0 mentions
a variable of sort situation or the function symbol do. DS0 will
play the role of the initial situation of the world (i.e. the one
we start off with, before any actions have been “executed”).

Theorem (Relative Satisfiability)

D is satisfiable iff Duna ∪ DS0 is.

Relative satisfiability assures us that provided the initial database
together with the unique names axioms for actions are satisfiable,
then unsatisfiability cannot be introduced by augmenting these
with the foundational axioms, together with the action
preconditions and successor state axioms. This as

Outline

Regression

The Regressable Formulas.

The essence of a regressable formula is that each of its
situation terms is rooted at S0, and therefore, one can tell, by
inspection of such a term, exactly how many actions it
involves.

Examples of regressable formulae: can the actions in the sequence

walk(A,B,Adrian), train(B,C ,Adrian),walk(C ,D,Adrian) be
executed one after the other beginning in S0?

Poss(walk(A,B,Adrian), S0) ∧
Poss(train(B,C ,Adrian), do(walk(A,B,Adrian), S0)) ∧
Poss(walk(C ,D,Adrian), do([walk(A,B,Adrian), train(B,C ,Adrian)],S0)).

The following are not regressable:

(∃a)Poss(a,S0), holding(x , do(walk(A,B,Adrian), s)).

Another example of regressable formulae: The Gold Thief

The (potential) thief would like to know whether the following
action sequence

walk(A,B,Bruce), enter(bank(Bruce)), crackSafe(Bruce)

can be executed one after the other beginning in S0?

Poss(walk(A,B,Bruce),S0) ∧
Poss(enter(bank(Bruce)), do(walk(A,B,Bruce),S0)) ∧
Poss(crackSafe(Bruce), do([walk(A,B,Bruce), enter(bank(Bruce)],S0)).

The following are not regressable:

(∃a)Poss(a,S0), holding(Gold , do(pickup(Gold ,Bruce), s)).

Regression (notes)

It is not necessary to be able to tell what those actions are,
just how many they are. In addition, when a regressable
formula mentions a Poss atom, we can tell, by inspection of
that atom, exactly what is the action function symbol
occurring in its first argument position, for example, that it is
a move action.

Assume a background axiomatisation that includes a set of
successor state and action precondition axioms.

The Regression Operator: Simple Version

W is a regressable formula of Lsitcalc that mentions no functional
fluents.

1 If W is an atom, there are four possibilities:

1.1 W is a situation independent atom. Then R[W] = W .
1.2 W is a relational fluent atom of the form F (~t,S0). Then

R[W] = W .
1.3 W is a regressable Poss atom, so it has the form Poss(A(~t), σ)

for terms A(~t) and σ of sort action and situation respectively.
Here, A is an action function symbol of Lsitcalc . Then there
must be an action precondition axiom for A of the form

Poss(A(~x), s) ≡ ΠA(~x , s).
1.4 W is a relational fluent atom of the form F (~t, do(α, σ)). Let

F ’s successor state axiom in Dss be
F (~x , do(a, s)) ≡ ΦF (~x , a, s).

Then R[W] = R[ΦF (~t, α, σ)].

The Regression Operator: Simple Version (notes)

Assume that all quantifiers (if any) of ΠA(~x , s) have had their
quantified variables renamed to be distinct from the free variables
(if any) of Poss(A(~t), σ). Then

R[W] = R[ΠA(~t, σ)].

In other words, replace the atom Poss(A(~t), σ) by a suitable
instance of the right hand side of the equivalence in A’s action
precondition axiom, and regress that expression. The above
renaming of quantified variables of ΠA(~x , s) prevents any of these
quantifiers from capturing variables in the instance Poss(A(~t), σ).

The Regression Operator: Simple Version (notes)

Assume that all quantifiers (if any) of ΦF (~x , a, s) have had their
quantified variables renamed to be distinct from the free variables
(if any) of F (~t, do(α, σ)).

In other words, replace the atom F (~t, do(α, σ)) by a suitable
instance of the right hand side of the equivalence in F ’s successor
state axiom, and regress this formula. The above renaming of
quantified variables of ΦF (~x , a, s) prevents any of these quantifiers
from capturing variables in the instance F (~t, do(α, σ)).

The Regression Operator: Simple Version

2 For non-atomic formulas, regression is defined inductively.

2.1 R[¬W] = ¬R[W],

2.2 R[W1 ∧W2] = R[W1] ∧R[W2],

2.3 R[(∃v)W] = (∃v)R[W].

The Regression Operator: Simple Version (notes)

Intuitively, the regression operator eliminates Poss atoms in
favour of their definitions as given by action precondition
axioms, and replaces fluent atoms about do(α, σ) by logically
equivalent expressions about σ as given by successor state
axioms. Moreover, it repeatedly does this until it cannot make
such replacements any further.

Each R-step reduces the depth of nesting of the function
symbol do in the fluents of W by substituting suitable
instances of ΦF for each occurrence of a fluent atom of W of
the form F (t1, . . . , tn, do(α, σ)). Since no fluent atom of ΦF

mentions the function symbol do, the effect of this
substitution is to replace each such F by a formula whose
fluents mention only the situation term σ, and this reduces
the depth of nesting by one.

The regression theorem

Theorem (The Regression Theorem)

Suppose W is a regressable sentence of Lsitcalc that mentions no
functional fluents, and D is a basic theory of actions. Then,

D |= W iff DS0 ∪ Duna |= R[W].

Consider a sequence α1, . . . , αn of ground action terms.

Problem: Determine whether this is executable. Is it the case
that:

D |= executable(do([α1, . . . , αn], S0))

Executable Action Sequences

It is straightforward to show that:

Σ |= (∀a1, . . . , an).executable(do([a1, . . . , an],S0)) ≡
n∧

i=1

Poss(αi , do([α1, . . . , αi−1],S0)).

Theorem

Suppose that α1, . . . , αn is a sequence of ground action terms of
Lsitcalc . Then

D |= executable(do([α1, . . . , αn], S0))

iff

DS0 ∪ Duna |=
n∧

i=1

R[Poss(αi , do([α1, . . . , αi−1], S0))].

Executable Action Sequences (notes)

This provides a systematic, regression-based method for
determining whether a ground situation do([α1, . . . , αn],S0) is
executable. Moreover, it reduces this test to a theorem-proving
task in the initial database DS0 , together with unique names
axioms for actions.

Example: Executibility Testing (notes)

Another database example:

Compute the legality test for the transaction sequence
register(Bill ,C 100), drop(Bill ,C 100), drop(Bill ,C 100) which
intuitively should fail because the first drop leaves Bill
unenrolled in C 100, so that the precondition for the second
drop will be false.

Executibility Testing (Continued)

Legality test for the transaction sequence
register(Bill ,C 100), drop(Bill ,C 100), drop(Bill ,C 100).

First compute

R[Poss(register(Bill ,C 100), S0)] ∧
R[Poss(drop(Bill ,C 100), do(register(Bill ,C 100),S0))] ∧
R[Poss(drop(Bill ,C 100), do(drop(Bill ,C 100),

do(register(Bill ,C 100),S0)))],

which is

R[(∀p).prerequ(p,C 100) ⊃ (∃g).grade(Bill , p, g ,S0) ∧ g ≥ 50] ∧
R[enrolled(Bill ,C 100, do(register(Bill ,C 100),S0))] ∧
R[enrolled(Bill ,C 100, do(drop(Bill ,C 100),

do(register(Bill ,C 100),S0)))].

This yields {(∀p).prerequ(p,C 100) ⊃
(∃g).grade(Bill , p, g ,S0) ∧ g ≥ 50} ∧ true ∧ false

transaction sequence is illegal!

Another Example: Legality Testing

change(Bill ,C 100, 60), register(Sue,C 200), drop(Bill ,C 100).
First compute

R[(∃g ′)grade(Bill ,C 100, g ′,S0) ∧ g ′ 6= 60] ∧
R[(∀p)prerequ(p,C 200) ⊃

(∃g)grade(Sue, p, g , do(change(Bill ,C 100, 60),S0)) ∧ g ≥ 50] ∧
R[enrolled(Bill ,C 100, do(register(Sue,C 200),

do(change(Bill ,C 100, 60), S0)))].

This simplifies to

{(∃g ′).grade(Bill ,C 100, g ′,S0) ∧ g ′ 6= 60} ∧
{(∀p).prerequ(p,C 200) ⊃

Bill = Sue ∧ p = C 100 ∨ (∃g).grade(Sue, p, g , S0) ∧ g ≥ 50} ∧
{Sue = Bill ∧ C 200 = C 100 ∨ enrolled(Bill ,C 100,S0)}.

So the transaction sequence is legal iff this sentence is
entailed by the initial database together with unique names
axioms for actions.

The Projection Problem

Definition (The Projection Problem)

Given an action sequence α1, . . . , αn of ground action terms, and a
query Q(s) whose only free variable is the situation variable s,
what is the answer to Q in that situation resulting from performing
this action sequence, beginning with the initial world situation S0?
Formally, the problem of determining whether

D |= Q(do([α1, . . . , αn],S0)).

Note that Q(do([α1, . . . , αn],S0)) will normally be regressable
formulae.

So, by the Regression Theorem, regress
Q(do([α1, . . . , αn], S0)), and verify it in the initial situation
with unique names axioms for actions.

Projection problem example: Database Query Evaluation

Consider again the transaction sequence

T = change(Bill ,C 100, 60), register(Sue,C 200), drop(Bill ,C 100).

Suppose the query is

(∃st).enrolled(st,C 200, do(T, S0)) ∧
¬enrolled(st,C 100, do(T,S0)) ∧
(∃g).grade(st,C 200, g , do(T, S0)) ∧ g ≥ 50.

Regress this query, after some simplification, assuming that
DS0 |= C 100 6= C 200, we obtain

(∃st).[st = Sue ∨ enrolled(st,C 200,S0)] ∧
[st = Bill ∨ ¬enrolled(st,C 100,S0)] ∧
[(∃g).grade(st,C 200, g ,S0) ∧ g ≥ 50].

The answer to the query is obtained by evaluating this last
formula in DS0 , together w. unique names axioms for actions.

Projection problem example: Planning

For example, a projection query for the sequence of actions

walk(A,B,Adrian), train(B,C ,Adrian),walk(C ,D,Adrian)

might be: Will Adrian get home from the Jazz Festival tonight?

D |= getHome(Adrian, do([walk(VillaCelimontana,B,Adrian),

train(B,C ,Adrian),walk(C ,D,Adrian)],S0)).

Regression (re-cap)

Regression operates, intuitively, by unwinding actions one at a
time:

R(Holding(agt, obj , do(c , s)))⇒
pickup(agt, obj) ∈ c

∨Holding(agt, obj , s) ∧ ¬ (drop(agt, obj) ∈ c)

By repeatedly applying it, we get a query about S0:

D |= φ[do(c1, do(c2, . . . ,S0))] iff D |= R∗(φ)[S0]

If you don’t know the current situation, you cannot reason using
regression.

Effective reasoning in the situation calculus

Effective reasoning in the situation calculus is generally based
on syntactic manipulation of a query into a form that is more
amenable to automated reasoning.

In the general case, answering a query about a basic action
theory D is a theorem-proving task in second-order logic
(denoted SOL) due to the induction axiom included in the
foundational axioms:

D |=SOL ψ

If a query only performs existential quantification over
situation terms, it can be answered without the induction
axiom (denoted I) and thus using only first-order logic (FOL):

D |=SOL ∃s : ψ(s) iff D − {I} |=FOL ∃s : ψ(s)

Effective reasoning in the situation calculus

Simpler still, queries uniform in the initial situation, can be
answered using only first-order logic and a limited set of
axioms:

D |=SOL φ[S0] iff DS0 ∪ Dbg |=FOL φ[S0]

References

Ray Reiter. Knowledge in Action: Logical Foundations for
Specifying and implementing Dynamical Systems, The MIT
Press, 2001

Ray Reiter. The frame problem in situation the calculus: a
simple solution (sometimes) and a completeness result for
goal regression. In Vladimir Lifschitz, editor, Artificial
intelligence and mathematical theory of computation: papers
in honor of John McCarthy, pages 359-380. Academic Press
Professional, Inc., 1991.

Fiora Pirri and Ray Reiter. Some contributions to the
metatheory of the situation calculus. Journal of the ACM,
46(3):325-361, 1999.

Ray Reiter. Proving Properties of States in the Situation
Calculus. Artificial Intelligence, 64:337-351, 1993.

References (continued)

Ryan F. Kelly and Adrian R. Pearce. Property Persistence in
the Situation Calculus. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 1948-1953, 2007

Ryan Kelly. ”Asynchronous Multi-Agent Reasoning in the
Situation Calculus”, PhD Thesis, The University of
Melbourne, 2009

Summary

	Basic theories of actions
	Regression

