
Multi-agent programming in IndiGolog

Adrian Pearce

13 July 2011

Includes slides by Ryan Kelly

Outline

Outline

Agent = action theory + high-level program

An action theory: the agent knows the theory and its
consequences (actions effects, frame & qualification problems,
sensing, etc.)

A high-level program: specifying the agent tasks/behaviours
(nondeterministic & domain actions)

High-level programming

High-Level Programming is a promising approach from single-agent
systems:

Primitive actions from the agents world

Connected by standard programming constructs

Containing controlled amounts of nondeterminism

Agent plans a ”Legal Execution”

e.g. GOLOG

Vision: the cooperative execution of a shared high-level program
by a team of autonomous agents.

Golog (Revisited)

a - Perform a primitive action

δ1; δ2 - Perform two programs in sequence

φ? - Assert that a condition holds

δ1|δ2 - Choose between programs to execute

π(x , δ(x)) - Choose suitable bindings for variables

δ∗ - Execute a program zero or more times

δ1||δ2 - Execute programs concurrently

Key Point: programs can include nondeterminism

Why High-Level Programming?

Natural, flexible task specification

Powerful nondeterminism control

order of actions, who does what, ...

Sophisticated logic of action

Concurrent actions, continuous actions, explicit time, ...

Ferrein, Lakemeyer et.al. have successfully controlled a RoboCup
team using a Golog variant called ”ReadyLog” (Ferrein, Fritz and
Lakemeyer 2005).

Why is Golog popular?

Good level of abstraction

Programs based directly on actions from the domain
Nondeterminism makes programs simpler and more powerful
Symbolic reasoning effortlessly available

Tradeoff between programming and planning

Amount of nondeterminism controlled by the programmer
Procedural knowledge easy to encode
Full planning still available

Golog for Multiple Agents?

The ”Golog Family” includes:

Original GOLOG

ConGolog: interleaved concurrency

IndiGolog: online execution

MIndiGolog facilitates this approach in multi-agent domains:

Robust integration of true concurrency

Explicit temporal component

Seamless integration of natural actions

IndiGolog operators (Revisited)

IndiGolog introduces a larger range of operators such as:

Operator Meaning

a Execute action a in the world

φ? Proceed if condition φ is true

δ1; δ2 Execute δ1followed by δ2
δ1|δ2 Execute either δ1 or δ2

π(x)δ(x) Nondet. select arguments for δ

δ∗ Execute δ zero or more times

if φ then δ1 else δ2 Exec. δ1 if φ holds, δ2 otherwise

whileφdo δ Execute δ while φ holds

procP(−→x)δ(−→x)end Procedure definition

δ1||δ2 Concurrent execution (ConGolog)

Σδ Plan execution offline (IndiGolog)

A Quick Example

Consider a Golog program for getting to university of a morning:

ringAlarm; (hitSnooze; ringAlarm)∗; turnOffAlarm;
π(food , edible(food)?; eat(food)); (haveShower ||brushTeeth);

(driveToUni | trainToUni); (time < 11 : 00)?

There are potentially many ways to execute this program,
depending on which actions are possible in the world.

Use theory of action to plan a Legal Execution:

D |= ∃s, δ′ : Trans∗(δ, S0, δ
′, s) ∧ Final(δ′, s)

Extending the Situation Calculus

For asynchronous multi-agent domains, we must handle:

Concurrent Actions: do({a1, a2}, s)

Continuous time: do(c , t, s)

Long-running tasks: begin(t), doing(t, s), end(t)

Natural processes: Legal(a, s)→ ¬∃n : nat(n) ∧ Poss(n, s)

Incomplete knowledge (from last lecture): Knows(φ, s)

Outline

Motivating Example: The Cooking Agents

Several robotic chefs inhabit a kitchen, along with various
ingredients, appliances and utensils. They must cooperate to
produce a meal consisting of several dishes.

proc MakeSalad(bowl)
(ChopTypeInto(Lettuce, bowl) ||
ChopTypeInto(Carrot, bowl) ||

ChopTypeInto(Tomato, bowl)) ;
π(agt,Mix(agt, bowl , 1))

end

proc ChopTypeInto(type, dest)
π((agt, obj),

IsType(obj , type)? ;
Chop(agt, obj) ;

PlaceIn(agt, obj , dest))
end

MIndiGolog (Multi-agent IndiGolog)

Application:

Agents cooperate to plan and perform the execution of a
shared Golog program

Modifications to Golog

Merge concurrent actions with concurrent program execution

Integrate time and natural actions for coordination

Share planning workload using distributed logic programming

Outline

MIndiGolog Semantics

One approach (used in TeamGolog, Farrinelli et al. 2006) defines
concurrent execution of the individual agent’s programs:

δ = δagt1||δagt2|| . . . ||δagtN

In another approach (used in ReadyLog) has all agents cooperate
to plan and perform the joint execution of a single, shared program:

δ = δtask1||δtask2|| . . . ||δtaskN

MIndiGolog takes the second approach

Algorithm for multiple agents

Algorithm: ReadyLog

σ ⇐ S0

while D ∪Dgolog 2 Final(δ, s) do
Find an action a and program δ′ such that:

D ∪Dgolog |= Trans∗(δ, σ, δ′, do(a, σ))

if the action is to be performed by me then
Execute the action a

else
Wait for the action to be executed

end if
σ ⇐ do(a, σ)
δ ⇐ δ′

end while

Algorithm for multiple agents

Using such an algorithm, the agents can prepare several dishes
concurrently

MakeSalad()||MakePasta()||MakeCake()

They can even plan to have different dishes ready at different
times [MakeSalad()||MakePasta()]; ?(time < 7 : 30))

||(MakeCake(); ?(8 : 15 < time < 8 : 30))

Time

We modify the original transition rule

Trans(a, s, δ′, s ′) ≡ Poss(a, s) ∧ δ′ = Nil ∧ s ′ = do(a, s)

Modifying this to use CONCURRENT#TIMEPOINT pairs and
Legal gives

Trans(a, s, δ′, s ′) ≡ ∃t : Legal({a}#t, s)∧δ′ = Nil∧s ′ = do({a}, s)

This ensures that the temporal component respects the ordering
between predecessor and successor situations.

Example Output: MakeSalad()

do [acquire(thomas,lettuce1), acquire(richard,tomato1),

acquire(harriet,carrot1)] at _U

do [acquire(thomas,board1), acquire(harriet,board2)] at _T

do [place_in(thomas,lettuce1,board1), place_in(harriet,carrot1,board2)] at _S

do [begin_task(thomas,chop(board1)), begin_task(harriet,chop(board2))] at _R

do [end_task(thomas,chop(board1)), end_task(harriet,chop(board2))] at _Q

do [acquire(thomas,bowl1)] at _P

do [transfer(thomas,board1,bowl1)] at _O

do [release(thomas,board1)] at _N

do [release(thomas,bowl1), acquire(richard,board1)] at _M

do [place_in(richard,tomato1,board1), acquire(harriet,bowl1)] at _L

do [begin_task(richard,chop(board1)), transfer(harriet,board2,bowl1)] at _K

Example Output

do [release(harriet,board2), end_task(richard,chop(board1))] at _J

do [release(harriet,bowl1)] at _I

do [acquire(richard,bowl1)] at _H

do [transfer(richard,board1,bowl1)] at _G

do [release(richard,board1)] at _F

do [release(richard,bowl1)] at _E

do [acquire(thomas,bowl1)] at _D

do [begin_task(thomas,mix(bowl1,1))] at _C

do [end_task(thomas,mix(bowl1,1))] at _B

do [release(thomas,bowl1)] at _A

.>=.(_U,0),

.=<.(_U,_T),

.=<.(_L,-5+_J),

.=<.(_D,-1+_B),

.=.(_Q,3+_R)

...

Can get concurrency

using:MakeSalad(Bowl1) ||MakePasta(Bowl2) || MakeCake(Bowl3)

MIndiGolog Semantics

Agents should take advantage of true concurrency. Basic idea:

Trans(δ1||δ2, s, δ′, s ′) ≡ ∃γ : Trans(δ1, s, γ, s
′) ∧ δ′ = (γ||δ2)

∨ ∃γ : Trans(δ2, s, γ, s
′) ∧ δ′ = (δ1||γ)

∨ ∃c1, c2, γ1, γ2, t : Trans(δ1, s, γ1, do(c1#t, s))

∧Trans(δ2, s, γ2, do(c2#t, s)) ∧Legal((c1∪c2)#t, s)∧∀a : [a ∈ c1 ∧ a ∈ c2 → Natural(a)]

∧ δ′ = (γ1||γ2) ∧ s ′ = do((c1 ∪ c2)#t, s)

Robust Concurrency

The combination of actions (c1 ∪ c2) may not be possible.

Must check this explicitly

The same agent-initiated action mustn’t Trans both programs.

otherwise dangerous ’skipping’ of actions can occur

if two concurrent programs both call for pay(Ryan, $100) to
be performed, it had better be performed twice!

Natural actions can transition both programs

Robust Concurrency

Consider two programs both wanting to initiate agent actions:

δ1 = placeIn(Jim,Flour ,Bowl); placeIn(Jim,Sugar ,Bowl)

δ2 = placeIn(Jim,Flour ,Bowl); placeIn(Jim,Egg ,Bowl)

Executing δ1||δ2 should result in the bowl containing two units of
four, one unit of sugar and an egg.

However, an individual transition for both programs is
c1 = c2 = {placeIn(Jim,Foour ,Bowl)}.
Naively executing c1 ∪ c2 to transition both programs would result
in only one unit of flour being added.

Robust Concurrency

Consider two programs waiting for a timer to ring:

δ1 = ringTimer ; acquire(Jim,Bowl)

δ2 = ringTimer ; acquire(Joe,Bowl)

Both programs should be allowed to proceed using the same
(natural) ringTimer occurrence.

Least natural time point (LNTP)

Natural actions have been previously utilised in Golog (Pirri
and Reiter 2000)

However, the programmer was typically required to explicitly
required to check for them and ensure that they appear in the
execution

We lower the burden on the programmer by guaranteeing that
all legal program executions result in legal situations -
inserting natural actions into the execution when they are
predicted to occur (see page 51 of Kelly 2009)

Distributed Execution

Agents can each plan a legal execution individually

Identical search strategy produces identical results

Coordination without communication!

Requires a fully observable, completely known world

But, we can also take advantage of communication to share the
planning workload between agents.

MIndiGolog Execution

The semantics of Golog can be neatly encoded as a logic program.
Prolog is traditionally used.
We have also used Oz for its strong distributed programming
support.

proc {Trans D S Dp Sp}

case D of nil then fail

[] test(C) then {Holds.yes C S} Sp=S Dp=nil

[] pick(D1 D2) then choice

{Trans D1 S Dp Sp}

[] {Trans D2 S Dp Sp}

end

[] ... <additional cases ommitted> ...

end

end

MIndiGolog Execution

Using the built in ParallelSearch object, the agents can
transparently share the planning workload:

proc {ParallelMIndiGolog D S}

PSearch={New Search.parallel

init(richard:1#ssh thomas:1#ssh harriet:1#ssh)}

in

S={PSearch one(MIndiGolog D $)}

end

MIndiGolog

MIndiGolog: a Golog semantics and implementation for shared
program execution by a team of cooperating agents:

Safely taking advantage of true concurrency

Automatically accounting for predictable environment
behaviour

Using distributed logic programming to share the workload
(page 60, Kelly 2009)

Outline

Joint Executions

The Golog execution planning process produces a situation
representing a legal execution of the program.

This is a linear and fully-ordered sequence of actions, demanding
total synchronicity during execution.

Multiple agents should be able to execute independent actions
independently.

need a partially-ordered representation

Prime Event Structures

Prime event structures are a canonical representation for
partially-ordered branching sequences of events:

A set of events, V
A partial order on events, e1 ≺ e2

A conflict relation, e1#e2

A labelling function, γ(e) = lbl

Define enablers and alternatives as follows:

j ∈ ens(i) ≡ j ≺ i ∧ ∀k ∈ ens(i) : ¬(j ≺ k)

j ∈ alts(i) ≡ j#i ∧ ∀k ∈ ens(i) : ¬(j#k)

Joint Executions

Joint Executions

We enforce several restrictions to ensure a JE can always be
executed.

Independent events have independent actions

All possible outcomes are considered

Actions are enabled by observable events:

Overlapping views enable identical actions:

Planning with Joint Executions

Our implementation maintains these restrictions while building a
JE one action at a time - just like an ordinary situation term.

proc {MakePlan JIn Branches JOut}

BClosed BRest

in

{FindOpenBranch JIn Branches BClosed BRest}

case BRest of (D#R#N)|Bs then Dp Rp S J2 OutNs OutBs in

{FindTrans1 D R Dp Rp S}

OutNs = {JointExec.insert JIn N S {MkPrecFunc S Rp} J2}

OutBs = for collect:C N2 in OutNs do

{C Dp#ex({JointExec.getobs J2 N2 S} Rp)#N2}

end

{MakePlan J2 {Append3 BClosed OutBs Bs} JOut}

else JOut = JIn end

end

Planning with Joint Executions

Joint Executions

Joint Execution: a partially-ordered data structure representing
actions to be performed by a group of agents

That ensures synchronisation is always possible

That can be reasoned about using standard sitcalc techniques

That can replace situation terms in the Golog planning process

Implemented in a MIndiGolog execution planner

Outline

Publications

Sebastian Sardina, Giuseppe De Giacomo, Yves Lesperance,
and Hector Levesque. On the Semantics of Deliberation in
IndiGolog - From Theory to Implementation. Annals of
Mathematics and Artificial Intelligence, 41(2-4):259-299,
August 2004

Ryan F. Kelly and Adrian R. Pearce. Towards High-Level
Programming for Distributed Problem Solving. In Proceedings
of the IEEE/WIC/ACM Inter- national Conference on
Intelligent Agent Technology (IAT’06), pages 490-497, 2006

Ryan Kelly. Asynchronous Multi-Agent Reasoning in the
Situation Calculus, PhD Thesis, The University of Melbourne,
2008

Publications

A. Ferrein, Ch. Fritz, and G. Lakemeyer. Using Golog for
Deliberation and Team Coordination in Robotic Soccer.
Kunstliche Intelligenz, I:24-43, 2005.

Alessandro Farinelli, Alberto Finzi, Thomas Lukasiewicz:
Team Programming in Golog under Partial Observability.
IJCAI: 2097-2102, 2007

Fiora Pirri and Ray Reiter. Planning with natural actions in
the situation calculus. In Logic-Based Artificial Intelligence.
Kluwer Press, 2000.

Download

MIndiGolog is downloadable from www.agentlab.unimelb.edu.au

Summary

	Introduction
	IndiGolog Application: Cooking
	MIndiGolog Semantics
	Distributed Planning
	Joint Execution
	Conclusions

