
:- 3 How Prolog Works

1. Resolution

2. Backtracking

3. Generate and Test

4. The Debugger

61

:- 3.1 Resolution
Prolog’s execution mechanism is based on resolution

Much more detail on resolution later; for now a very

pragmatic view

Actual execution strategy is more efficient than this

presentation — more like the way conventional languages

are implemented

This description leaves off how unification works

This is only a rough sketch

62

:- 3.1.1 The Basic Algorithm

1. Start with a query g1, g2, g3, . . . and empty stack

2. If the query is empty, terminate succeeding; otherwise,

choose the first goal from query

3. If no program clause matches the chosen goal, then:

4. If the stack is empty, terminate failing; otherwise pop

the query and clause from the stack and return to 3

5. Otherwise: choose first clause whose head matches

the chosen goal; push query and next clause on a stack

6. Replace first goal with the body of the chosen clause

at the front of the query and return to 2

63

:- 3.1.2 Example (without backracking)

add(0, Y, Y).

add(s(X), Y, s(Z)) :-

add(X, Y, Z).

Initial query: add(s(s(0)), s(s(s(0))), A).

Clause 1 does not match; clause 2 matches with

X = s(0), Y = s(s(s(0))), A = s(Z)

New query: add(s(0), s(s(s(0))), Z)

Clause 1 does not match; clause 2 matches with

X1 = 0, Y1 = s(s(s(0))), Z = s(Z1)

(variable names changed)

New query: add(0, s(s(s(0))), Z1)

Clause 1 matches with Z1 = Y2 = s(s(s(0)))

New query is empty: success, leaving

A = s(Z) = s(s(Z1)) = s(s(s(s(s(0)))))

64

:- 3.2 Backtracking
Nondeterminism describes a computation that may

have more than one result, for example

?- parent(diana, X).

Support for nondeterminism is an important feature of

Prolog

Prolog handles nondeterminism by backtracking —

undoing all work done since a tentative choice was

made so an alternative choice can be tried

Backtracking is performed in steps 3 and 4, when multiple

clauses matched a selected goal, and later a goal fails

An entry pushed on the stack in the resolution

algorithm is called a choicepoint

65

:- 3.2.1 Backtracking Example

member(X, [X|]).
member(X, [|L]) :-

member(X, L).

Initial query: member(Z, [a,b]), member(Z, [b,c])

Both clauses match first goal; choose first and push a

choicepoint

Z = X = a

New query: member(a, [b,c])

Clause 1 does not match; clause 2 matches with

X1 = a, L1 = [c]

66

:- Backtracking Example (2)

New query: member(a, [c])

Clause 1 does not match; clause 2 matches with

X2 = a, L2 = []

New query: member(a, [])

Neither clause matches: failure

67

:- Backtracking Example (3)

We are not done; we pop the choicepoint off the stack

This returns us to state at time the choicepoint was

pushed, but now we go on to the next clause

New query: member(Z, [a,b]), member(Z, [b,c])

Now choose second clause, with

Z = X, L = [b]

New query: member(Z, [b]), member(Z, [b,c])

Both clauses match first goal; choose first and push a

choicepoint

Z = X = b

68

:- Backtracking Example (4)

New query: member(b, [b,c])

Both clauses match first goal; choose first and push a

choicepoint

X2 = b

New query is empty: success, leaving

Z = b

Prolog prints this result; if we hit ; asking for more

solutions, this forces an artificial failure, causing Prolog to

backtrack, looking for more solutions

69

:- Backtracking Example (5)

New query: member(b, [b,c])

Clause 2 matches with X2 = b, L2 = [c]

New query: member(b, [c])

Clause 2 matches with X3 = b, L3 = []

New query: member(b, [])

Neither clause matches: pop last choicepoint

New query: member(Z, [b]), member(Z, [b,c])

Second clause matches, leaving

X3 = Z, L3 = []

New query: member(Z, []), member(Z, [b,c])

Neither clause matches: final failure

70

:- 3.2.2 Example: Search Tree

fail

fail

fail fail

true

fail

fail fail

fail fail

member(Z,[a,b]), member(Z,[b,c])

member(a,[b,c]) member(Z,[b]), member(Z,[b,c])

member(Z,[]), member(Z,[b,c])member(b,[b,c])

member(b,[c])

member(a,[c])

member(a,[])

member(b,[])

71

:- Exercise: Motherhood Again

Draw a search tree for the following program and query

parent(charles, william). parent(charles, harry).

parent(diana, william). parent(diana, harry).

female(elizabeth). female(diana).

?- parent(X,Y), female(X).

72

:- 3.3 Generate and Test
This example shows that the two calls to member behave

very differently:

First call member(Z, [a,b]) successively generates elements

of the list [a,b]

Second call member(Z, [b,c]) tests the solutions generated

by the first call

This is because when first call is made, Z is unbound, but

when second call is made, Z is bound

generate and test is a simple but powerful

technique for solving compound constraints

The bound/unbound state of the arguments of a

predicate invocation is called its mode

73

:- 3.3.1 Reverse

A list can be reversed by appending its first element to the

reverse of the remaining elements:

rev([], []). % the reverse of [] is []

rev([A|BC], R) :- % the reverse of a list [A] ++ BC

rev(BC, CB), % is the reverse of BC

append(CB, [A], R). % with A added on the end

Unfortunately, this definition is not as flexible as we would

like:

?- rev([a,b,c], R).

R = [c, b, a] ;

No

?- rev(R, [a,b,c]).

R = [c, b, a] ;

Action (h for help) ? abort

% Execution Aborted

74

:- 3.3.2 Reverse Goes Wrong

In the “backwards” mode, rev/2 produces the correct

answer, but when we look for more answers, get gets into

an infinite loop

Hit control-C then a to abort a runaway computation

In the “backwards” mode, the recursive call to rev/2

generates, and call to append/3 tests

The problem: rev/2 generates infinitely many solutions,

and append/3 only accepts one

75

:- 3.3.3 Reverse Example

rev(X,[a,b])

ap([],[A],[a,b])

ap(CB,[A],[a,b])
rev(BC,CB),

rev(BC1,CB1),
ap(CB1,[A1],CB),
ap(CB,[A],[a,b])

ap(CB,[A],[a,b])
ap(CB1,[A1],CB),

X=[A|BC]

BC=[], CB=[] BC=[A1|BC1], CB=CBA1

BC1=[], CB1=[]

(continued on next slide)
NB: if this succeeds,

X=[A,A1]

fail fail

fail

76

:- Reverse Example (2)

ap(CB1,[A1],CB),
ap(CB,[A],[a,b])

ap([A1],[A],[a,b])

ap([],[A],[b])

ap([J|KL],[A],[a,b])
ap(K,[A1],KL),

ap([J,A1],[A],[a,b])
ap(K1,[A1],KL1),

ap([J,J1|KL1],[A],[a,b])

ap([J,J1,A1],[A],[a,b])

CB1=[], CB=[A1]

A1=a

CB1=[J|K], CB=[J|KL]

A=b

X=[b,a]

K=[], KL=[A1] K=[J1|K1], KL=[J1|KL1]

fail

failtrue
fail

fail

77

:- 3.3.4 Reverse Body Reordered

Simple solution: reorder the body of the recursive clause

rev([], []). % the reverse of [] is []

rev([A|BC], R) :- % the reverse of a list [A] ++ BC

append(CB, [A], R), % is CB with A added on the end

rev(BC, CB). % where CB is the reverse of BC

This fixes that problem, but causes another:

?- rev(R, [a,b,c]).

R = [c, b, a] ;

No

?- rev([a,b,c], R).

R = [c, b, a] ;

Action (h for help) ? abort

% Execution Aborted

78

:- Reverse Body Reordered (2)

rev(X,[a,b])

rev(BC,[a])

ap(K,[A],[b])

ap(CB,[A],[a,b]),
rev(BC,CB)

rev(BC,[a|K]),

rev(BC1,[])

ap(CB2,[A2],[]),

rev(BC1,CB1)
ap(CB1,[A1],[a]),

rev(BC2,CB2)

ap(K1,[A],[]),
rev(BC,CB)

ap(K1,[A2],[]),
rev(BC1,CB1)

K=[], A=b

X=[A|BC]

CB=[a|K], KL=[b]

BC1=[]

BC=[A1|BC1]

CB1=[], A1=a

BC1=[A2|BC2]

K=[b|K1], KL1=[]

CB1=[a|K1], KL1=[]

X=[b,a]

fail

fail

fail

true

failfail

failfail

failfail

79

:- 3.3.5 Fixing Reverse

Solution: make sure both arguments are bound enough to

prevent infinite generate and test

reverse(ABC, CBA) :-

same_length(ABC, CBA), % ensure backbones bound

rev(ABC, CBA). % use either old defn

same_length([], []). % empty lists are same length

same_length([_|As], [_|Bs]) :- % same length if

same_length(As, Bs). % tails are same length

80

:- 3.4 The Debugger
Understanding choicepoints and backtracking is essential

to understanding Prolog code; debugger is a good way

The Byrd box model can be visualized:

redo

exit

fail

call

Call port initial entry to the goal

Exit port successful completion of the goal

Redo port backtracking into the goal

Fail port final failure of the goal

Debugger turned on by trace, and off with nodebug.

81

:- 3.4.1 Member Example

?- trace, member(Z, [a,b]), member(Z, [b,c]).

Call: (7) member(_G402, [a, b]) ? creep

Exit: (7) member(a, [a, b]) ? creep

Call: (7) member(a, [b, c]) ? creep

Call: (8) member(a, [c]) ? creep

Call: (9) member(a, []) ? creep

Fail: (9) member(a, []) ? creep

Fail: (8) member(a, [c]) ? creep

Fail: (7) member(a, [b, c]) ? creep

Redo: (7) member(_G402, [a, b]) ? creep

Call: (8) member(_G402, [b]) ? creep

Exit: (8) member(b, [b]) ? creep

Exit: (7) member(b, [a, b]) ? creep

Call: (7) member(b, [b, c]) ? creep

Exit: (7) member(b, [b, c]) ? creep

82

:- 3.4.2 Debugger Commands

Many powerful commands. The most useful are:

h display debugger help

c creep to the next port (enter does the same thing)

s skip over execution; go straight to the exit or fail port

r go back to the initial call port of this goal, undoing all

bindings done since starting it; this one is very useful

a abort this debugging session level prompt

+ set a spypoint (like a breakpoint) on this predicate

- remove spypoint from this predicate

l leap to the next spypoint

b pause this debugging session and enter a break level,

with new Prolog prompt; end of file (control-d)

reenters debugger.

83

:- 3.4.3 Debugger Predicates

Prolog also has a few built-in predicates for controlling the

debugger.

spy(Predspec) Place a spypoint on Predspec, which can be

a Name/Arity pair, or just a predicate name.

nospy(Predspec) Remove the spypoint from Predspec.

trace Turn on the debugger

debug Turn on the debugger and leap to first spypoint

nodebug Turn off the debugger

84

