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A (slightly adapted) well-known illustrative example

Ann and Bob can only observe each other’s actions if they are in the same room.
They can hear each other’s actions from adjacent rooms.

They have no other means of synchronisation!
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Knowledge in the Situation Calculus

Introduction

A (slightly adapted) well-known illustrative example

Ann and Bob are hunting a Wumpus in a dungeon with many interconnecting
rooms. They can fully observe each other’s actions if they are in the same
room, can hear each other’s actions from adjacent rooms, and have no other
means of synchronisation.
Like any Wumpus, this one does not move, causes a stench in all adjacent
rooms, and if shot will emit a piercing scream that can be heard anywhere in
the dungeon.
Can Ann and Bob coordinate their knowledge and actions in order to find and
shoot the Wumpus?



(Multi-agent) Hunt The Wumpus in the Situation Calculus

Action description axioms Dad:

Poss(move(agt, r), s) ≡Adjacent(r,Loc(agt, s))

Poss(shoot(agt, r), s) ≡Adjacent(r,Loc(agt, s))

Poss(alert(agt), s) ≡Stench(Loc(agt, s), s)

Successor state axioms Dssa:

r = Loc(agt, do(c, s)) ≡move(agt, r) ∈ c
∨ (r = Loc(agt, s) ∧ ¬∃r′ : move(agt, r′) ∈ c)

Killed(do(c, s)) ≡Killed(s)

∨ ∃agt, r : shoot(agt, r) ∈ c ∧ r = Wumpus(s)

r = Wumpus(do(c, s)) ≡ r = Wumpus(s)

Stench(r, do(c, s)) ≡Stench(r, s)

Initial situation (S0): Init(s)→ ∀agt : Loc(agt, s) = R1
Init(s)→Wumpus(s) 6= R1 ∧ ¬Stench(R1, s)
Wumpus(S0) = R5
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Knowledge in the Situation Calculus
Reasoning tasks

Extensions to the Situation Calculus for representing and reasoning about
knowledge

Epistemic reasoning [HalpernMoses92] (not this work)
Epistemic reasoning about unrestricted forms of nested knowledge in Kn –
Reasoning about group-level knowledge modalities

Synchronous Knowledge [ScherlLevesque03] (builds on this work)
Knowledge, action and the frame problem

Asynchronous Knowledge [KellyPearce07] (our work)
Asynchronous knowledge in the situation calculus — reasoning about
knowledge with hidden actions

Two aspects to knowledge
1 incomplete information (through action can learn)
2 lack of synchronisation (don’t know how many actions have occurred)
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Asynchronous Knowledge in the Situation Calculus?

Explanation closure assumes complete knowledge of Dssa
Golog assumes complete knowledge of Dad and Duna in S0

What if incomplete knowledge: Knows(φ, s)?

Limitation: Synchronicity This works well, but it depends on two assumptions:

Complete knowledge (linear plan, no sensing)

Synchronous domain (agents proceed in lock-step)

Nearly universal in the literature: ”assume all actions are public”.

Challenge: Regression depends intimately on Synchronicity
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Axiomatizing Observations

First, we must represent asynchronicity.

We reify the observations made by each agent, by adding the following action
description function of the following form to Dad:

Obs(agt, c, s) = o

If Obs(agt, c, s) = ∅ then the actions are completely hidden.

V iew(agt, S0) = ε
Obs(agt, c, s) = ∅ → V iew(agt, do(c, s)) = V iew(agt, s)

Obs(agt, c, s) 6= ∅ → V iew(agt, do(c, s)) = Obs(agt, c, s) · V iew(agt, s)
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Knowledge in the Situation Calculus

Introduction

Axiomatizing Observations

• Reify (make concrete) the local perspective of each agent by explicitly talking about
what it has observed

• when actions c are performed in situation s, agent agt will perceive observations o

• Each agent makes a set of observations, each situation then corresponds to a local
view for that agent.

• Allowing the set of observations to be empty lets us model truly asynchronous
domains.

• Definitions at bottom are added to foundational actions (since they do not change
from domain to domain).



Observations

In synchronous domains, everyone observes every action:

a ∈ Obs(agt, c, s) ≡ a ∈ c

Sensing results can be easily included as action#sensing pairs:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ SR(a, s) = r

And observability can be axiomatised explicitly

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s)
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Knowledge in the Situation Calculus

Introduction

Observations

• Sensing actions can be considered as private actions (but remember will have to
handle situation that arbitrary many unobservable actions have occurred).

• CanObs is introduced as a new action description predicate.



Axiomatizing observations
Multi-agent Hunt the Wumpus

Observation axioms (added to Dad):

move(agt1, r1) ∈ Obs(agt, c,s) ≡ move(agt1, r1) ∈ c
∧ [Loc(agt, s) = Loc(agt1, s) ∨ Loc(agt, s) = r1]

shoot(agt1, r1) ∈ Obs(agt, c,s) ≡ shoot(agt1, r1) ∈ c
∧ Loc(agt, s) = Loc(agt1, s)

alert(agt1) ∈ Obs(agt, c,s) ≡ alert(agt1) ∈ c
∧ Loc(agt, s) = Loc(agt1, s)
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Axiomatizing observations
Multi-agent Hunt the Wumpus

Observation axioms:

footsteps ∈ Obs(agt, c, s) ≡∃agt1, r1 : move(agt1, r1) ∈ c
∧ [Adjacent(Loc(agt, s), r1)∨

Adjacent(Loc(agt, s),Loc(agt1, s))]

alert ∈ Obs(agt, c, s) ≡∃agt1 : alert(agt1) ∈ c
∧Adjacent(Loc(agt, s),Loc(agt1, s))

stench ∈ Obs(agt, c, s) ≡∃r1 : move(agt, r1) ∈ c
∧ Stench(r1, s)

scream ∈ Obs(agt, c, s) ≡∃agt1, r1 : shoot(agt1, r1) ∈ c
∧ r1 = Wumpus(s) ∧ ¬Killed(s)
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Axiomatizing observations

Action: global event changing the state of the world
Observation: local event changing an agent’s knowledge

Situation: global history of actions giving current world state
View: local history of observations giving current knowledge

How can we let agents reason using only their local view?
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Knowledge

If an agent is unsure about the state of the world, there must be several different
states of the world that it considers possible.
The agent knows φ iff φ is true in all possible worlds.

Knows(Q) ∧ ¬Knows(P ) ∧ ¬Knows(R) ∧ Knows(P ∨R)
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Knowledge

Introduce a possible-worlds fluent K(agt, s′, s):

We can then define knowledge as a simple macro:

Knows(agt, φ, s)
def
= ∀s′ [K(agt, s′, s)→ φ(s′)]
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Knowledge follows Observation

Halpern & Moses, 1990:
”an agent’s knowledge at a given time must depend only on its local history: the
information that it started out with combined with the events it has observed
since then”

Clearly, we require:

K(agt, s′, s) ≡ V iew(agt, s′) = V iew(agt, s)

We must enforce this in the successor state axiom for K.
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Knowledge: The Synchronous Case
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Knowledge: The Synchronous Case

In the synchronous case, K0 has a simple successor state axiom:

K0(agt, s
′′, do(c, s)) ≡ ∃s′, c′ : s′′ = do(c′, s′) ∧K0(agt, s

′, s)

∧ Poss(c′, s′) ∧Obs(agt, c, s) = Obs(agt, c′, s′)

And a correspondingly simple regression rule:

R(Knows0(agt, φ, do(c, s))
def
= ∃o : Obs(agt, c, s) = o

∧ ∀c′ : Knows0(agt, Poss(c
′) ∧Obs(agt, c′) = o→ R(φ, c′), s)
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Knowledge: The Asynchronous Case
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Knowledge: The Asynchronous Case

First, some notation:

s <α do(c, s
′) ≡ s ≤α s′ ∧ α(c, s′)

PbU(agt, c, s)
def
= Poss(c, s) ∧Obs(agt, c, s) = {}

Then the intended dynamics of knowledge update are:

K(agt, s′′, do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → K(agt, s′′, s)]

∧ [o 6= ∅ → ∃c′, s′ : K(agt, s′, s)

∧Obs(agt, c′, s′) = o ∧ Poss(c′, s′) ∧ do(c′, s′) ≤PbU(agt) s
′′]
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Sync vs Async

We’ve gone from this:

K0(agt, s
′′, do(c, s)) ≡ ∃s′, c′ : s′′ = do(c′, s′) ∧K0(agt, s

′, s)

∧ Poss(c′, s′) ∧Obs(agt, c, s) = Obs(agt, c′, s′)

To this:

K(agt, s′′, do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → K(agt, s′′, s)]

∧ [o 6= ∅ → ∃c′, s′ : K(agt, s′, s)

∧Obs(agt, c′, s′) = o ∧ Poss(c′, s′) ∧ do(c′, s′) ≤PbU(agt) s
′′]

It’s messier, but it’s also hiding a much bigger problem...
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Regressing Knowledge

Our new SSA uses ≤PbU(agt) to quantify over all future situations. Regression
cannot be applied to such an expression.

An asynchronous account of knowledge cannot be approached using the standard
regression operator.

In fact, this quantification requires a second-order induction axiom.
Must we abandon hope of an effective reasoning procedure?
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Property Persistence
[KellyPearce2010]

Property persistence facilitates ”factoring out” the quantification, this allows us to
get on with the business of doing regression.

The persistence condition P[φ, α] of a formula φ and action preconditions α to
mean: assuming all future actions satisfy α, φ will remain true.

P[φ, α](s) ≡ ∀s′ : s ≤α s′ → φ(s′)

Like R, the idea is to transform a query into a form that is easier to deal with.
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Property Persistence
[KellyPearce2010]

The persistence condition can be calculated using fixpoint approximates
[CousotCousot79,Tarski55]

P1(φ, α)[s]
def
= φ[s] ∧ ∀c : α(c, s)→ R(φ, c)[s]

Pn(φ, α) def
= P1(Pn−1(φ, α), α)

[
Pn(φ, α)→ Pn+1(φ, α)

]
⇒ [Pn(φ, α) ≡ P(φ, α)]

Corresponds to the greatest fixpoint – sound but not complete (might have to go
beyond ω in case of infinite ground actions, as SO)

This calculation provably terminates over complete, finite lattices (e.g.
context-free case, STRIPS)

Can be computed offline using static domain reasoning for non-disjunctive
queries [DemolombePozosParra00]
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Regressing Knowledge
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Regressing Knowledge

It becomes possible to define the regression of our Knows macro:

R[Knows(agt, φ, do(c, s))] =

[Obs(agt, c, s) = {} → Knows(agt, φ, s)]

∧ [∃o : Obs(agt, c, s) = o ∧ o 6= {} →
Knows(agt,∀c′ : Obs(agt, c′) = o→

R[P[φ, PbU(agt)](do(c′, s′))], s)]
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View-Based Reasoning

The regression operator can be modified to act over observation histories, instead
of over situations:

R[Knows(agt, φ, o · h)] =
Knows(agt,∀c′ : Obs(agt, c′, s′) = o→

R[P[φ, PbU(agt)](do(c′, s′))], h)

We can equip agents with a situation calculus model of their own environment.
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Multi-agent Hunt the Wumpus
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Example 1

Initially, Ann does not know where the wumpus is:

D ∪DobsK |= ¬∃r : Knows(A,Wumpus() = r, S0)

Regression:

R(¬∃r : Knows(A,Wumpus() = r, S0))⇒
¬∃r : Knows0(A,R((P(Wumpus() = r, PbU(A))[S0])

−1, S0)

Fixpoint search terminates after single iteration:

P(Wumpus() = r, PbU(A)) ⇒ Wumpus() = r

Gives: R(¬∃r : Knows(A,Wumpus() = r, S0))⇒
¬∃r : Knows0(A,R((Wumpus() = r)[S0])

−1, S0)
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Knowledge in the Situation Calculus

Introduction

No sequence of hidden actions could result in Ann learning Wumpus location:

• The notation φ[s′] represents a uniform formula in which all fluents have their
situation argument replaced with the particular situation term s′

• φ−1 represents a uniform formula with the situation argument removed
from all its fluents.



Example 2

Bob knows that the wumpus is not in an adjacent room, since he knows there is
no stench in room R1.

D ∪DobsK |= Knows(B,Wumpus() 6= R2 ∧Wumpus() 6= R4), S0)

All initial situations have ¬Stench(R1) and the background theory has
Adjacent(R2, R1), Adjacent(R4, R1), and the axiom relating a stench to an
adjacent wumpus.

All initial situations thus have no Wumpus in rooms adjacent to R1, so the
regressed query is entailed by the domain.
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Knowledge in the Situation Calculus

Introduction

It is therefore safe for him to move to an adjacent room.

Regressing as in the previous example gives the equivalent query:



Example 3

After Bob moves into room R2, he knows that it has a stench.

D ∪DobsK |= Knows(B,Stench(R2), do({move(B,R2)}, S0))

R(Knows(B,Stench(R2), do({move(B,R2)}, S0))⇒
∃o : Obs(B, {move(B,R2)}, S0) = o

∧ [o = ∅ → Knows(B,Stench(R2), s)]

∧ [o 6= ∅ → Knows(B, ∀c′ : Obs(B, c′) = o

∧Poss(c′)→ R(P(Stench(R2), P bU(B)), c′), s)]

Expanding “∃o” clause into a finite disjunction – only two possible values for
Obs(B, {move(B,R2)}, s), corresponding to room having or not having a stench:

Stench(R2, s) ≡ Obs(B, {move(B,R2)}, s) = {move(B,R2), stench}
¬Stench(R2, s) ≡ Obs(B, {move(B,R2)}, s) = {move(B,R2)}
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Expanding and replacing each observation with its preconditions yields:

R(Knows(B,Stench(R2), do({move(B,R2)}, S0))⇒
(Stench(R2, S0) ∧ [Knows(B, . . . )])

∨ (¬Stench(R2, S0) ∧ [Knows(B, . . . )])

The domain entails Stench(R2, S0) so we can simplify the other option away,
leaving:

R(Knows(B,Stench(R2), do({move(B,R2)}, S0))) ⇒
Knows(B, ∀c′ : Poss(c′) ∧Obs(B, c′) = {move(B,R2), stench} →

R(P(Stench(R2), P bU(B)), c′), S0)

The persistence condition calculation again terminates after one iteration:

P(Stench(R2), P bU(B))⇒ Stench(R2)

R(P(Stench(R2), P bU(B)), c′)⇒ Stench(R2)

34 / 43



So the query further simplifies to:

Knows(B, ∀c′ : Poss(c′) ∧Obs(B, c′) = {move(B , R2), stench(R2)} →
Stench(R2), S0)

Since domain has finite number of possible actions, we can expand the “∀c′”
clause into a finite conjunction – indeed, the only value of c′ that can produce
those observations is {move(B,R2)}.

Substituting it and its action description predicates Poss and Obs gives:

Knows(B,Adjacent(R2,Loc(B)) ∧ Stench(R2) → Stench(R2), S0)

This tautology is clearly entailed by the domain.
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Example 4

Ann learns that Bob is in room R2 by observing Bob’s move.

D ∪DobsK |= Knows(A,Loc(B) = R2, do({move(B,R2)}, S0))

Example 5

After Bob alerts that there is a stench, Ann knows there is a stench in room R2 ,
since Ann knows that Bob is in room R2.

D ∪DobsK |= Knows(A,Stench(R2), do([{move(B,R2)}, {alert(B)}], S0))
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Example 6

After moving to room R4 Ann observes a stench, knows that there is a stench in
both R2 and R4:

D ∪DobsK |= Knows(A,Stench(R2) ∧ Stench(R4),

do([{move(B,R2)}, {alert(B,R2)}, {move(A,R4)}], S0))

And hence knows that the wumpus is in room R5:

D ∪DobsK |= Knows(A,Wumpus() = R5,

do([{move(B,R2)}, {alert(B,R2)}, {move(A,R4)}], S0))
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Example 7

Ann doesn’t know where Bob is, since she can’t observe his footsteps from room
R4.

D ∪DobsK |= ¬∃r :Knows(A,Loc(B) = r,

do([{move(B,R2)}, {alert(B,R2)}, {move(A,R4)}] , S0))

Example 8

Ann shoots the wumpus, observes the scream and knows the wumpus is dead.

D∪DobsK |= Knows(A,Killed ,

do([{move(B,R2)}, {alert(B)}, {move(A,R3)}, {shoot(A,R4)}], S0))
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Example 9

Ann knows that Bob knows the wumpus is dead, as he will have heard the scream
regardless of this location.

D ∪DobsK |= Knows(A,Knows(B,Killed),

do([{move(B,R2)}, {alert(B)}, {move(A,R4)}, {shoot(A,R5)}], S0))

At this point the hunters will have common knowledge that the Wumpus is
dead.

However, the current formalism is not rich enough to reason directly about
common knowledge

Although we have preliminary work on this topic in [KellyPearce08] that
could be integrated with the approach taken here.

39 / 43



Applications of Knowledge in the Situation Calculus
What kind of applications?

Public actions

Private actions

Guarded sensing actions

Speech acts

Explicit observability axioms

Observability interaction

Observing the effects of actions

Delayed communication
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Summary

A robust account of knowledge based on observations, allowing for arbitrarily-long
sequences of hidden actions, in asynchronous settings

Allows agents to reason about their own knowledge using only their local
information

Main point: Facilitates first-order theorem proving for reasoning about hidden
actions – Regression rule avoids SO logic by utilizing persistence condition

Subsumes existing accounts of knowledge – equivalent to [ScherlLevesque03]
in synchronous case

Elaboration tolerant — compatible with existing techniques

Preliminary Prolog implementation using modal variant of the LeanTAP
theorem prover [BernhardBeckertPosegga95,Fitting98], verified its operation
on some simple examples
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