
:- 1 Prolog Introduction

1. Predicates

2. Making Queries

3. Variables

4. Compound Queries

5. Clause Bodies

6. Recursive Predicates

7. Logic Databases

13

Constraints
5 people live in the five houses in a street. Each has a

different profession, animal, favorite drink, and each house

is a different color.

The Englishman lives in the red house The Spaniard owns a dog

The Norwegian lives in the first house on the left The Japanese is a painter

The green house is on the right of the white one The Italian drinks tea

The fox is in a house next to the doctor Milk is drunk in the middle house

The horse is in a house next to the diplomat The violinist drinks fruit juice

The Norwegians house is next to the blue one The sculptor breeds snails

The owner of the green house drinks coffee The diplomat lives in the yellow house

Who owns the zebra? Who drinks water?

Real world staff rostering problems have many constraints

just like this.

5

New Abstractions for Logic Programming

• Declarative programming

• Relational programming, table-driven programming

• Unification, partial data structures

• Programming by constraint, reversible programs

• Nondeterminism (and backtracking)

10

:- 1.1 Predicates
In most programming languages, the basic abstraction is

the function or perhaps method

In Prolog, the basic abstraction is the predicate or

relation

A function is a mapping from some inputs to some

outputs

A predicate instead indicates whether or not some

entities are related in a particular way

In logic programming, may test whether some entities are

related in a particular way, or to find entities that are

related to other entities

14

:- Predicates (2)

Here is a simple Prolog program giving information about

the British royal family:

parent(elizabeth, charles).

parent(diana, william).

parent(diana, harry).

parent(philip, charles).

parent(charles, william).

parent(charles, harry).

Here parent is a predicate

Each line above is a separate clause

Each clause is a separate true statement: should be able to

understand each clause separately

A Prolog program may consist of many files, each defining

many predicates, each defined by many clauses

15

:- 1.2 Making Queries
We can use this program to ask about family relationships

Most Prolog systems, such as the SWI Prolog system we

will be using, provide an interactive environment

Allows loading and testing code

Prolog prompt is ?-

Load source file by wrapping file name in single quotes and

square brackets, followed by full stop

Usual extension for Prolog source code is .pl

Pose queries by typing them at the prompt; Prolog will

answer them with Yes or No

16

:- Making Queries (2)

For these lectures, boxed text like this represents terminal

sessions

toaster% pl

Welcome to SWI-Prolog (Version 4.0.1)

Copyright (c) 1990-2000 University of Amsterdam.

?- [’royals.pl’].

% royals.pl compiled 0.00 sec, 1,200 bytes

Yes

?- parent(diana, harry).

Yes

?- parent(elizabeth, diana).

No

17

:- 1.3 Variables
We can query of whom Elizabeth is parent using a variable:

?- parent(elizabeth, X).

X = charles

Yes

Prolog variables begin with a capital letter or an

underscore, and follow with letters, digits, and underscores

N.B. Prolog variables are very different than variables in

other programming languages

Like Haskell: you cannot change the value of a variable

once it is set

Read query as: “find X such that elizabeth is parent of X”

18

:- Variables (2)

Some queries have more than one answer:

?- parent(diana, X).

X = william ;

X = harry ;

No

When Prolog prints an answer, it waits to see if you want

more answers

Hit semicolon to ask for more answers; hit return if no

more answers are needed

After asking for another answer after harry, Prolog says No,

meaning there are no more answers

19

:- 1.3.1 Multiple Directions

We could run this query the other way around:

?- parent(X, william).

X = diana ;

X = charles ;

No

“Find X such that X is parent of william”

This is possible because our program is declarative: it

specifies information without specifying how it must be

used

Well-written logic programs exhibit this flexibility

This is not always practical, as we will see later

20

:- Multiple Directions (2)

In general, for each argument of a predicate we may pass a

variable or a value

Either way, Prolog finds all matching solutions

Think of the values specified as constraining the solutions,

while variables do not impose a constraint

A query with only variables imposes no constraints:

?- parent(X, Y).

X = elizabeth

Y = charles ;

X = diana

Y = william

...

21

:- 1.4 Compound Queries
Prolog queries can invoke multiple predicates, separating

them with commas

If variables appear more than once, all occurrences must

have same value (as in Algebra)

?- parent(elizabeth,X), parent(X,Y).

X = charles

Y = william ;

X = charles

Y = harry ;

No

22

:- 1.4.1 More Predicates

Our program so far includes no information about gender;

add it now:

female(elizabeth).

female(diana).

male(philip).

male(charles).

male(william).

male(harry).

male and female are predicates defining the gender of the

royals

Predicates can take any number of arguments

The number of arguments is called the arity

A predicate with only one argument essentially defines a

property that certain entities may have

23

:- Exercise: Motherhood

Give a Prolog query that determines the mother of william

24

:- 1.4.2 Constraints

A good way to think of compound queries is that each part

of the query imposes a constraint on the solution

Prolog will only show solutions that satisfy all the

constraints

Some constraints have no solutions

In general, constraints can be placed in any order

Some orders may be more efficient than others

Some orders may not work as expected; more later

25

:- Constraints (2)

?- parent(X,Y), parent(Y,Z), male(Z), female(X).

X = elizabeth

Y = charles

Z = william ;

X = elizabeth

Y = charles

Z = harry ;

No

?- parent(X,Y), parent(Y,X).

No

?- male(X), female(X).

No

26

:- 1.5 Clause Bodies
Predicates can be defined in terms of other predicates

A clause may have two parts: a head and a body

Head and body are separated by :- (read it as “if”)

Head looks like a predicate with arguments, some of which

may be variables

Body looks like a query

Means head is true if body is true

Omit :- if body is empty (as in previous examples)

Clause with no body is called a unit clause or a fact

27

:- 1.5.1 Extending the Example

We can define a grandparent as a parent’s parent:

grandparent(G, C) :-

parent(G, P),

parent(P, C).

Read: “G is grandparent of C if G is parent of P and P is

parent of C”

Can use this to find grandparents or grandchildren:

?- grandparent(elizabeth, X).

X = william ;

X = harry ;

No

?- grandparent(X, william).

X = elizabeth ;

X = philip ;

No

28

:- Exercise: Family Relationships

1. Define a predicate father(Dad,Kid) that holds when Dad

is father of Kid

2. Define a predicate greatgrandparent(Adult,Child) that

holds when Adult is a great grandparent of Child

29

:- 1.6 Recursive Predicates
Predicates can also be defined recursively:

ancestor(A, A).

ancestor(A, D) :-

parent(A, C),

ancestor(C, D).

The first clause says that everyone is their own ancestor —

not the usual definition, but common in computer science

The second clause says that the parents of your ancestors

are your ancestors

This code can be used both for finding ancestors and

descendants

30

:- 1.6.1 Querying Recursive Predicates

?- ancestor(A,harry).

A = harry ;

A = elizabeth ;

A = diana ;

A = philip ;

A = charles ;

No

?- ancestor(elizabeth, D).

D = elizabeth ;

D = charles ;

D = william ;

D = harry ;

No

31

:- 1.7 Disjunction
Disjunction in Prolog uses the ; operator, e.g.:

person(X) :-

(male(X) ; female(X)).

Could also have been written:

person(X) :- male(X).

person(X) :- female(X).

32

:- 1.8 Logic Databases
Programming by constraint is good for database-like

applications (this is similar to the way relational databases

work)

state(tas). state(vic). state(nsw). state(nt).

state(sa). state(act). state(qld). state(wa).

borders1(vic, nsw). borders1(vic, sa). borders1(nt, wa).

borders1(nsw, qld). borders1(nsw, sa). borders1(sa, nt).

borders1(qld, sa). borders1(qld, nt). borders1(sa, wa).

borders1(act, nsw).

borders(S1, S2) :- borders1(S1, S2).

borders(S1, S2) :- borders1(S2, S1).

capital(tas, hobart). capital(vic, melbourne).

capital(nsw, sydney). capital(sa, adelaide).

capital(act, canberra). capital(qld, brisbane).

capital(nt, darwin). capital(wa, perth).

33

:- 1.8.1 Database Queries

?- borders(vic, State), capital(State, Capital).

State = nsw

Capital = sydney ;

State = sa

Capital = adelaide ;

No

?- borders(S, S1), borders(S, S2), S1 \= S2.

S = vic

S1 = nsw

S2 = sa ;

S = vic

S1 = sa

S2 = nsw ;

S = nsw

S1 = qld

S2 = sa

N.B. S1 \= S2 means S1 is different from S2

34

:- 1.8.2 Not Equals

The \= predicate must be after its variables are fixed.

?- S1 \= S2, borders(S, S1), borders(S, S2).

No

This fails because S1 and S2 could be equal at the time the

S1 \= S2 goal is executed

Conjunction is supposed to be commutative, but it isn’t;

this is one of Prolog’s foibles. Explanation later!

Note also that S1 \= S2 is the same as \=(S1, S2)

Prolog syntax supports “operators” (infix, prefix and

postfix); several are pre-defined and you can define your

own, eg is_parent_of, borders

35

