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Equivalence relations

Definition (Kripke Models)

A Kripke model M is a tuple 〈S ,V ,R1, . . . ,Rm〉 where:

1 S is a non-empty set of states, possible worlds or epistemic
alternatives,

2 V : S → (p → {true, false}) is a truth assignment to the
propositional atoms (p) per state,

3 Ri ⊆ S × S (for all i ∈ A) are the epistemic accessibility
relations for each agent.

For any state or possible world s,
(M, s) |= p (for p ∈ P) iff V (s)(p) = true
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Example: Muddy Children Puzzle

Example

k children get mud on their foreheads

Each can see the mud on others, but not on his/her own
forehead

The father says ”at least one of you has mud on your head”
initially.

The father then repeats ”Can any of you prove you have mud
on your head?” over and over.

Assuming that the children are perceptive, intelligent, truthful,
and that they answer simultaneously, what will happen?
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Muddy Children Puzzle (Initially)
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Muddy Children Puzzle (After the father speaks)

Model—general case for all children (Child 1, Child 2, Child 3)
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Muddy Children Puzzle (k=1)

First time (k=1) all children say ”No” and all states with only one
muddy forehead consequently dissapear.
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Muddy Children Puzzle (k=2 & k=3)

Second time (k=2) all children say ”No” again; this time all states
with only two muddy foreheads consequently dissapear

(1,1,1)
•

Third time (k=3) all children say ”Yes” because they all know
their foreheads are muddy (the model can collapse no further).
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Forms of knowledge

DGp: the group G has distributed knowledge of fact p

SGp: someone in G knows p

SGp ≡ ∨i∈GKip

EGp: everyone in G knows p

EGp ≡ ∧i∈GKip
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Forms of knowledge

E k
Gp for k ≥ 1: E k

Gp is defined by

E 1
Gp = EGp

E k+1
G p = EGE

k
Gp for k ≥ 1

CGp: p is common knowledge in G

CG ≡ EGp ∧ E 2
Gp ∧ . . .Em

G p ∧ . . .
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Synchronisation

Example (The Coordinated Attack Problem (Byzantine Generals))

Suppose General A sends a message to General B saying Let’s
attack at Dawn.

Does not have any common knowledge fixpoint (in spite of
acknowledgements).

It seems that common knowledge is theoretically unachievable
- how can this be so?

In the presence of unreliable communication, common knowledge is
theoretically unachievable.
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Simultaneity

In practice, we can establish ε-common knowledge, Halpern and
Moses (1990).

Definition (ε-common knowledge)

ε-common knowledge assumes that within an interval ε everybody
knows φ.
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Knowledge

Agent i knows p in world s of (Kripke) structure M, exactly if p is
true at all worlds that i considers possible in s. Formally,

(M, s) |= Kip iff (M, t) |= p for all t such that (s, t) ∈ Ki

Relationship between knowledge forms, DG , EG and CG :

|= EGp ⇔ ∧i∈GKip

The notions of group knowledge form a hierarchy

CGϕ ⊃ . . . ⊃ E k+1
G ϕ ⊃ . . . ⊃ EGϕ ⊃ SGϕ ⊃ DGϕ ⊃ ϕ
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The properties of Knowledge (S5 axioms)

1 Kiϕ ∧ Ki (ϕ⇒ Ψ))⇒ Ki Ψ (Distribution axiom)

2 if M |= ϕ then M |= Kiϕ (Knowledge generalisation rule)

3 Kiϕ⇒ ϕ (Knowledge or truth axiom)

4 Kiϕ⇒ KiKiϕ (Positive introspection axiom)

5 ¬Kiϕ⇒ Ki¬Kiϕ (Negative introspection axiom)
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