
:- 4 Arithmetic and
Nondeterminism
Prolog arithmetic can be a little surprising; you need to be

aware of modes. Sometimes nondeterminism needs to be

managed.

1. Arithmetic

2. Operators

3. Modes and Arithmetic

4. Expressions

5. Managing Nondeterminism

6. Arithmetic and Lists

85

:- 4.1 Arithmetic
In most languages 3 + 4 is an expression that has a value

In Prolog, 3 + 4 is just a term whose functor is + and

arguments are 3 and 4

It’s not code, it’s data

The Prolog builtin = just unifies (matches) two terms, it

does not evaluate expressions

?- X = 3 + 4.

X = 3+4 ;

No

86

:- Arithmetic (2)

Use the built in is/2 predicate to compute the value of an

arithmetic expression:

?- is(X, 3+4).

X = 7 ;

No

is(X, Y) holds when X is a number and Y is an arithmetic

expression and X is the value of Y

87

:- 4.2 Operators
is is actually an infix operator in Prolog

This means that instead of writing is(X,3+4) we could also

have written X is 3+4

This is easier to read, so it preferred, although both work

Similarly, + is an operator; 3+4 is the same as +(3,4)

Operators in Prolog are not exclusively for arithmetic, they

are part of Prolog’s syntax

Prolog has many other standard operators; some we have

already seen, including :- , ; mod

Operators only affect syntax, not meaning

You can define your own operators

88

:- 4.2.1 Precedence and Associativity

Operators have precedence and associativity

Use parentheses for grouping

E.g. * and / have higher precedence than + and -; they all

associate to the left

?- X is 3 + 4 * 5, Y is (3 + 4) * 5.

X = 23

Y = 35

Yes

?- X is 5 - 3 - 1, Y is 5 - (3 - 1).

X = 1

Y = 3

Yes

89

:- 4.2.2 Display

The built-in predicate display/1 is useful for understanding

how your input will be parsed when it includes operators

display/1 prints a term as Prolog understands it, using

only the standard form with the functor first, and

arguments between parentheses

?- display(3 + 4 * 5), nl, display((3 + 4) * 5).

+(3, *(4, 5))

*(+(3, 4), 5)

Yes

?- display(5 - 3 - 1), nl, display(5 - (3 - 1)).

-(-(5, 3), 1)

-(5, -(3, 1))

Yes

90

:- 4.3 Modes and Arithmetic
We could code a predicate to compute a square like this:

square(N, N2) :- N2 is N * N.

?- square(5, X).

X = 25 ;

No

?- square(X, 25).

ERROR: Arguments are not sufficiently instantiated

We can’t use this definition to compute a square root!

91

:- Modes and Arithmetic (2)

Unfortunately, is/2 only works when the second argument

is ground

The first argument can be unbound or bound to a number

?- X is 3 + Y.

ERROR: Arguments are not sufficiently instantiated

?- 7 is 3 + 4.

Yes

?- 9 is 3 + 4.

No

?- 2 + 5 is 3 + 4.

No

92

:- 4.4 Expressions
Some arithmetic expressions understood by is/2:

E1 + E2 addition float(E1) float equivalent of E1

E1 - E2 subtraction E1 << E2 left shift

E1 * E2 multiplication E1 >> E2 right shift

E1 / E2 division E1 /\ E2 bitwise and

E1 // E2 integer division E1 \/ E2 bitwise or

E1 mod E2 modulo (sign of E1) \ E1 bitwise complement

-E1 unary minus min(E1, E2) minimum

abs(E1) absolute value max(E1, E2) maximum

integer(E1) truncate toward 0

93

:- Expressions (2)

Some useful arithmetic predicates:

E1 < E2 less than

E1 =< E2 equal or less Danger : not <= !!!

E1 >= E2 greater or equal

E1 > E2 greater than

E1 =:= E2 equal (only numbers)

E1 =\= E2 not equal (only numbers)

All of these take ground arithmetic expressions as both

arguments

94

:- 4.5 Managing Nondeterminism
A common Prolog programming error is treating multiple

clauses as if they formed an if-then-else construct

This is an erroneous definition of absolute_value:

absolute_value(X, X) :- X >= 0.

absolute_value(X, Y) :- Y is -X.

?- absolute_value(-3, V).

V = 3 ;

No

?- absolute_value(42, V).

V = 42 ;

V = -42 ;

No

Why do +ve numbers have two absolute values, one of

them -ve?

95

:- Managing Nondeterminism (2)

The problem is that the second clause promises that

|n| = −n

for any n, regardless of its sign

The correct definition:

absolute_value(X, X) :- X >= 0.

absolute_value(X, Y) :- X < 0, Y is -X.

?- absolute_value(-3, V).

V = 3 ;

No

?- absolute_value(42, V).

V = 42 ;

No

96

:- Exercise

Define a Prolog predicate maximum(X,Y,Z) such that Z is the

larger of X and Y

97

:- 4.5.1 Fibonacci numbers

Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, . . .

fib(0, 1).

fib(1, 1).

fib(N, F) :-

N > 1,

N1 is N - 1,

N2 is N - 2,

fib(N1, F1),

fib(N2, F2),

F is F1 + F2.

What if we change the order of goals? What if we do F is

F1 + F2 first?

Note: each call makes two recursive calls. Are there better

ways to compute Fibonacci numbers?

98

:- 4.6 Lists and Arithmetic
Summing a list combines arithmetic with list processing:

sumlist([], 0). % sum([]) = 0

sumlist([X|Xs], Sum) :- % sum([X|Xs]) = Sum if

sumlist(Xs, Sum1), % sum(Xs) = Sum1 and

Sum is Sum1 + X. % Sum = Sum1 + X

This can be done more efficiently:

sumlist([], Sum, Sum). % sum([]) + Sum = Sum

sumlist([X|Xs], Sum0, Sum):-% sum([X|Xs]) + Sum0 = Sum if

Sum1 is Sum0 + X, % Sum1 = Sum0 + X, and

sumlist(Xs, Sum1, Sum).% sum(Xs) + Sum1 = Sum

See the lecture on efficiency for more on this

99

:- 4.6.1 List Maximum

Compute the maximum element of a list

maxlist([X], X).

maxlist([X|Xs], Max) :-

maxlist(Xs, Max1),

maximum(Max1, X, Max).

Note: no clause for []! Base case is singleton list because

[] has no maximum

100

:- 4.6.2 List Length

The length/2 built-in relates a list to its length

?- length([a,b,c], 3).

Yes

?- length([a,b,c], N).

N = 3 ;

No

?- length(L, 3).

L = [_G263, _G266, _G269] ;

No

?- length(L, N).

L = []

N = 0 ;

L = [_G278]

N = 1

Yes

It is not straightforward to implement length/2 with

flexible modes; covered later

101

:- 4.6.3 List Handling

Many other list predicates can be defined using append,

length.

member/2 could be defined just in terms of append:

member(X, L) :- % X is a member of L, if L of form

append(_, [X|_], L). % any list ++ [X] ++ any list

E is the Nth element of list L (counting from 0):

element(N, L, E) :- % E is the Nth element of L

append(F, [E|_], L), % if exists F where L = F ++ [E] ++ any

length(F, N). % and the length of F is N

102

:- List Handling (2)

T is a list taking the first N elements of L:

take(N, L, T) :- % T is the first N elements of L

append(T, _, L), % if L = T ++ any list

length(T, N). % and the length of T in N

T is what is left after removing the first N elements of L:

drop(N, L, T) :- % T is the first N elements of L

append(F, T, L), % if L = T ++ any list

length(F, N). % and the length of T in N

L is a list all of whose elements are E:

listof([], _). % [] is a list of anything

listof([E|Es], E) :- % [E|Es] is a list of Es if

listof(Es, E). % Es is

103

104

105

106

107

108

:- 5 Coding in Prolog

We work through examples to illustrate how to write

Prolog code

Our goal: support code for a computerized card game

1. Data and Representation

2. Generating a deck of cards

3. Shuffling

4. Dealing

109

:- 5.1 Data
For any language, first determine:

• what data we manipulate,

• how they are related,

• what are their attributes, and

• what are their primitive operations

We need to represent a (partial) deck of cards, a hand,

individual cards, suits, ranks

Assume we don’t need jokers for this game

110

:- Data (2)

Suits and Ranks have no attributes

Their primitive operations are only distinguishing them and

possibly enumerating them

A card comprises a suit and a rank — those are its

attributes

Constructing a card from rank and suit, and finding a

card’s rank and suit are its only primitive operations

A deck is just an (ordered) sequence of cards

Primitive operations include removing the top card or

adding a card on top; all other operations can be

implemented in terms of those

111

:- 5.2 Representation
Simplest Prolog representations for types without attributes

are atoms and numbers, e.g., hearts, jack, 10, etc

Good idea to write a predicate for each type to specify

what are members of the type

Same code can enumerate values

suit(clubs). suit(diamonds).

suit(hearts). suit(spades).

rank(2). rank(3). rank(4).

rank(5). rank(6). rank(7).

rank(8). rank(9). rank(10).

rank(jack). rank(queen).

rank(king). rank(ace).

112

:- Representation (2)

Simplest Prolog representation for type with attributes is

compound term, one argument for each attribute

For playing card: card(R, S), where R is a rank and S is a

suit

card(card(R,S)) :-

suit(S),

rank(R).

Since rank and suit will enumerate the ranks and suits, this

code will enumerate the cards of a deck

113

:- Representation (3)

Deck is just a sequence of any number of cards

Prolog has good support for lists — good representation

for sequences

List is a deck if each element is a card, i.e., if empty, or if

first element is a card and rest is a deck

deck([]).

deck([C|Cs]) :-

card(C),

deck(Cs).

This representation does not ensure a full deck, nor that

there are no repeated cards

114

:- Exercise: Bridge Hand Evaluation

In Bridge, a hand has 4 high card points for each ace, 3,

for each king, 2 for each queen, and 1 for each jack.

Write a predicate to determine how many high card points

a hand has.

115

:- 5.3 Generating a Full Deck of Cards
deck predicate holds for any deck; we need a full deck

card predicate generates all cards in a deck:

?- card(C).

C = card(2, clubs) ;

C = card(3, clubs) ;

C = card(4, clubs) ;

C = card(5, clubs) ;

C = card(6, clubs) ;

C = card(7, clubs)

Just need a way to collect all solutions to a query

116

:- 5.3.1 All Solutions Predicates

Prolog has built-in predicates for collecting solutions

findall(T, G, L) — L is a list of all terms T that satisfy

goal G in the order solutions are found; variables in G are

left uninstantiated; deterministic

setof(T, G, L) — L is a non-empty list of all terms T that

satisfy goal G; L is sorted with duplicates removed;

variables appearing only in G can be instantiated; can be

nondeterministic (with different variable instantiations)

bagof(T, G, L) — like setof/3 but without the sorting

NB: Template term T is left uninstantiated by all of these

predicates

117

:- All Solutions Predicates (2)

?- bagof(C, card(C), Deck).

C = _G151

Deck = [card(2, clubs), card(3, clubs), card(4, clubs),

card(5, clubs), card(6, clubs), card(7, clubs),

card(8, clubs), card(9, clubs), card(..., ...)|...]

?- setof(C, card(C), Deck).

C = _G151

Deck = [card(2, clubs), card(2, diamonds), card(2, hearts),

card(2, spades), card(3, clubs), card(3, diamonds),

card(3, hearts), card(3, spades), card(..., ...)|...]

findall/3 has the same solution: no variables occur only in

G and the list of solutions is not empty

118

:- All Solutions Predicates (3)

We don’t care about order, and card predicate generates

each card exactly once, so either will work

Use bagof: no point sorting if not needed

new_deck(Deck) :-

bagof(C, card(C), Deck).

Call it new deck because it only holds for lists of all 52 cards

in the order of a brand new deck

NB: setof and bagof fail if goal G has no solutions — you

don’t get the empty list

119

:- All Solutions Predicates (4)

NB: When goal G includes some variables not appearing in

template T , setof and bagof generate a different list L for

each distinct binding of those variables

?- setof(S, borders(State,S), Neighbors).

S = _G152

State = vic

Neighbors = [nsw, sa] ;

S = _G152

State = act

Neighbors = [nsw] ;

S = _G152

State = qld

Neighbors = [nsw, nt, sa]

To just get a list of states that border any state, use

State^borders(State,S) for G

120

:- 5.4 Coding Tips
Prolog lists are very flexible, used for many things

Can do a lot with just length/2 and append/3

When writing list processing predicates, often have one

clause for [] and one for [X|Xs]

It is often easier to write a predicate if you pretend all

arguments are inputs

Think of it as checking correctness of output, rather than

generating output

Then consider whether your code will work in the modes

you want

121

:- Exercise: Selecting the nth Element

Implement select nth1(N, List, Elt, Rest) such that Elt is

the N th element of List, and Rest is all the other elements

of List in order. It need only work when N is bound.

122

:- 5.5 Shuffling
Don’t want to faithfully simulate real shuffling — would

not be random

Shuffling really means randomly permute list order

Simple method: repeatedly randomly select one card from

deck as next card until all cards selected

shuffle([], []).

shuffle(Deck0, [C|Deck]) :-

random_element(Deck0, C, Deck1),

shuffle(Deck1, Deck).

Important: random element must fail for empty deck

NB: Cannot work in reverse mode!

123

:- 5.5.1 Selecting a Random Card

Need to know size of deck to know probability of selecting

any one card

Then we can pick a random number n where 1 ≤ n ≤ length

and remove element n of the deck

Must give back remainder of deck as well as random card,

since we cannot destructively remove card from deck

random_element(List, Elt, Rest) :-

length(List, Len),

Len > 0,

random(1, Len, Rand),

select_nth1(Rand, List, Elt, Rest).

124

:- 5.5.2 Random Numbers

No such thing as a random number ; it’s how the number is

selected that is random

No standard random number predicate in Prolog

Good practice: define reasonable interface, then look in

manual for built-ins or libraries to implement it

This makes maintenance easier

SWI defines random/1 function (not really a function!)

random(Lo, Hi, Rand) :-

Rand is Lo+random(Hi-Lo+1).

125

:- 5.6 Dealing
Interface for dealing:

deal(Deck, Numhands, Numcards, Hands, Rest)

Hands is a list of Numhands lists, each with Numcards cards

All cards come from the front of Deck; Rest is leftover cards

126

:- Dealing (2)

Easiest solution: take first Numcards cards from Deck for

first player, next Numcards for next player, etc

Use append and length to take top (front) of Deck

deal(Deck, 0, _, [], Deck).

deal(Deck, N, Numcards, [H|Hs], Rest) :-

N > 0,

length(H, Numcards),

append(H, Deck1, Deck),

N1 is N - 1,

deal(Deck1, N1, Numcards, Hs, Rest).

127

128

129

130

131

132

:- 6 Determinism

Deterministic Prolog code is much more efficient than

nondeterministic code. It can make the difference between

running quickly and running out of stack space or time.

1. Prolog implementation

2. Determinacy

3. If-then-else

4. Indexing

133

:- 6.1 Prolog implementation
Actual implementation of Prolog predicates is stack-based

a :- b, c.

b :- d, e.

b :- e.

c :- fail.

d :- e.

e.

To execute a, we invoke b, then c

While executing b, we must remember to go on to c; Like

most languages, Prolog uses a call stack

While executing first clause of b, we must remember if we

fail, we should try the second

Prolog implements this with a separate stack, the

choicepoint stack

When a choicepoint is created, the call stack must be

frozen: cannot overwrite current call stack entries because

they may be needed after choicepoint is popped

134

:- 6.1.1 Stack Example

call
stack

choicepoint
stack

10
11
12

0
1
2
3

a :−
b,
c.

b :−
d,

b :−

d :−

4
5
6
7
8
9

e.

e.

e.

c :−
fail.

e.

2

135

:- Stack Example (2)

call
stack

choicepoint
stack

10
11
12

0
1
2
3

a :−
b,
c.

b :−
d,

b :−

d :−

4
5
6
7
8
9

e.

e.

e.

c :−
fail.

e.

2 6
5

136

:- Stack Example (3)

call
stack

choicepoint
stack

10
11
12

0
1
2
3

a :−
b,
c.

b :−
d,

b :−

d :−

4
5
6
7
8
9

e.

e.

e.

c :−
fail.

e.

2 6

NB: call stack not popped!

137

:- Stack Example (4)

call
stack

choicepoint
stack

10
11
12

0
1
2
3

a :−
b,
c.

b :−
d,

b :−

d :−

4
5
6
7
8
9

e.

e.

e.

c :−
fail.

e.

138

:- 6.2 Determinacy
Pushing a choicepoint causes current call stack to be

frozen

We can’t write over frozen part of call stack, so it must be

kept around indefinitely

One choicepoint can freeze a large amount of stack space

So avoiding choicepoints is important to efficiency

A predicate with multiple solutions should leave a

choicepoint

A predicate with only one solution should not

139

:- 6.3 Indexing
Indexing makes Prolog programs more deterministic than

you might expect them to be

Indexing takes a sequence of adjacent clauses whose

first argument is bound and constructs an index to

quickly select the right clause(s)

When a goal has a non-variable first argument, indexing

allows Prolog to immediately choose the clause(s) whose

first argument matches the goal’s first argument

Other clauses are not even considered

Indices are constructed automatically; no special action

needed

You can ask SWI Prolog to index on arguments other than

the first using the index or hash declarations

140

:- 6.3.1 Indexing Example

For example, for the code

capital(tas, hobart). capital(vic, melbourne).

capital(nsw, sydney). capital(sa, adelaide).

capital(act, canberra). capital(qld, brisbane).

capital(nt, darwin). capital(wa, perth).

and the goal

?- capital(vic, X)

Prolog will jump immediately to the second clause

More importantly, after trying the second clause, Prolog

will know no other clause can possibly match, so will not

leave a choicepoint

For a goal such as capital(X, Y), the index will not be

used; Prolog will try every clause

141

:- 6.3.2 Indexing for Determinism

When possible, use indexing to avoid unnecessary

choicepoints

On most Prolog systems, only the outermost constructor

of the first argument is indexed, e.g. with code:

foo(bar(a), 1). foo(bar(b), 2). foo(bar(c), 3).

foo(bar(b), X) would still leave a choicepoint

For efficiency, rewrite to get indexing:

foo(bar(X), N) :- foobar(X, N).

foobar(a, 1). foobar(b, 2). foobar(c, 3).

142

:- Indexing for Determinism (2)

Indexing is used even on predicates with only two clauses:

it allows many predicates to avoid choicepoints

append([], L, L).

append([J|K], L, [J|KL]) :-

append(K, L, KL).

Indexing allows append never to leave a choicepoint when

the first argument is bound

143

:- 6.4 If-Then-Else
Our definition of absolute_value/2 from slide 96 was a bit

unsatisfying because both clauses compare X to 0:

absolute_value(X, X) :- X >= 0.

absolute_value(X, Y) :- X < 0, Y is -X.

Prolog actually performs the comparison twice

Arithmetic comparisons are cheap, but suppose the test

were something time consuming: we would not want to do

it twice

Conventional programming languages provide an

if-then-else construct which evaluates the condition only

once

144

:- If-Then-Else (2)

Prolog also has an if-then-else construct, whose syntax is

(A -> B ; C)

This means: execute A; if it succeeds, then execute B;

otherwise, execute C instead

It also commits to the first solution to A; see caution

below!

A form of negation defined in Prolog:

% "not provable"

\+ G :- (G -> fail ; true).

% a form of inequality: "not unifiable"

X \= Y :- \+ X=Y.

145

:- If-Then-Else (3)

Defining absolute_value/2 with only one comparison:

absolute_value(X, Y) :-

(X < 0 ->

Y is -X

; Y = X

).

One clause which fills the role of both clauses in prev. defn.

?- absolute_value(-3, V).

V = 3 ;

No

?- absolute_value(42, V).

V = 42 ;

No

146

:- If-Then-Else (4)

If-then-elses can be nested to give an if-then-elseif-else

structure.

comparison(X, Y, Rel) :-

(X < Y -> Rel = less

; X = Y -> Rel = equal

; Rel = greater

).

?- comparison(3, 4, X).

X = less ;

No

?- comparison(4, 3, X).

X = greater ;

No

?- comparison(4, 4, X).

X = equal ;

No

147

:- 6.4.1 Caution

• If-then-else commits to the first solution to the

condition goal, eliminating any other solutions

• If-then-else works by removing choicepoints

• This may limit the modes that code can be used in

• This may cause code to simply be wrong

• Use if-then-else with caution!

148

:- 6.4.2 Cautionary Example

Example: list_end(List, Sublist, End) holds when Sublist

is the End end of List, and End is front or back

Buggy implementation:

list_end(List, Sublist, End) :-

(append(Sublist, _, List) ->

End = front

; append(_, Sublist, List) ->

End = back

).

Note no else part; this is equivalent to an else part of fail

149

:- Cautionary Example (2)

This code works in simple cases:

?- list_end([a,b,c,d], [a,b], End).

End = front ;

No

?- list_end([a,b,c,d], [d], End).

End = back ;

No

but gets it wrong when Sublist is found at both ends of

List

?- list_end([a,b,c,a,b], [a,b], End).

End = front ;

No

The use of if-then-else means that the code will never

admit that the sublist is at both ends of the list

150

:- Cautionary Example (3)

There is a bigger flaw: the if-then-else commits to the first

solution of append

In many modes this is completely wrong

?- list_end([a,b,c], Sublist, End).

Sublist = []

End = front ;

No

?- list_end([a,b,c], Sublist, back).

No

151

:- Cautionary Example (4)
Correct implementation does not use if-then-else at all

list_end(List, Sublist, front) :- append(Sublist, _, List).

list_end(List, Sublist, back) :- append(_, Sublist, List).

?- list_end([a,b], Sublist, End).

Sublist = []

End = front ;

Sublist = [a]

End = front ;

Sublist = [a, b]

End = front ;

Sublist = [a, b]

End = back ;

Sublist = [b]

End = back ;

Sublist = []

End = back ;

No

152

:- 6.4.3 Removing Unnecessary Choicepoints

Suppose a ground list L represents a set

member(foo,L) checks if foo∈L, but leaves a choicepoint

because there may be more than 1 way to prove foo∈ l

(member(foo, L) -> true ; fail)

is equivalent, but will not leave a choicepoint

If we want to know whether there exists any X such that

foo(X)∈ l, and we do not care about what X is, then

(member(foo(_), L) -> true ; fail)

will stop after first match, removing choicepoint

Caution: only correct when L is ground

153

:- 6.4.4 When to Use If-Then-Else

It’s safe to use if-then-else when:

• The semantics (a ∧ b) ∨ (¬a ∧ c) is what you want; and

• The condition is always ground when it is executed (be

careful!)

More generally, when:

• The semantics (∃v1∃v2 . . . (a ∧ b)) ∨ (∀v1∀v2 . . .¬a ∧ c) is

what you want; and

• v1, v2, . . . are all the variables in a when it is executed

(careful!); and

• the condition is deterministic

We will see later how if-then-else can be used to make

predicates work in more modes than they otherwise would

154

155

156

:- 7 Search

Prolog’s efficient built-in search mechanism makes it ideal

for solving many sorts of problems that are tricky in

conventional languages

1. Path Finding

2. Iterative Deepening

3. 8 Queens

4. Constraint Programming

157

:- 7.1 Path Finding
Many problems come down to searching for a path through

a graph

For example, we may want to know if a person alice is a

descendant of another person zachary

If we have a relation parent/2 that specifies who is a

parent of whom, then ancestor/2 is the transitive closure

of parent/2

Transitive closure follows this pattern:

ancestor(A, A).

ancestor(D, A) :-

parent(D, P),

ancestor(P, A).

158

:- Path Finding (2)

Finding paths in a graph is finding the transitive closure of

the adjacency/edge relation of the graph

Suppose a predicate edge/2 defines a graph:

159

ad

b
c

e

fg

edge(a,b). edge(a,c).

edge(b,d). edge(c,d).

edge(d,e). edge(f,g).

160

connected(N, N).

connected(L, N) :- edge(L, M), connected(M, N).

161

:- Path Finding (3)

A small change in the graph makes it go badly wrong:

a

d

b c

e

f

g
edge(a,b). edge(a,c).

edge(b,d). edge(c,d).

edge(d,e). edge(f,g).

The graph now has a “cycle” (cannot happen for

ancestors!)

There is nothing to stop the Prolog code exploring the

“infinite” path

162

:- Path Finding (4)

?- trace, connected(a,e).

Call: (8) connected(a, e) ? creep

Call: (9) edge(a, _G215) ? creep

Exit: (9) edge(a, b) ? creep

Call: (9) connected(b, e) ? creep

Call: (10) edge(b, _G215) ? creep

Exit: (10) edge(b, d) ? creep

Call: (10) connected(d, e) ? creep

Call: (11) edge(d, _G215) ? creep

Exit: (11) edge(d, c) ? creep

Call: (11) connected(c, e) ? creep

Call: (12) edge(c, _G215) ? creep

Exit: (12) edge(c, a) ? creep

Call: (12) connected(a, e) ? creep

Call: (13) edge(a, _G215) ? creep

Exit: (13) edge(a, b) ?

163

:- Path Finding (5)

Solution: keep a list of nodes visited along a path, and

don’t revisit a node already on the list

connected(M, N) :- connected(M, [M], N).

connected(N, _, N).

connected(L, Path, N) :-

edge(L, M),

\+ member(M, Path),

connected(M, [M|Path], N).

?- connected(a, e).

Yes

Remember: \+ is negation

Also note the algorithmic complexity of this code is O(2N)

164

:- 7.2 Word Paths
Sometimes the path is the desired output

Word game: transform one word into another of the same

length by repeatedly replacing one letter of the word with

another so that each step is a valid English word

E.g., tranform “big” to “dog”

big→ bag→ lag→ log→ dog

Here we don’t just want to know if it can be done, we

want to know the steps

165

:- Word Paths (2)

transform(Initial, Final, [Initial|Steps]) :-

word(Initial),

word(Final),

transform(Initial, [Initial], Final, Steps).

transform(Final, _, Final, []).

transform(Initial, History, Final, [Next|Steps]) :-

step(Initial, Next),

word(Next),

\+ member(Next, History),

transform(Next, [Next|History], Final, Steps).

The second argument of transform/4 is used to avoid loops

166

:- Word Paths (3)

step([_|Rest], [_|Rest]). % all but the first is the same

step([C|Rest0], [C|Rest]) :- % the first is the same but

step(Rest0, Rest). % at most one letter differs in rest

word("bag"). word("big"). word("bog"). word("bug").

word("lag"). word("leg"). word("log"). word("lug").

word("dag"). word("dig"). word("dog"). word("dug").

Also load our strings module from slide 201 for readable

output

167

:- Word Paths (4)

?- transform("big", "dog", Steps).

Steps = ["big", "dig", "dag", "bag", "lag",

"leg", "log", "bog", "dog"] ;

Steps = ["big", "dig", "dag", "bag", "lag",

"leg", "log", "bog", "bug"|...]

Yes

?- transform("big", "dog",

| ["big","bag","lag","log","dog"]).

Yes

We’ll see later how to get Prolog to print out lists of

character codes as strings

168

:- 7.3 Iterative Deepening
Often we don’t want just any solution; we want a shortest

one

Even if we don’t need a shortest solution, we may want to

avoid infinite (or just huge) branches in the search space

One way to do this is breadth first search:

1. Create a list of just a singleton list of the starting

point in it

[["big"]]

2. Repeatedly extend each element in the list with all

possible next elements

[["big","bag"], ["big","bog"], ["big","bug"], ["big","dig"]]

3. Terminate when one list is a solution

169

:- Iterative Deepening (2)

Breadth first search is often impractical due to its high

memory usage

Often Iterative Deepening is a simple, practical, efficient

alternative

Iterative deepening works by doing a depth first search for

a short solution

If this works, great; if not, start over looking for a longer

solution

Repeat until a solution is found

Work is repeated, but often the cost of doing a depth n

search is much smaller than the cost of a depth n + 1

search, so the waste is relatively small

170

:- 7.3.1 Word Paths Again

We can implement a predicate to find the shortest

solutions to the word game as follows:

First determine the length of the shortest solution

Then commit to that length and find solutions of exactly

that length

shortest_transform(Word0, Word, Steps) :-

(length(Steps0, Len),

transform(Word0, Word, Steps0) ->

length(Steps, Len),

transform(Word0, Word, Steps)

; fail

).

171

:- Word Paths Again (2)

?- time(shortest_transform("big","dog",X)).

% 100 inferences, 0.00 CPU in 0.00 seconds (0% CPU, Infinite Lips)

X = ["big", "dig", "dog"] ;

No

LIPS means “logical inferences per second”

One “logical inference” is defined to mean one predicate

call

This code is so fast because it never tries to build long

paths

172

:- 7.4 8 Queens
Classic puzzle: place 8 queens on a chess board such that

none attack any others.

Where to put the next queen?

173

:- 8 Queens (2)

• The search space for this program is large: 64 choose

8 = 64!
56!
≈ 1014

• If we check 1 million candidates per second, it would

take 135 years to check them all

• Search space can be significantly reduced (as usual)

• One queen in every row, one in every column

• Right representation makes a big difference in search

performance

• Represent board as a list of integers indicating in

which column the queen in that row is placed

• Now 8 choose 8 = 8! = 40320 candidates — easy

174

:- 8 Queens (3)

• To check if a queen attacks another queen, only need

to check the diagonals

• Number rows bottom to top, columns left to right

• Queens on the same NE↔SW diagonal have same

column − row

• Queens on the same SE↔NW diagonal have same

column + row

• Queen’s row number is position in list

175

:- 8 Queens (4)

If first queen attacks second, no point placing any more,

so: add queens to board one at a time, checking after each

addition

Sneaky trick: add new queen in first row, sliding other

queens down

Another trick: number rows from 0, so column − row =

column + row = column

Check if queen in row 0 attacks queens in rows 1 . . . n:

noattack(Q, Qs) :- noattack(Q, 1, Qs).

noattack(_, _, []).

noattack(Q0, Row, [Q|Qs]) :-

Q0 =\= Q + Row,

Q0 =\= Q - Row,

Row1 is Row + 1,

noattack(Q0, Row1, Qs).

176

:- 8 Queens (5)

The main body of the code chooses columns from a list of

all possible columns until all queens have been placed.

Note the the last two arguments of queens/3 are an

accumulator pair.

queens(N, Qs) :-

range(1, N, Columns), % Columns = 1..8

queens(Columns, [], Qs).

queens([], Qs, Qs). % no positions left, done

queens(Unplaced, Safe, Qs) :-

select(Q, Unplaced, Unplaced1), % choose an unused position

noattack(Q, Safe), % check doesnt attack earlier Q

queens(Unplaced1, [Q|Safe], Qs).% continue placing remainder

177

:- 8 Queens (6)

The necessary utility predicates

select(X, [X|Ys], Ys). % X is removed from list leaving Ys

select(X, [Y|Ys], [Y|Zs]) :- % leave first element Y in list and

select(X, Ys, Zs). % select from rest of list

range(Lo, Hi, L) :- % L is the list from Lo .. Hi

(Lo > Hi -> % if Lo > Hi this is

L = [] % the empty list

; L = [Lo|L1], % otherwise the list starts

Next is Lo + 1, % with Lo and then is

range(Next, Hi, L1) % the list Lo+1 .. Hi

).

178

:- 8 Queens (7)

Try it:

?- queens(8, L).

L = [4, 2, 7, 3, 6, 8, 5, 1] ;

L = [5, 2, 4, 7, 3, 8, 6, 1] ;

L = [3, 5, 2, 8, 6, 4, 7, 1]

Yes

?- time(queens(8, L)).

% 4,691 inferences in 0.01 seconds (469100 Lips)

L = [4, 2, 7, 3, 6, 8, 5, 1]

Yes

?- time(queens(20, L)).

% 35,489,394 inferences in 211.64 seconds (167688 Lips)

179

:- 7.5 Constraint Programming

• Much better handled by constraint (logic)

programming.

• CP can answer 1,000,000 queens!

• Current code fails as soon as possible after generating

a bad position

• Better: don’t generate a bad position in the first place

• Rather than generate and test, employ constrain and

generate:

– Add all the constraints first!

– Then search

180

:- 8 Efficiency and I/O

Correctness is much more important than efficiency, but

once your code is correct, you may want to make it fast.

You may also want to input or output data.

1. Tail Recursion

2. Accumulators

3. Difference Pairs

181

:- 8.1 Tail Recursion
For efficiency, when calling the last goal in a clause body,

Prolog jumps straight to that predicate without pushing

anything on the call stack

This is called last call optimization or tail recursion

optimization

tail recursive means the recursive call is the last goal in the

body

A tail recursive predicate is efficient, as it runs in constant

stack space; it behaves like a loop in a conventional

language

182

:- 8.2 Accumulators
The natural definition of factorial in Prolog:

% F is N factorial

factorial(0, 1).

factorial(N, F) :-

N > 0,

N1 is N - 1,

factorial(N1, F1),

F is F1 * N.

This definition is not tail recursive because it performs

arithmetic after the recursive call.

183

:- Accumulators (2)

We make factorial tail recursive by introducing an

accumulating parameter, or just an accumulator

This is an extra parameter to the predicate which holds a

partially computed result

Usually the base case for the recursion will specify that the

partially computed result is actually the result

The recursive clause usually computes more of the partially

computed result, and passes this in the recursive goal

The key to getting the implementation correct is specifying

what the accumulator means and how it relates to the final

result

184

:- 8.2.1 Accumulator Example

A tail recursive definition of factorial using an

accumulator:

factorial(N, F) :- factorial(N, 1, F).

% F is A times the factorial of N

factorial(0, F, F).

factorial(N, A, F) :-

N > 0,

N1 is N - 1,

A1 is N * A,

factorial(N1, A1, F).

Typical structure of a predicate using an accumulator

185

:- Accumulator Example (2)

To see how to add an accumulator, determine what is done

after the recursive call

Respecify the predicate so it performs this task, too

For factorial, we compute factorial(N1, F1), F is F1 * N,

so we want factorial to perform the multiplication for us

too

% F is A times the factorial of N

new_factorial(N, A, F) :-

factorial(N, FN),

F is FN * A.

186

:- Accumulator Example (3)

Replace the call to

factorial(N, FN) by the

body: unfold

Simplifying arithmetic:

new_factorial(0, A, F) :-

F is 1 * A.

new_factorial(N, A, F) :-

N > 0,

N1 is N - 1,

factorial(N1, F1),

F2 is F1 * N,

F is F2 * A.

new_factorial(0, F, F).

new_factorial(N, A, F) :-

N > 0,

N1 is N - 1,

factorial(N1, F1),

F is (F1 * N) * A.

187

:- Accumulator Example (4)

By associativity of

multiplication:

Replace the copy of the

definition of new factorial:

factorial(N1, F1), F is F1 * ?

by call to new_factorial:

fold

new_factorial(0, F, F).

new_factorial(N, A, F) :-

N > 0,

N1 is N - 1,

factorial(N1, F1),

NA is N * A,

F is F1 * NA.

new_factorial(0, F, F).

new_factorial(N, A, F) :-

N > 0,

N1 is N - 1,

NA is N * A,

new_factorial(N1, NA, F).

188

:- Exercise

Rewrite the mult predicate from an earlier exercise to be

tail recursive. Here is the old code:

mult(0, , 0). % multiplying anything by 0 gives 0

mult(s(X), Y, Z) :-% Z = Y (X + 1) if

mult(X, Y, W), % W = XY

add(W, Y, Z). % and Z = W + Y

189

:- 8.3 Difference Pairs
Accumulators can be even more useful for building up lists

Recall our rev/2 predicate:

rev([], []).

rev([A|BC], R) :-

rev(BC, CB),

append(CB, [A], R).

The same approach works for this example

First respecify rev to append a list to the result:

% rev(BC, A, CBA)

% CBA is BC reversed with A appended

% to the end

190

:- 8.3.1 Difference Pairs Example

Next revise the definition of rev

rev(AB, BA) :- rev(AB, [], BA).

rev([], A, A).

rev([B|CD], A, DCBA) :-

rev(CD, [B|A], DCBA).

This definition is tail recursive

Much more importantly, it does not call append

If l is the length of the input list, the original version

performs about l2/2 steps, while the new one performs

about l steps

191

:- Difference Pairs Example (2)

When working with lists, using accumulators is very

common

Common to have an accumulator for each list being

constructed

Thus lists are often passed as a pair of arguments: one the

actual result, and the other the list to be appended to the

natural result to get the actual result

Can think of the natural result of the operation as the

actual result minus the accumulator argument

Such pairs of arguments are called difference pairs or

difference lists

Common to put such pairs in the opposite order,

accumulator second, to emphasize that the accumulator is

the tail end of the actual result

192

:- Difference Pairs Example (3)

% tree_list(Tree, List)

% List is a list of the elements of tree,

% in order

tree_list(Tree, List) :-

tree_list(Tree, List, []).

% tree_list(Tree, List, List0)

% List is a list of the elements of tree,

% in order, followed by the list List0

tree_list(empty, List, List).

tree_list(tree(L,V,R), List, List0) :-

tree_list(L, List, [V|List1]),

tree_list(R, List1, List0).

193

:- 8.4 Term I/O

?- write(hello).

hello

Yes

?- write(42).

42

Yes

?- write([a,b,c]).

[a, b, c]

Yes

?- write((3+(4*5)*6)).

3+4*5*6

Yes

write/1 writes any term in its normal format (considering

operators), with mimimal parentheses, to current output

stream.

194

:- 8.4.1 Read Example

?- read(X).

|: [a,b,c].

X = [a, b, c] ;

No

?- read(X).

|: foo(A,3,A /* repeated variable */).

X = foo(_G231, 3, _G231) ;

No

?- read(X).

|: 7

|: .

X = 7 ;

No

195

:- 8.5 Character I/O
An individual character can be written with the put/1

predicate

Prolog represents characters as integers character codes

Can specify character code for a character by preceding it

with “0’” (no matching close quote)

?- put(65), nl.

A

Yes

?- put(0’a), nl.

a

Yes

?- put(0’a), put(0’), put(0’z).

a z

Yes

196

:- 8.5.1 Reading Characters

The built-in get0/1 predicate reads a single chararacter

from the current input stream as a character code

get0/1 returns -1 at end of file

?- get0(C1), get0(C2), get0(C3).

|: hi

C1 = 104

C2 = 105

C3 = 10 ;

No

197

:- 8.5.2 Defining I/O Predicates

A predicate to write a line of text as a list of character

codes:

write_line([]) :- nl.

write_line([C|Cs]) :- put(C), write_line(Cs).

198

:- Exercise: Read a Line of Input

Write a predicate to read a line of input as a list of

character codes. read line(Line) should read a line from

the current input stream, binding Line to the list of

character codes read, without the terminating newline

character.

199

:- 8.5.3 “String” Notation

?- read_line(X), write_line(X).

|: hello world!

hello world!

X = [104, 101, 108, 108, 111, 32, 119, 111, 114|...] ;

No

Prolog has a special syntax for lists of character codes:

characters between double quotes

?- X = "hello, world!", write_line(X).

hello, world!

X = [104, 101, 108, 108, 111, 44, 32, 119, 111|...] ;

No

200

:- 8.6 print and portray
Query and debugger output is done with print/1

Mostly the same as writeq/1, but you can reprogram it by

defining predicate user:portray/1

:- multifile user:portray/1.

user:portray(Term) :-

ground(Term),

chars(Term),

!,

put(0’"),

putchars(Term),

put(0’").

chars([]).

chars([C|Cs]) :-

printable(C),

chars(Cs).

printable(C) :-

integer(C),

(code_type(C, graph)

; code_type(C, space)

).

putchars/1 is like write_line/1 without call to nl/0

Note: ! is called “cut”. It prevents backtracking to other

clauses (use -> instead if at all possible)

201

:- print and portray (2)

With this code loaded, Prolog prints lists of character

codes as quoted strings.

Without portray code

?- print("abcd").

[97, 98, 99, 100]

Yes

?- X = "abcd".

X = [97, 98, 99, 100]

Yes

With portray code

?- print("abcd").

"abcd"

Yes

?- X = "abcd".

X = "abcd"

Yes

Code is available in strings.pl

202

:- 8.7 Order Sensitivity
Like arithmetic in Prolog, I/O predicates are sensitive to

the order in which they are executed

write(hello), write(world) always prints out helloworld,

and never worldhello, although conjunction is meant to be

commutative

Backtracking cannot undo I/O, e.g. get0(0’a) reads a

character and fails if it is not an “a”, but does not put

back the character if it fails

Term output puts out a term as it is, so

?- write(foo(X)), X=bar.

foo(_G258)

X = bar ;

No

?- X=bar, write(foo(X)).

foo(bar)

X = bar ;

No

203

:- 8.7.1 Best Practice

Due to the procedural nature of Prolog I/O, it is usually

best to keep the I/O part of an application as isolated as

possible

E.g. write predicates that read in all input and build some

appropriate term to represent it, then write code that

processes the term

E.g. write predicates that build up output in some

appropriate term representation, then have separate code

to perform the actual output

This makes debugging easier: you cannot easily retry goals

that read input, as retry does not automatically rewind

input streams

204

:- 9 Parsing in Prolog

Prolog was originally developed for programming natural

language (French) parsing applications, so it is well-suited

for parsing

1. DCGs

2. DCG Translation

3. Tokenizing

4. Example

205

:- 9.1 DCGs

• A parser is a program that reads in a sequence of

characters, constructing an internal representation

• Prolog’s read/1 predicate is a parser that converts

Prolog’s syntax into Prolog terms

• Prolog also has a built-in facility that allows you to

easily write a parser for another syntax (e.g., C or

French or student record cards)

• These are called definite clause grammars or DCGs

• DCGs are defined as a number of clauses, much like

predicates

• DCG clauses use --> to separate head from body,

instead of :-

206

:- 9.1.1 Simple DCG

Could specify a number to be an optional minus sign, one

or more digits optionally followed by a decimal point and

some more digits, optionally followed by the letter ’e’ and

some more digits:

number -->

("-"

; ""

),

digits,

(".", digits

; ""

),

("e", digits

; ""

).

number → (-|ε)digits(. digits|ε)
(e digits|ε)

207

:- Simple DCG (2)

Define digits:

digits -->

("0" ; "1" ; "2" ; "3" ; "4"

; "5" ; "6" ; "7" ; "8" ; "9"

),

(digits

; ""

).

digit → 0|1|2|3|4|
5|6|7|8|9

digits → digit digits|digit

A sequence of digits is one of the digit characters followed

by either a sequence of digits or nothing

208

:- 9.1.2 Using DCGs

Test a grammar with phrase(Grammar,Text) builtin, where

Grammar is the grammar element (called a nonterminal)

and Text is the text we wish to check

?- phrase(number, "3.14159").

Yes

?- phrase(number, "3.14159e0").

Yes

?- phrase(number, "3e7").

Yes

?- phrase(number, "37").

Yes

?- phrase(number, "37.").

No

?- phrase(number, "3.14.159").

No

209

:- Using DCGs (2)

It’s not enough to know that "3.14159" spells a number, we

also want to know what number it spells

Easy to add this to our grammar: add arguments to our

nonterminals

Can add “actions” to our grammar rules to let them do

computations

Actions are ordinary Prolog goals included inside braces {}

210

:- 9.1.3 DCGs with Actions

DCG returns a number N

number(N) -->

("-" ->

{ Sign = -1 }

; { Sign = 1 }

),

digits(Whole),

(".", frac(Frac),

{ Mantissa is Whole + Frac }

; { Mantissa = Whole }

),

("e", digits(Exp),

{ N is Sign * Mantissa * (10 ** Exp) }

; { N is Sign * Mantissa }

).

211

:- DCGs with Actions (2)

digits(N) -->

digits(0, N). % Accumulator

digits(N0, N) --> % N0 is number already read

[Char],

{ 0’0 =< Char },

{ Char =< 0’9 },

{ N1 is N0 * 10 + (Char - 0’0) },

(digits(N1, N)

; { N = N1 }

).

"c" syntax just denotes the list with 0’c as its only member

The two comparison goals restrict Char to a digit

212

:- DCGs with Actions (3)

frac(F) -->

frac(0, 0.1, F).

frac(F0, Mult, F) -->

[Char],

{ 0’0 =< Char },

{ Char =< 0’9 },

{ F1 is F0 + (Char - 0’0)*Mult },

{ Mult1 is Mult / 10 },

(frac(F1, Mult1, F)

; { F = F1 }

).

Multiplier argument keeps track of scaling of later digits.

Like digits, frac uses accumulator to be tail recursive.

213

:- Exercise: Parsing Identifiers

Write a DCG predicate to parse an identifier as in C: a

string of characters beginning with a letter, and following

with zero or more letters, digits, and underscore

characters. Assume you already have DCG predicates

letter(L) and digit(D) to parse an individual letter or digit.

214

:- 9.2 DCG Translation

• DCGs are just an alternative syntax for ordinary Prolog

clauses

• After clauses are read in by Prolog, they may be

transformed by expand_term(Original,Final) where

Original is the clause as read, and Final is the clause

actually compiled

• Clauses with --> as principal functor transformed by

adding two more arguments to the predicate and two

arguments to each call outside { curley braces }

• expand_term/2 also calls a predicate term_expansion/2

which you can define

• This allows you to perform any sort of translation you

like on Prolog programs

215

:- 9.2.1 DCG Expansion

• Added arguments form an accumulator pair, with the

accumulator “threaded” through the predicate.

• nonterminal foo(X) is translated to foo(X,S,S0)

meaning that the string S minus the tail S0 represents

a foo(X).

• A grammar rule a --> b, c is translated to

a(S, S0) :- b(S, S1), c(S1, S0).

• [Arg] goals are transformed to calls to built in

predicate ’C’(S, Arg, S1) where S and S1 are the

accumulator being threaded through the code.

• ’C’/3 defined as: ’C’([X|Y], X, Y).

• phrase(a(X), List) invokes a(X, List, [])

216

:- 9.2.2 DCG Expansion Example

For example, our digits/2 nonterminal is translated into a

digits/4 predicate:

digits(N0, N) -->

[Char],

{ 0’0 =< Char },

{ Char =< 0’9 },

{ N1 is N0*10

+ (Char-0’0) },

(digits(N1, N)

; "",

{ N = N1 }

).

digits(N0, N, S, S0) :-

’C’(S, Char, S1),

48 =< Char,

Char =< 57,

N1 is N0*10

+ (Char-48),

(digits(N1, N, S1, S0)

; N=N1,

S0=S1

).

(SWI Prolog’s translation is equivalent, but less clear.)

217

:- 9.3 Tokenizing

• Parsing turns a linear sequence of things into a

structure.

• Sometimes it’s best if these “things” are something

other than characters; such things are called tokens.

• Tokens leave out things that are unimportant to the

grammar, such as whitespace and comments.

• Tokens are represented in Prolog as terms; must

decide what terms represent which tokens.

218

:- Tokenizing (2)

Suppose we want to write a parser for English

It is easier to parse words than characters, so we choose

words and punctuation symbols as our tokens

We will write a tokenizer that reads one character at a

time until a full sentence has been read, returning a list of

words and punctuation

219

:- 9.3.1 A Simple Tokenizer

sentence_tokens(Words) :-

get0(Ch),

sentence_tokens(Ch, Words).

sentence_tokens(Ch, Words) :-

(Ch = 10 -> %% end of line

Words = []

; alphabetic(Ch) ->

get_letters(Ch, Ch1, Letters),

atom_codes(Word, Letters),

Words = [Word|Words1],

sentence_tokens(Ch1, Words1)

; get0(Ch1),

sentence_tokens(Ch1, Words)

).

220

:- A Simple Tokenizer (2)

alphabetic(Ch) :-

(Ch >= 0’a, Ch =< 0’z ->

true

; Ch >= 0’A, Ch =< 0’Z ->

true

).

get_letters(Ch0, Ch, Letters) :-

(alphabetic(Ch0) ->

Letters = [Ch0|Letters1],

get0(Ch1),

get_letters(Ch1, Ch, Letters1)

; Ch = Ch0,

Letters = []

).

221

:- 9.4 Parsing Example

• Can write parser using standard approach to English

grammar

• Many better approaches to parsing natural language

than we use here, this just gives the idea

• An english sentence is usually a noun phrase followed

by a verb phrase, e.g. “the boy carried the book”

• Noun phrase is the subject, verb phrase describes the

action and the object (if there is one)

• Sentence may be an imperative: just a verb phrase,

e.g. “walk the dog”

222

:- 9.4.1 DCG Phrase Parser

sentence --> noun_phrase, verb_phrase.

sentence --> verb_phrase.

noun_phrase --> determiner, noun.

noun_phrase --> proper_noun.

verb_phrase --> verb, noun_phrase.

verb_phrase --> verb.

determiner --> word(determiner).

noun --> word(noun).

proper_noun --> word(proper_noun).

verb --> word(verb).

223

:- 9.4.2 Parsing for Meaning

• Two problems:

1. no indication of the meaning of the sentence

2. no checking of agreement of number, person, etc

• Solution to both is the same: make grammar rules

take arguments

• Arguments give meaning

• Unification can ensure agreement

224

:- 9.4.3 Parsing for Structure

sentence(action(Verb,Tense,Subject,Object)) -->

noun_phrase(Subject, Number, Person, nominative),

verb_phrase(Verb, Tense, Number, Person, Object).

sentence(action(Verb,Tense,imperative,Object)) -->

verb_phrase(Verb, Tense, _, second, Object).

noun_phrase(count(Thing,Definite,Number), Number, third, _) -->

determiner(Definite,Number),

noun(Thing, Number).

noun_phrase(Thing, Number, third, _) -->

proper_noun(Thing, Number).

noun_phrase(pro(Person,Number,Gender), Number, Person, Case) -->

pronoun(Person, Number, Case, Gender).

225

:- Parsing for Structure (2)

verb_phrase(Verb, Tense, Number, Person, Object) -->

verb(Verb, Number, Person, Tense),

(noun_phrase(Object, _, _, objective)

; { Object = none }

).

determiner(Definite,Number) -->

word1(determiner(Definite,Number)).

noun(Thing, Number) -->

word1(noun(Thing,Number)).

proper_noun(Thing,Number) -->

word1(proper_noun(Thing,Number)).

pronoun(Person, Number, Case, Gender) -->

word1(pronoun(Person,Number,Case,Gender)).

verb(Verb,Number,Person,Tense) -->

word1(verb(Verb,Ending)),

{ verb_agrees(Ending, Number, Person, Tense) }.

226

:- 9.4.4 Parsing Examples

?- phrase(sentence(Meaning), [the,boy,carried,the,book]).

Meaning = action(carry,past,count(boy,definite,singular),

count(book,definite,singular)) ;

No

?- phrase(sentence(Meaning), [walk,the,dog]).

Meaning = action(walk,present,imperative,

count(dog,definite,singular)) ;

No

?- phrase(sentence(Meaning), [mary,walked]).

Meaning = action(walk, past, mary, none) ;

No

?- phrase(sentence(Meaning), [mary,walk]).

No

227

:- 9.4.5 Generation of Sentences
Carefully designed grammar can run “backwards”

generating text from meaning

?- phrase(sentence(action(carry, past,

count(boy,definite,singular),

count(book,definite,singular))), Sentence).

Sentence = [the, boy, carried, the, book] ;

No

?- phrase(sentence(action(walk, present,

pro(third,plural,masculine),

count(dog,definite,singular))), Sentence).

Sentence = [they, walk, the, dog] ;

No

?- phrase(sentence(action(walk, present,

count(dog,definite,singular),

pro(third,plural,masculine))), Sentence).

Sentence = [the, dog, walks, them] ;

No

228

:- 10 More on Terms

1. Handling Terms in General

2. Sorting

3. Term comparison

4. Variable and Type Testing

229

:- 10.1 Handling Terms in General
Sometimes it is useful to be able to write predicates that

will work on any kind of term

The =.. predicate, pronounced “univ,” turns a term into a

list

The first element of the list is the term’s functor; following

elements are the term’s arguments, in order

?- p(1,q(3)) =.. X.

X = [p, 1, q(3)] ;

No

?- T =.. [p, 1, q(3)].

T = p(1, q(3)) ;

No

?- 1 =.. X.

X = [1] ;

No

?- [1,2,3] =.. X.

X = [’.’, 1, [2, 3]] ;

No

230

:- 10.1.1 functor/3

Because univ builds a list that is typically not needed, it is

often better to use the separate builtin predicates

functor/3 and arg/3

functor(Term,Name,Arity) holds when the functor of Term is

Name and its arity is Arity

For atomic terms, the whole term is considered to be the

Name, and Arity is 0

Either the Term or both the Name and Arity must be bound,

otherwise functor throws an exception

231

:- 10.1.2 functor/3 in Action

?- functor(p(1,q(3)), F, A).

F = p

A = 2 ;

No

?- functor(T, p, 2).

T = p(_G280, _G281) ;

No

?- functor(1, F, A).

F = 1

A = 0 ;

No

?- functor(X, 42, 0).

X = 42 ;

No

232

:- 10.1.3 arg/3

arg/3 can be used to access the arguments of a term one

at a time

arg(N,Term,Arg) holds if Arg is the Nth argument of Term

(counting from 1)

Term must be bound to a compound term

For most Prolog systems, N must be bound; SWI Prolog

will backtrack over all arguments of term

arg/3 is deterministic when first two arguments are bound

233

:- 10.1.4 arg/3 in Action

?- arg(2, foo(a,b), Arg).

Arg = b ;

No

?- arg(N, foo(a,b), Arg).

N = 1

Arg = a ;

N = 2

Arg = b ;

No

?- arg(N, 3, 3).

ERROR: arg/3: Type error: ‘compound’ expected, found ‘3’

234

:- 10.1.5 Using functor and arg

Collect a list of all the functors appearing anywhere in a

ground term:

all_functors(Term, List) :- all_functors(Term, List, []).

all_functors(Term, List, List0) :-

functor(Term, Name, Arity),

(Arity > 0 ->

List = [Name|List1],

all_functors1(Arity, Term, List1, List0)

; List = List0

).

all_functors1(N, Term, List, List0) :-

(N =:= 0 ->

List = List0

; arg(N, Term, Arg),

all_functors(Arg, List1, List0),

N1 is N - 1,

all_functors1(N1, Term, List, List1)

).

235

:- Using functor and arg (2)

?- all_functors(foo(bar([1,2],zip,baz(3)),bar(7)), L).

L = [foo, bar, ’.’, ’.’, baz, bar] ;

No

?- X=bar(42), all_functors(foo(X), L).

X = bar(42)

L = [foo, bar] ;

No

?- all_functors(foo(X), L), X=bar(42).

ERROR: Arguments are not sufficiently instantiated

Exception: (11) functor(_G342, _G448, _G449) ? creep

Since Name and Arity are not bound when functor/3 is

called, that goal causes an error if Term is not bound.

236

:- 10.2 Sorting
Our all_functors/2 predicate returns a list of functors

appearing, once for each time they appear

May want to produce a set, with each functor appearing

only once

Easiest way: produce the list and sort it, removing

duplicates

Built-in sort(List,Sorted) predicate holds when Sorted is a

sorted version of List, with duplicates removed

all_functors(Term, List) :-

all_functors(Term, List0, []),

sort(List0, List).

237

:- 10.2.1 keysort/2

keysort(List, Sorted) is like sort, except:

• elements of List must be terms of the form Key-Value

• only the Key parts of the terms are considered when

sorting

• duplicates are not removed, keysort is a stable sort

?- sort([a,a,r,d,v,a,r,k], L).

L = [a, d, k, r, v] ;

No

?- keysort([a,a,r,d,v,a,r,k], L).

No

?- keysort([a-1,a-2,r-3,d-4,v-5,a-6,r-7,k-8], L).

L = [a-1, a-2, a-6, d-4, k-8, r-3, r-7, v-5] ;

No

238

:- 10.3 Term Comparison
The sorting predicates work on lists of any kinds of terms

Built on general term comparison predicates

The predicates @<, @=<, @>, @>=, == \== work like <, =<, >, >=,

=:= =\=, but they work on any terms

Atoms are compared lexicographically, numbers numerically

Compound terms are compared first by arity, then by

functor, then by the arguments in order

Variables @< numbers @< atoms @< compound terms

Beware variables in terms being sorted!

== and \== check whether terms are identical — without

binding any variables

239

:- Exercise

Why should you beware variables in terms being sorted?

What could happen if you sort a non-ground list?

240

:- 10.4 Variable and Type Testing
Earlier we saw that the simple definition of rev used in the

“backwards mode” goes into an infinite loop after finding

the correct answer

rev([], []).

rev([A|BC], R) :-

rev(BC, CB),

append(CB, [A], R).

Recursive call to rev produces longer and longer reversed

lists; once it has found the right length, no other length

will be correct

241

:- 10.4.1 Variable Testing Example

Can fix this by exchanging the calls in the clause body

rev([], []).

rev([A|BC], R) :-

append(CB, [A], R),

rev(BC, CB).

In this order, when R is bound, the call to append/3 has

only one solution, so it solves the problem

But now rev/2 gets in trouble in the “forwards mode”

Once it finds the solution, asking for more solutions enters

an infinite loop

242

:- 10.4.2 Variable Testing

To implement a reversible version of rev/2, we need to

decide which order to execute the goals based on which

arguments are bound.

Prolog has a built in predicate var/1 which succeeds if its

argument is an unbound variable, and fails if not.

?- var(_).

Yes

?- var(a).

No

243

:- Exercise

Use the var builtin to implement a version of rev that will

work in any mode. Recall that only this version of rev:

rev([], []).

rev([A|BC], R) :- rev(BC, CB), append(CB, [A], R).

works when the second argument is unbound; otherwise

the goals in the body should be swapped

244

:- 10.4.3 What’s Wrong With var/1?

One of the most basic rules of logic is that conjunction is

commutative

p, q should behave exactly the same way as q, p (if they

terminate without error).

var/1 breaks that rule:

?- var(X), X = a.

X = a ;

No

?- X = a, var(X).

No

245

:- 10.4.4 When to use var/1

Irony: sometimes we can only write logical, reversible

predicates by using an extralogical predicate such as var/1

But we must be careful

For rev/2, the code is logically equivalent whether the

var/1 goal succeeds or fails; the only difference is the order

of the goals

Sometimes we must have other difference, such as having

X is Y + 1,

when Y is bound, and

Y is X - 1,

when X is.

A better answer for this is constraint programming

X = Y + 1

246

:- 10.4.5 Other Non-logical Builtins

All of the following have the same problem of potentially

making conjunction not commutative

nonvar(X) X is bound.

ground(X) X is bound, and every variable in the term it is

bound to is also ground.

atom(X) X is bound to an atom.

integer(X) X is bound to an integer.

float(X) X is bound to a float.

number(X) X is bound to a number.

atomic(X) atom(X) ; number(X).

compound(X) X is bound to a compound term.

247

:- 10.4.6 Defining length/2

We can define length/2 to work when the list is supplied:

len1([], 0).

len1([_|L], N) :-

len1(L, N1),

N is N1 + 1.

and when the length is supplied:

len2([], 0).

len2([_|L], N) :-

N > 0,

N1 is N - 1,

len2(L, N1).

248

:- Defining length/2 (2)

A version that works in both modes:

len(L,N) :-

(var(N) ->

len1(L,N)

; len2(L,N)

).

NB: don’t check if L is var: even if it’s not, its tail may be!

249

:- Defining length/2 (3)

?- len(L, 4).

L = [_G242, _G248, _G254, _G260] ;

No

?- len([a,b,c], N).

N = 3 ;

No

?- len(L, N).

L = []

N = 0 ;

L = [_G257]

N = 1 ;

L = [_G257, _G260]

N = 2

Yes

250

251

252

:- 11 Metaprogramming

Prolog has powerful facilities for manipulating and

generating Prolog programs

1. Higher order programming

2. Interpreters

3. Prolog Interpreter

4. Generating Prolog code

253

:- 11.1 Higher order programming
One powerful feature of functional languages is

higher order programming: passing functions or

predicates as arguments

Prolog supports this, too

The built-in predicate call/1 takes a term as argument

and executes it as a goal

?- Goal = append([a,b,c],X,[a,b,c,d,e]),

| call(Goal).

Goal = append([a, b, c], [d, e], [a, b, c, d, e])

X = [d, e] ;

No

We can use any code we like to build goal term

254

:- 11.1.1 call/n

Some Prolog systems, including SWI, also support call of

higher arities

First argument is goal to execute

Extra arguments are given as arguments to the goal

?- Goal = append,

| call(Goal, [a,b,c], X, [a,b,c,d,e]).

Goal = append

X = [d, e] ;

No

Saves the effort of constructing the goal as a term before

calling it

255

:- 11.1.2 Closures

When the goal argument of call/n is a compound term,

later arguments of call are added to the goal

?- Goal = append([a,b,c]),

| call(Goal, X, [a,b,c,d,e]).

Goal = append([a, b, c])

X = [d, e] ;

No

The Goal in this case is a predicate with some, but not all,

of its arguments supplied; other arguments are given when

it is called

This is a closure

256

:- 11.1.3 map/3

Using call/n it is easy to implement the standard higher

order operations of functional languages, e.g.

map(_, [], []).

map(P, [X|Xs], [Y|Ys]) :-

call(P, X, Y),

map(P, Xs, Ys).

?- map(append([a,b]), [[c,d],[e,f,g],[h]], L).

L = [[a, b, c, d], [a, b, e, f, g], [a, b, h]] ;

No

?- map(append([a,b]), L,

[[a,b,c,d],[a,b,c],[a,b,w,x,y],[a,b]]).

L = [[c, d], [c], [w, x, y], []] ;

No

257

:- Exercise: all/2

Write a predicate all/2 such that all(Pred,L) holds when

every element of L satisfies Pred. For example,

all(member(c), [[a,b,c],[a,e,i],[a,c]]]

fails, and

all(member(X), [[a,b,c],[a,e,i],[a,c]])

succeeds with X=a.

258

:- 11.2 Interpreters
Some programming problems are best solved by

defining a new minilanguage, a small language

targeted at one specific task

Consider the control of a robot vacuum cleaner

Programming this would be rather complex, involving

separate control of several motors, receiving input from

several sensors, etc.

This task would be far simpler to handle if we defined a

minilanguage for robot control, and then implemented an

interpreter for this language

259

:- 11.2.1 Robot Minilanguage

At the simplest level, we can consider primitive commands

to turn and move forward

These could be represented as Prolog terms:

advance(Distance)

left

right

260

:- 11.2.2 Interpreter Design

An interpreter (simulator) for this language would track

the robot’s position

Also needs to keep track of the robot’s heading,

represented as X and Y components, called Hx and Hy

Hx = 0
Hy = 1

Hx = 1
Hy = 0

Hx = 0
Hy = −1

Hx = −1
Hy = 0

Hx and Hy are either -1, 0, or 1, and |Hx|+ |Hy| = 1

On moving d units, Δx = dHx and Δy = dHy

To turn clockwise (right): H ′
x = Hy, H ′

y = −Hx,

anticlockwise (left): H ′
x = −Hy, H ′

y = Hx

261

:- 11.2.3 Interpreter

% sim(Cmd, X0, Y0, Hx0, Hy0, X, Y, Hx, Hy)

% Robot starts at position X0, Y0, with

% Heading Hx0, Hy0. After command Cmd,

% robot is at position X, Y, with heading

% Hx, Hy

sim(advance(Dist), X0, Y0, Hx, Hy, X, Y, Hx, Hy) :-

X is X0 + Hx * Dist,

Y is Y0 + Hy * Dist.

sim(right, X, Y, Hx0, Hy0, X, Y, Hx, Hy) :-

Hx = Hy0,

Hy is -Hx0.

sim(left, X, Y, Hx0, Hy0, X, Y, Hx, Hy) :-

Hx is -Hy0,

Hy = Hx0.

262

:- 11.2.4 Robot Programs

Construct a robot program as a list of commands:

sim([], X, Y, Hx, Hy, X, Y, Hx, Hy).

sim([C|Cs], X0, Y0, Hx0, Hy0, X, Y, Hx, Hy) :-

sim(C, X0, Y0, Hx0, Hy0, X1, Y1, Hx1, Hy1),

sim(Cs, X1, Y1, Hx1, Hy1, X, Y, Hx, Hy).

263

:- 11.2.5 Walls

The interpreter is simple, so it is easy to extend

Add walls to the room the robot operates in by preventing

X and Y from being less than 0 or more than room width

or height

Just need to replace one sim/9 clause and define room

width and height

sim(advance(Dist), X0, Y0, Hx, Hy, X, Y, Hx, Hy) :-

room_width(Width),

room_height(Height),

X is max(0, min(Width, X0 + Hx * Dist)),

Y is max(0, min(Height, Y0 + Hy * Dist)).

room_width(400).

room_height(300).

264

:- 11.2.6 Other Possible Extensions

• Keep track of minimum and maximum x and y

positions visited, by adding 8 more arguments for

previous and new min and max x and y

• Allow robot to turn at angles other than 90◦, by

adding a turn(Angle) command that uses trigonometry

to determine new real number Hx and Hy

• Add obstacles to room by defining predicate obstacle

that supplies shapes and positions of each obstacle,

and having advance command find position of first

obstacle encountered

265

:- 11.3 Prolog meta-interpreter
We can write an interpreter for any language we can

conceive, including Prolog itself

This is made much easier by the fact that Prolog goals are

ordinary Prolog terms

An interpreter for a language written in the language

itself is called a meta-interpreter

Prolog systems have a built-in interpreter invoked by the

call built-in predicates

Need access to the clauses of the program to be

interpreted; built-in predicate clause(Head,Body) gives this

Body is true for unit clauses

Generally you need to declare predicates “dynamic”:

:- dynamic foo/3.

266

:- 11.3.1 Simple meta-interpreter

% solve(Goal)

% interpret Goal, binding variables

% as needed.

solve(true).

solve((G1,G2)) :-

solve(G1),

solve(G2).

solve(Goal) :-

clause(Goal, Body),

solve(Body).

267

:- Simple meta-interpreter (2)

Extend this to handle disjunction, if->then;else, negation:

solve((G1;G2)) :-

(G1 = (G1a->G1b) ->

(solve(G1a) ->

solve(G1b)

; solve(G2)

)

; solve(G1)

; solve(G2)

).

solve(\+(G)) :-

\+ solve(G).

268

:- Simple meta-interpreter (3)

To handle Prolog builtins, modify the last clause on

slide 267:

solve(Goal) :-

(builtin(Goal) ->

call(Goal)

; clause(Goal, Body),

solve(Body)

).

builtin(_ = _).

builtin(_ is _).

builtin(append(_,_,_)).

...

269

:- 11.3.2 Extensions

Can modify interpreter to construct a proof

proof(Goal, Proof) :- proof1(Goal, Proof, []).

proof1(true, Proof, Proof).

proof1((G1,G2), Proof, Proof0) :-

proof1(G1, Proof, Proof1),

proof1(G2, Proof1, Proof0).

proof1(Goal, Proof, Proof0) :-

clause(Goal, Body),

proof1(Body, Proof,

[(Goal:-Body)|Proof0]).
...

Lots of other extensions, e.g. debuggers, other search

strategies

270

:- 11.4 Manipulating Prolog code
The fact that Prolog code is just a Prolog term also makes

it very easy to manipulate

To take advantage of this, the Prolog compiler

automatically calls a predicate term_expansion/2 (if it is

defined) for each term it reads

First argument of term_expansion/2 is a term Prolog read

from a source file; term_expansion/2 should bind the second

to a clause or list of clauses to use in place of what was

read

This is the same mechanism used to convert DCG clauses

into ordinary Prolog clauses

This feature allows programmers to easily write Prolog

code to generate or transform Prolog code

271

:- 11.4.1 Generating Accessor Predicates

Example: automatically generating accessor predicates

Suppose a student is represented as student(Name,Id) in a

large program

Everywhere the name is needed, the code might contain

Student = student(Name,_)

If we later need to also store degree code in student terms,

we must modify every student/2 term in the program

Programmers sometimes define accessor predicates, e.g.:

student_name(student(Name, _), Name).

student_id(student(_, Id), Id).

then use student_name(Student, Name) instead of

Student = student(Name,_)

272

:- Generating Accessor Predicates (2)

Using term_expansion, it is easy to write code to

automatically generate accessor predicates

We will transform a directive like

:- struct student(name,id).

into the clauses on the previous slide

:- op(1150, fx, (struct)).

term_expansion((:- struct Term), Clauses) :-

functor(Term, Name, Arity),

functor(Template, Name, Arity),

gen_clauses(Arity, Name, Term, Template, Clauses).

First line tells Prolog that struct is a prefix operator

273

:- Generating Accessor Predicates (3)

gen_clauses(N, Name, Term, Template, Clauses) :-

(N =:= 0 ->

Clauses = []

; arg(N, Term, Argname),

arg(N, Template, Arg),

atom_codes(Argname, Argcodes),

atom_codes(Name, Namecodes),

append(Namecodes, [0’_|Argcodes], Codes),

atom_codes(Pred, Codes),

Clause =.. [Pred, Template, Arg],

Clauses = [Clause|Clauses1],

N1 is N - 1,

gen_clauses(N1, Name, Term, Template, Clauses1)

).

274

275

276

Q 12 Propositional Logic

• introduce basic ideas of formal logic

• define truth tables for propositions

• use of truth tables to establish tautologies,

equivalences

277

Q Exercise: Knights and Knaves

On the island of Knights and Knaves, everyone is a knight

or knave. Knights always tell the truth. Knaves always lie.

You are a census taker, going from house to house. Fill in

what you know about each house.

house 1 Husband: We are both knaves.

house 2 Wife: At least one of us is a knave.

house 3 Husband: If I am a knight then so is my wife.

House 1 House 2 House 3

Husband Wife Husband Wife Husband Wife

278

Q 12.1 Logic and Reasoning

• Logic is about reasoning

All humans have 2 legs

Jane is a human

Therefore Jane has 2 legs

• key issue for (any) logic

FORM of an argument versus its MEANING

All dogs have 6 legs

Rex is a dog

Therefore Rex has 6 legs

279

Q 12.1.1 Arguments: Form and Meaning

• “form” is determined by the syntax of the logic.

Both arguments above have correct form, HENCE

both arguments are (logically) correct.

• “truth” depends on “meaning” – relation to the world.

The first argument has a true conclusion: its premises

are true and the argument is correct.

The second argument has a false conclusion: even

though the argument is correct, its premises are not

true.

280

Q 12.1.2 Propositions

•
A proposition is a sentence that is either true or

false, but not both
.

• use letters to represent basic propositions

• e.g. A for “I look into the sky”, B for “I am alert”

• logical connectives: ¬ (not), ∧ (and), ∨ (or), →
(implies), ↔ (iff)

• e.g. A ∧B for “I look into the sky and I am alert”

• rules for forming propositions

(a) a propositional variable is a proposition

(b) if A and B are propositions then so are

(¬A), (A ∧B), (A ∨B), (A→ B), (A↔ B)

(c) nothing else is a proposition

281

Q 12.1.3 Improving Readability

Which is more readable?

(P → (Q→ (¬R)) or P → (Q→ ¬R)

Rules for improving readability:

• omit parentheses where possible

• precedence from highest to lowest is: ¬, ∧, ∨, →, ↔
• all binary operators are left associative.

That is,

P → Q→ R

is an abbreviation for

(P → Q)→ R

Questions:

Is (P ∨Q) ∨R ≡ P ∨ (Q ∨R)? Is (P ∧Q) ∧R ≡ P ∧ (Q ∧R)?

Is (P → Q)→ R ≡ P → (Q→ R)?

282

Q 12.2 Truth Tables

• propositions can be true (T) or false (F)

• A truth table for a proposition records its truth value

for all assignments of T or F to its propositional

variables. (see Kelly Section 1.2) e.g.

A B A ∧B A ∨B ¬A

T T T T F

T F F T F

F T F T T

F F F F T

• value of (compound) propositions built up from

components

i.e. A and B can be any (compound) proposition

283

Q 12.2.1 Terminology
A proposition is a tautology if it is always true, i.e.

each line in the truth table is T . For example

A ∨B ∨ ¬A.

A proposition is satisfiable if it is sometimes true,

i.e. some line in the truth table is T . For example,

A ∧B.

A proposition is unsatisfiable if it is always false, i.e.

each line in the truth table is F . For example,

A ∧B ∧ ¬A.

Two propositions are equivalent if each line in their

truth tables are the same. For example A is

equivalent to A ∨ (A ∧A).

284

Q 12.2.2 Previous Example

Does (A ∧B) ∧ C = A ∧ (B ∧ C)?

A B C A ∧B B ∧ C A ∧ (B ∧ C) (A ∧ B) ∧ C

T T T T T T T

T T F T F F F

T F T F F F F

T F F F F F F

F T T F T F F

F T F F F F F

F F T F F F F

F F F F F F F

Truth table columns for both propositions are identical:

propositions are equivalent

285

Q 12.3 Implication
Truth Table For Implication:

A B A→ B

T T T

T F F

F T T

F F T

Terminology:

• antecedent: what’s to the left of the →

• consequent: what’s to the right of the →
Implication is true unless antecedent is true and

consequent is false

286

Q Exercise

Are (A→ B) and ¬A ∨B are equivalent?

287

Q 12.3.1 Material Implication

• The only time A→ B evaluates to false is when A is

true and B is false.

• This definition is standard in propositional logic and is

termed material implication.

• English usage often suggests a causal connection

between antecedent and consequent; this is not

reflected in the truth table for material implication

• (P ∧ ¬P)→ (Q→ R) is a tautology and worse still,

(P ∧ ¬P)→ {anything} is a tautology.

• Other logics (e.g. modal logics, relevance logics)

involve alternative meanings for implication

288

Q 12.3.2 Example (Kelly Example 1.2)

• Express in propositional logic:

“If I look into the sky and I am alert then either I will

see the flying saucer or if I am not alert then I will not

see the flying saucer.”

• A “I look into the sky”

B “I am alert”

C “I will see the flying saucer”

(A ∧B)→ (C ∨ (¬B → ¬C))

• does the truth of this compound proposition depend

on the individual truth values of A, B, C?

That is, is (A ∧B)→ (C ∨ (¬B → ¬C)) a tautology?

289

Q Example (Kelly Example 1.2) (2)

Truth Table (Kelly Fig. 1.13)

A B C A ∧B ¬B ¬C ¬B → ¬C C ∨ (A ∧B)→ (C ∨
(¬B → ¬C) (¬B → ¬C)

T T T T F F T T T

T T F T F T T T T

T F T F T F F T T

T F F F T T T T T

F T T F F F T T T

F T F F F T T T T

F F T F T F F T T

F F F F T T T T T

290

Q Example (Kelly Example 1.2) (3)

• The truth table contains much unnecessary

information.

• How can we reduce our work?

• Remember that X → Y is false iff X is true and Y is

false and A ∧B is false unless A is true and B is true.

So we only need to look at the last two lines of the

truth table (the final expression in the other six is

always true).

• Thus:

A B C A ∧ B ¬B ¬C ¬B → ¬C C ∨ (A ∧ B) → (C ∨
(¬B → ¬C) (¬B → ¬C))

T T T T F F T T T

T T F T F T T T T

is the simplified truth table for this example.

291

Q Exercise

Express in propositional logic:

“If Michelle wins at the Olympics, everyone will admire her,

and she will get rich; but if she does not win, all her effort

was in vain.” Begin by determining the the propositional

variables you will use and what they mean.

292

Q 12.3.3 Knights and Knaves

Express in propositional logic the census taker puzzle, for

house 1.

• H : the husband is a knight.

• W : the wife is a knight.

H ↔ (¬H ∧ ¬W)

H W ¬H ∧ ¬W H ↔ (¬H ∧ ¬W)

T T F F

T F F F

F T F T

F F T F

Exercise: do the same for houses 2 and 3.

293

Q 12.4 Equivalences (Kelly Section 1.3)

• lots of them . . . infinitely many!

• especially important:

– ¬ ¬A is equivalent to A

– ¬A ∨B is equivalent to A→ B

– ¬(A ∧B) is equivalent to (¬A ∨ ¬B)

– ¬(A ∨B) is equivalent to (¬A ∧ ¬B)

• The final two equivalences are De Morgan’s laws

• Exercise: Use truth tables to verify the correctness of

the above four equivalences.

294

Q 12.4.1 More Important Equivalences

• Commutativity B ∨A ≡ A ∨B

A ∧ B ≡ B ∧A

Associativity A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C

A ∨ (B ∨ C) ≡ (A ∨ B) ∨ C

Distributivity A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

Absorption A ∧ (A ∨B) ≡ A

A ∨ (A ∧B) ≡ A

A ∧ (¬A ∨B) ≡ A ∧B

A ∨ (¬A ∧B) ≡ A ∨B

See Kelly page 12 for further equivalences

• proofs via truth tables (or other equivalences)

295

Q 12.4.2 The Many Faces of Implication

• if P then Q

• P implies Q

• P → Q

• P only if Q

• Q if P

• Q is a necessary condition for P

• P is sufficient for Q

• ¬Q→ ¬P (called the contrapositive of P → Q)

• ¬P ∨Q

Exercise: Verify the equivalence of P → Q and ¬Q→ ¬P .

296

Q 12.4.3 If and Only If
A “if and only if” B means A if B and A only if B,

that is, (B → A) ∧ (A→ B)

A if and only if B is commonly abbreviated A iff B

and written A↔ B

Truth table for ↔:

A B A→ B B → A A↔ B

T T T T T

T F F T F

F T T F F

F F T T T

A↔ B is true exactly when A and B have the same truth

value

297

Q 12.5 How Many Connectives?

• (Kelly Section 1.4)

• started with: ¬ ∧ ∨ → ↔

• we can express everything in terms of ¬ ∨, so {¬,∨} is

called a complete set of connectives.

• {¬,∧} is also a complete set of connectives.

exercise: prove this.

• Why do we care about how many connectives we

need?

298

Q 12.5.1 NAND

• {|} also complete where | (nand) has truth table

A B A|B
T T F

T F T

F T T

F F T

• ¬A can be expressed as A|A

• A ∧B can be expressed as (A|B)|(A|B)

• How can we express A ∨B?

(Hint: By De Morgan’s laws A ∨B = . . .)

• Exercise: Is {¬,→} a complete set of connectives?

• Exercise: Give the truth table for the only other

complete connective.

299

Q 12.6 Summary

• logic is based on the assumption that reasoning is

based on argument FORM

• a valid argument gives a true conclusion if its premises

are (all) true

• truth tables define truth of compound propositions in

terms of components

• A is a tautology if all rows of the truth table for A are

TRUE

• A and B are equivalent if all rows of the truth table for

A and B are the same

300

Q 13 Arguments

• history of logic and logic programming

• use of propositional logic to formalize arguments

• notions of validity, satisfiability, consistency

• use of these concepts to establish (logical) correctness

of arguments

301

Q 13.1 History
• Goal: to systematize reasoning

• Propositional logic: George Boole, 1847

– Good for basic understanding of

reasoning, but

– No ability to reason about properties

of individuals

302

Q 13.2 Terminology

• An assignment gives a truth value to each

propositional variable in a formula

• A model of a formula is any assignment for which

the formula is true

• A proposition is satisfiable if it is true under some

assignment, i.e. if it has a model

e.g. P → ¬Q is satisfiable because . . .

•
A proposition is valid if it is true under all possible

assignments (i.e., all assignments are models; it is a

tautology)

e.g. P → ¬Q is not valid because . . .

303

Q Terminology (2)

•
A set of propositions is consistent if they can be

true simultaneously; i.e. the conjunction of the

propositions is satisfiable

e.g. {P → ¬Q, P → Q} is consistent because . . .

e.g. {P → ¬Q, P → Q, P} is inconsistent because . . .

•
A proposition A is a logical consequence of a set S

of propositions if whenever all propositions in S are

true, A is true.

• alternative terminology: S semantically entails A

• Denoted: S|=A

• e.g., P ∧Q |= P

304

Q Terminology (3)

• An argument is valid if its conclusion is semantically

entailed by its premises.

e.g.

P → Q P → Q

P Q

∴ Q ∴ P

is valid is invalid

• Thus an argument is valid if premises∪ {¬conclusion} is

inconsistent.

305

Q 13.2.1 Example (Kelly Example 1.4)

• S1: If the violinist plays the concerto, then crowds will come

if the prices are not too high.

S2: If the violinist plays the concerto, the prices will not be

too high.

C: If the violinist plays the concerto, crowds will come.

• Is the argument “S1, S2, therefore C” valid?

i.e. S1, S2 |= C?

i.e. is {S1, S2,¬C} inconsistent?

i.e. is S1 ∧ S2 ∧ ¬C unsatisfiable?

• S1 is P → (¬H → A)

S2 is P → ¬H

C is P → A

so you can check the truth table of

(P → (¬H → A)) ∧ (P → ¬H) ∧ ¬(P → A)

306

Q Example (Kelly Example 1.4) (2)
P A H ¬H → A P → P → ¬H P → A ¬(P → A) mess

(¬H → A)

T T T T T F T F F

T T F T T T T F F

T F T T T F F T F

T F F F F T F T F

F T T T T T T F F

F T F T T T T F F

F F T T T T T F F

F F F F T T T F F

Note that the mess:

(P → (¬H → A))∧ (P → ¬H)∧¬(P → A) always evaluates to

FALSE. Therefore the argument is valid.

307

Q 13.2.2 Another Example

H1: If she studies the sciences then she prepares to earn a

good living.

H2: If she studies the humanities, then she prepares for a

good life.

H3: If she prepares for a good living or for a good life then

the years are well spent.

H4: The years were not well spent.

C: She didn’t study science or humanities.

Is the argument “H1, H2, H3, H4, therefore C” valid?

H1 is S → G, H2 is H → L, H3 is G ∨ L→W ,

H4 is ¬W , C is ¬(S ∨H)

Check the 25 = 32 rows of the truth table

(S → G) ∧ (H → L) ∧ (G ∨ L→W) ∧ (¬W) ∧ (S ∨H)

308

Q 13.3 A Better Way

• Often we can check validity more easily than filling out

a truth table

• What are necessary conditions for

(S → G) ∧ (H → L) ∧ (G ∨ L→W) ∧ (¬W) ∧ (S ∨H)

to evaluate to true (and our argument to be invalid)?

• Each conjunct must be true. In particular, ¬W must

be true (pick simplest propositions first)

• So W must be false

• But G ∨ L→W must be true, so G ∨ L must be false

• So G and L must both be false

• But S → G and H → L must both be true, so S and H

need to be false

309

Q A Better Way (2)

• But S ∨H must be true: contradiction!

• So the original argument was valid

Simple technique can help with the bookkeeping: write out

the formula and write T or F under each variable and

conective as you determine them; propagate variable values

(S → G) ∧ (H → L) ∧ (G ∨ L→W) ∧ (¬ W) ∧ (S ∨ H)

F T F T F T F T F F T F T T F T F X F

310

Q Exercise

Determine whether or not the following formula is

unsatisfiable. If not, find values for the variables that make

it satisfiable.

(p→ (¬h→ c)) ∧ (p→ ¬h) ∧ ¬(p→ c)

311

Q 13.4 Example
WHY WORRY?? There are only two things to worry

about, either you’re healthy or you’re sick. If you’re

healthy there is nothing to worry about and if you’re sick,

there are two things to worry about . . . either you’ll get

well or you won’t. If you get well there is nothing to worry

about, but if you don’t, you’ll have two things to worry

about . . . either you’ll go to heaven or to hell. If you go to

heaven you have nothing to worry about and if you go to

hell you’ll be so busy shaking hands with all of us you’ll

have no time to worry.

CONCLUSION: Either you’ll have nothing to worry about

or you’ll have no time to worry.

H: you are healthy, S you are sick, W you have something

to worry about, A you will get well, B you won’t get well,

C you will go to heaven, D you will go to hell, T you will

have time to worry.

312

Q 13.4.1 Translation to Logic

1. H ∨ S healthy or sick

2. H → ¬W if healthy then no worries

3. S → (A ∨B) if sick then either will get

well or won’t

4. A→ ¬W if get well then no worries

5. B → (C ∨D) if won’t get well then will

either go to heaven or hell

6. C → ¬W if heaven then no worries

7. D → ¬T if hell the no time to worry

8. ∴ ¬W ∨ ¬T therefore, no need to worry

or no time to worry

313

Q 13.4.2 Checking Validity

Begin by negating conclusion and simplifying:

¬(¬W ∨ ¬T) negation of conclusion

¬¬W ∧ ¬¬T De Morgan

W ∧ T double negation

So W and T must both be true

Then premise 7 says D → ¬T , but since T is true, then D

must be false (check with a truth table)

Similarly, premise 6 says C → ¬W , so C must be false,

premise 4 says A→ ¬W so ¬A, and premise 2 says

H → ¬W , so ¬H

314

Q Checking Validity (2)

Now we know W ∧ T ∧ ¬D ∧ ¬C ∧ ¬A ∧ ¬H

Premise 5 is B → (C ∨D), but we know ¬C ∧ ¬D, so we

conclude ¬B

Premise 3 is S → (A∨B), but now we know ¬A∧¬B, so ¬S

Premise 1 is H ∨ S, but we now know ¬H and ¬S —

contradiction!

Conclusion: either some of our premises were false or our

conclusion was true

Argument was valid

315

Q 13.4.3 Caution!

Why have A mean will get well and B mean won’t get well?

Why not use ¬A for won’t get well?

Answer: “will get well” and “won’t get well” are not the

only two possibilities — could also not be sick

Hint: “if you’re sick, . . . either you’ll get well or you won’t.”

Translation would be S → (A ∨ ¬A) — tautology

Tautologies say nothing new; useless as premise

Could have used ¬H for sick, because sick and healthy are

the only choices

316

Q 13.5 Argument Validity in Prolog
Validity can easily be tested in Prolog

valid(Premise, Conclusion) :- % Argument is valid if

valid(Premise->Conclusion). % premise implies conclusion

valid(Prop) :- % Prop is valid if

unsatisfiable(\+Prop). % negation is unsatisfiable

unsatisfiable(Prop) :- % Prop is unsatisfiable

\+ true(Prop). % if it can’t be made true

317

Q Argument Validity in Prolog (2)

true(v(true)).

true(\+ Prop) :-

false(Prop).

true((X;Y)) :-

(true(X)

; true(Y)

).

true((X,Y)) :-

true(X),

true(Y).

true((X->Y)) :-

(false(X)

; true(Y)

).

true((X<->Y)) :-

(true(X),

true(Y)

; false(X),

false(Y)

).

false(v(false)).

false(\+ Prop) :-

true(Prop).

false((X;Y)) :-

false(X),

false(Y).

false((X,Y)) :-

(false(X)

; false(Y)

).

false((X->Y)) :-

true(X),

false(Y).

false((X<->Y)) :-

(true(X),

false(Y)

; false(X),

true(Y)

).

318

Q Argument Validity in Prolog (3)

Represent a propositional variable as v(t), where t is either

true or false.

?- valid(((v(P)->v(Q)),(v(Q)->v(R))), v(P)->v(R)).

P = _G157

Q = _G159

R = _G166

Yes

?- valid((v(P)->v(Q))->v(R), v(P)->v(R)).

No

Why is last answer No?

319

Q Argument Validity in Prolog (4)

Can use false/1 predicate directly to see why

?- false(((v(P)->v(Q))->v(R))-> (v(P)->v(R))).

P = true

Q = false

R = false ;

No

(T → F) → F is true, yet T → F is false

Note: extra parentheses are used in the Prolog goals since

the builtin precedence and associativity of -> differs from

→.

320

Q 13.6 Summary: Argument Correctness

• general strategy for determining if an argument of the

form

S1, S2, · · · , Sn |= C

is valid

• investigate the unsatisfiability of

S1 ∧ S2 ∧ · · · ∧ Sn ∧ ¬C

using a truth table, or trying for a contradiction when

¬C is true.

If this formula is unsatisfiable, the argument is valid.

If this formula is satisfiable, the argument is invalid.

321

Q Summary: Argument Correctness (2)

Non truth-table strategies for determining validity

• Motivation: the truth table for a proposition with n

propositional variables has 2n rows – exponential

growth. (Recall the last example)

• Seek a strategy which at least for some situations does

better (though worst case performance still

exponential)

– seek to exploit “relevant” parts of the formula you

are working with, e.g. the previous strategy for the

college example.

322

323

324

Q 14 Axiom Systems for
Propositional Logic

• notions of axiomatic system, deduction

• particular axiom system for propositional logic

• use of this system to establish tautologies,

equivalences, consistency, argument validity

325

Q Basic Idea (Kelly Ch 4)

• so far . . .

– truth tables used to define

∗ tautologies, (in)consistency, validity, . . .

∗ model theory approach

– gives the semantics of propositional logic

∗ semantics = considerations involving “truth”

(meaning)

• now . . .

– a proof theory approach

∗ axioms, inference rules, proofs, theorems, . . .

• later – connections between the semantic and proof

theory approaches

326

Q 14.1 Axiomatic Systems (Kelly 4.2)

• Proof:

– set of initial hypotheses

– each step generates a new consequence of the

hypotheses

– until the desired proposition is reached.

• In Propositional Logic

–

start with axioms (simple tautological propositions)

– each step uses a rule of inference

(Axioms ≈ Prolog program; conclusion ≈ query.)

• Infinitely many possible axiom systems; we use AL

327

Q 14.1.1 Syntactic Description

Axiomatic system has 4 parts:

Σ alphabet of symbols; we use ¬,→, (,), P, Q, R, . . .

WF the well formed formulae (wff)

Ax the set of axioms, a subset of WF

R the set of rules of deduction

Well Formed Formulae (wff):

• Any propositional letter (e.g., P, Q, R) is a wff

• If W and V are wff then W → V and ¬W are wff

• Nothing else is a wff

Usually want to assume infinite number of propositional

letters; assume we can subscript them

328

Q 14.1.2 Axioms

There are infinitely many axioms, but all have one of these

forms:

Axiom schemas — allow any wff for A, B, and C

Ax1 A→ (B → A)

Ax2 (A→ (B → C))→ ((A→ B)→ (A→ C))

Ax3 (¬A→ ¬B)→ (B → A)

Examples:

• P → (Q→ P) is an instance of Ax1.

• (¬(D → E)→ ¬S)→ (S → (D → E)) is an instance of

Ax3.

329

Q 14.1.3 Inference Rule

One rule of deduction, or inference rule:

modus ponens from A and A→ B infer B

Given a set of hypotheses H, where H ⊆WF , a deduction

is a sequence of wff F1, F2, . . . , Fn where each Fi is either:

• An axiom (Fi ∈ Ax); or

• A hypothesis (Fi ∈ H); or

• Follows from earlier steps by a (the) rule of inference

330

Q Inference Rule (2)

We say a deduction ending in Fn is a deduction of Fn from

H or that Fn is a deductive consequence of H, and write

H � Fn

When H = ∅, we write

� Fn

and say Fn is a theorem

331

Q 14.1.4 Trivial Examples

• A boring example with a very short proof

� P → (Q→ P) Ax1

• Another boring example

� (¬(D → E)→ ¬S)→ (S → (D → E)) Ax3

332

Q 14.1.5 Short Proof (Kelly Theorem 4.1)

� A→ A

1. A→ ((B → A)→ A) Ax1

2. (A→ ((B → A)→ A))→ ((A→ (B → A))→ (A→ A)) Ax2

3. (A→ (B → A))→ (A→ A) MP 1, 2

4. A→ (B → A) Ax1

5. A→ A MP 3, 4

Exercise: Prove the following Simplification

MetaTheorems:

� (A ∧B)→ A

� (A ∧B)→ B

Here A ∧B is defined as ¬(A→ ¬B).

333

Q 14.2 Meta-theorems
We have proved � A→ A, but what about � P → P?

We haven’t proved it, but we could: duplicate proof,

replacing A with P

Works because for every axiom with A, there’s one with P

Modus ponens works for P as well as for A

Take our theorem as a meta-theorem — a theorem

template

As a shortcut, we could use A→ A as if it were an axiom

schema, because we could always replace it by its proof

Like using subroutines when programming

334

Q 14.2.1 Using A→ A

Prove B → (A→ A)

1. A→ A Theorem 4.1

2. (A→ A)→ (B → (A→ A)) Ax1

3. B → (A→ A) MP 1, 2

Could replace Theorem 4.1 line with proof of Theorem 4.1:

1. A→ ((B → A)→ A) Ax1

2. (A→ ((B → A)→ A))→ ((A→ (B → A))→ (A→ A)) Ax2

3. (A→ (B → A))→ (A→ A) MP 1, 2

4. A→ (B → A) Ax1

5. A→ A MP 3, 4

6. (A→ A)→ (B → (A→ A)) Ax1

7. B → (A→ A) MP 5, 6

335

Q Exercise: Transitive Implication

Fill in the blanks in the following proof of

{A→ B, B → C} � A→ C

1. B → C

2. (B → C)→ (A→ (B → C))

3. MP 1, 2

4. (A→ (B → C))→ ((A→ B)→ (A→ C))

5. (A→ B)→ (A→ C)

6. A→ B Hypothesis

7. MP 5, 6

This proves implication is transitive; call it TI

336

Q 14.2.2 Using TI

Can use meta-theorems with hypotheses as rules of

inference

First prove instances of hypotheses, then use

meta-theorem to conclude instance of conclusion

Prove � ¬A→ (A→ B)

1. ¬A→ (¬B → ¬A) Ax1

2. (¬B → ¬A)→ (A→ B) Ax3

3. ¬A→ (A→ B) TI 1, 2

Could turn into proper proof by replacing step 3 with proof

of TI, with ¬A substituted for A, (¬B → ¬A) for B and

(A→ B) for C, and lines 1 and 2 for the hypothesis lines

But this proof is much easier!

337

Q 14.2.3 More Meta-theorems

Kelly proves other useful Meta-theorems

Deduction meta-theorem:

If H ∪ {A} � B then H � A→ B

Proof is more complex (by induction)

338

Q More Meta-theorems (2)

Use deduction meta-theorem to prove

{A→ (B → C)} � B → (A→ C):

1. A→ (B → C) Hypothesis

2. A Hypothesis (for sake of proof

3. B → C MP 1, 2

4. B Hypothesis (for sake of proof

5. C MP 3, 4

So, {A→ (B → C), A, B} � C

then {A→ (B → C), B} � A→ C Deduction theorem

then {A→ (B → C)} � B → (A→ C) Deduction theorem

339

Q 14.3 Finding axiomatic proofs

• no firm search strategy

• proofs generally hard to find

– usually a mixture of seeing what you can do with

the hypotheses you have, and seeing what might

lead to the desired conclusion.

340

Q 14.4 Truth and Deduction (Kelly 4.5)
What is the relationship between truth (|=, see Kelly

chapter 1) and deduction (�, see Kelly chapter 4)?

What makes an axiom system useful?

1.
Consistency: if � A then �� ¬A

Is it impossible to prove a wff and its negation?

2.
Soundness: � A implies |= A

Is it impossible to prove a wff that is not a tautology?

3.
Completeness: |= A implies � A

Can everything that is a tautology be proved?

4.
Decidability:

Is there an algorithm to always decide if � A?

341

Q Truth and Deduction (Kelly 4.5) (2)

The AL system of Kelly chapter 4 has all these properties

1. Consistency : follows from soundness (below), and

that |= is consistent

2. Soundness: proof by induction; axioms are tautologies,

and modus ponens only yields tautologies from

tautologies

3. Completeness: complex proof, see Kelly pp. 87–90

4. Decidability : AL is complete, so it is enough to decide

if |= A, which can be decided by truth table

342

Q 14.5 Summary

• proof system based on axioms and inference rules

defines a computational procedure for verifying

deductions . . . though not necessarily practical for

generating deductions

• correctness of proof system with respect to semantics

is guaranteed by soundness, completeness

343

344

345

346

347

348

Q 15 Resolution

• Kelly chapter 5

• an alternative computational mechanism for

establishing theorems—actually a way of establishing

unsatisfiability

• better suited to computer implementation than

axiomatic methods—the basis of the Prolog system!

• generalises usefully to predicate logic (see later)

• to apply the method, wff must be in a special form,

clausal form

349

Q Terminology

• A literal is a basic proposition or the negation of a

basic proposition.

•

conjunctive normal form (CNF)

e.g. (A ∨ ¬B) ∧ (B ∨ C) ∧A

conjunction of disjunctions of literals

•

disjunctive normal form (DNF)

e.g. (¬P ∧ ¬Q) ∨ (¬Q ∧R) ∨ P

disjunction of conjunctions of literals

• Theorem: Every Propositional Logic formula can be

expressed in CNF and in DNF.

350

Q 15.1 Converting to CNF or DNF

1. Eliminate ↔ using A↔ B equivalent to

(A→ B) ∧ (B → A).

2. Eliminate → using A→ B equivalent to ¬A ∨B.

3. Use De Morgan’s Laws to push ¬ inward to

immediately before propositional variables.

4. Eliminate double negations such as ¬¬A equivalent to

A.

5. Use distributive laws to get the required form.

351

Q 15.1.1 Example (Kelly Example 5.3)

Convert (¬p ∧ (¬q → r))↔ s to conjunctive normal form.

1. ((¬p ∧ (¬q → r))→ s) ∧ (s→ (¬p ∧ (¬q → r)))

2a. (¬(¬p ∧ (¬q → r)) ∨ s) ∧ (¬s ∨ (¬p ∧ (¬q → r)))

2b. (¬(¬p ∧ (q ∨ r)) ∨ s) ∧ (¬s ∨ (¬p ∧ (q ∨ r)))

3a. ((p ∨ ¬(q ∨ r)) ∨ s) ∧ (¬s ∨ (¬p ∧ (q ∨ r)))

3b. ((p ∨ (¬q ∧ ¬r)) ∨ s) ∧ (¬s ∨ (¬p ∧ (q ∨ r)))

4. not needed

5a. (((p ∨ ¬q) ∧ (p ∨ ¬r)) ∨ s) ∧ ((¬s ∨ ¬p) ∧ ¬s ∨ (q ∨ r)))

5b. (p ∨ ¬q ∨ s) ∧ (p ∨ ¬r ∨ s) ∧ (¬s ∨ ¬p) ∧ (¬s ∨ q ∨ r)

Note that Kelly gives a different derivation of this CNF.

See also Kelly Example 5.2.

352

Q Exercise

Convert the following proposition into CNF:

P ↔ (Q ∨R)

353

Q 15.2 The Key to Resolution (Kelly
page 99)

• consider the formulae (¬A ∨B) and (¬B ∨ C)

– If B is true then the truth depends only on C.

– If B is false then the truth depends only on A.

• only one of B, ¬B is true, so

if (¬A ∨B) and (¬B ∨ C) are both true, then either ¬A

is true or C is true, i.e. (¬A ∨ C) is true: this is the

resolvent of the original two clauses.

¬A ∨B

���������� ¬B ∨ C

����������
both true

��
¬A ∨ C this true

354

Q 15.2.1 Resolution Principle.

(Kelly Theorem 5.1, page 102)

If D is a resolvent of clauses C1 and C2, then C1 ∧ C2 |= D

• Proof – by formalising the above key idea.

Another view: ¬A ∨B means A→ B

Remember: A→ B, B → C |= A→ C

So if ¬A ∨B and ¬B ∨ C, then ¬A ∨ C must hold

355

Q 15.3 The Key to Refutations
¬A ∨ B

���������� ¬B ∨ C

����������
both true

��

one false

¬A ∨ C this true thisfalse

��

• if (¬A ∨ C) is false, then one of (¬A ∨B) or (¬B ∨ C)

must be false.

(i.e. using the contrapositive of the observation before).

356

Q 15.3.1 Refutations
¬A ∨B

���������� ¬B ∨ C

����������
one false

¬A ∨ C this false

��

• repeatedly “cancel out” B with ¬B and seek ⊥ (empty

clause).

• if you reach ⊥, argue “backwards” to conclude the

starting formulae were inconsistent.

P . . .

��
��

��
�� Q . . . P . . .

���
���

���
�

��������� Q . . .

��������

P

���������� ¬P

����������

⊥

357

Q 15.3.2 Deductions and Refutations (Kelly page
105)

• A resolution deduction of clause C from a set S of

clauses is a sequence C1, C2, . . . , Cn of clauses such that

Cn = C and for each i, 1 ≤ i ≤ n,

– Ci is a member of S, or

– Ci is obtained, by resolution from Cj and Ck,

j, k ≤ i.

• A resolution refutation of a set S of clauses is a

resolution deduction of ⊥ from S.

358

Q 15.3.3 Resolution Theorem

Given a clause set S, R(S) is the set of all clauses derivable

from S by one resolution step

R∗(S) is the set of all clauses obtainable after a finite

number of resolution steps, starting with S.

Resolution theorem: S is unsatisfiable iff ⊥ ∈ R∗(S)

Proof. By induction, using the Resolution Principle.

359

Q 15.4 Establishing Validity With
Resolution

• Algorithm for establishing formula A is valid

– put ¬A in conjunctive normal form

– take set of conjuncts and apply resolution

repeatedly

– if eventually you get ⊥ then ¬A unsatisfiable (so A

is valid); otherwise A is not valid

• How can you be sure that this procedure terminates?

360

Q 15.5 Set Representation of Clauses

• clause: a finite set of literals representing a

disjunction

e.g. {A,¬B} represents A ∨ ¬B

• clause set: a set of clauses representing a CNF

formula

e.g. {{A,¬B}, {B, C}, {A}} for (A ∨ ¬B) ∧ (B ∨ C) ∧A

• empty clause: {},⊥ represent a formula always false

• literals L and ¬L are called complementary

• resolvent of two clauses containing complementary

literals is their union omitting L and ¬L

361

Q Set Representation Examples

• e.g. C1 = {A, B}, C2 = {¬A, E} : resolvent {B, E}

• e.g. C3 = {A, B,¬C}, C4 = {¬A, C}
– one resolvent of C3 and C4 is {B,¬C, C}

– another resolvent of C3 and C4 is {A, B,¬A}

– but {B} is not a resolvent of C3 and C4

– both clauses {B,¬C, C} and {A, B,¬A} are

tautological (always true) and can be ommitted.

362

Q 15.5.1 Example

Remember the disappointed student?

• H1: If she studies the sciences then she prepares to

earn a good living.

H2: If she studies the humanities, then she prepares for

a good life.

H3: If she prepares for a good living or for a good life

then the years are well spent.

H4: The years were not well spent.

C: She didn’t study science or humanities.

• Is the argument “H1,H2,H3,H4, therefore C” valid?

363

Q 15.6 Example Proof
H1 is S → G

H2 is H → L

H3 is G ∨ L→W

H4 is ¬W

C is ¬(S ∨H)

We convert

(S → G) ∧ (H → L) ∧ (G ∨ L→W) ∧ (¬W) ∧ (S ∨H)

to CNF.

2a. (¬S ∨G) ∧ (¬H ∨ L) ∧ (¬(G ∨ L) ∨W) ∧ ¬W ∧ (S ∨H)

3. (¬S ∨G) ∧ (¬H ∨ L) ∧ ((¬G ∧ ¬L) ∨W) ∧ ¬W ∧ (S ∨H)

5. (¬S ∨G) ∧ (¬H ∨ L) ∧ (¬G ∨W) ∧ (¬L ∨W) ∧ ¬W ∧ (S ∨H)

364

Q 15.6.1 Example Proof Diagram

¬S ∨G ¬G ∨W ¬H ∨ L ¬L ∨W ¬W

����������������������
����

S ∨H

																					

¬L

¬G

 ¬H

¬S S
����������������

⊥
1 ¬L ∨W a ¬L ∨W

2 ¬W b ¬W

3 ¬L 1,2 c ¬L a,b

4 ¬G ∨W d ¬H ∨ L

5 ¬G 2,4 e ¬H c,d

6 ¬S ∨G

7 ¬S 5,6

365

Q Exercise

Use resolution to show

{{A, B,¬C}, {¬A}, {A, B, C}, {A,¬B}}

is unsatisfiable. Show a resolution diagram.

366

Q 15.6.2 Important Results

• Theorem. (Soundness of resolution)

If there is a resolution refutation of S, then S is

unsatisfiable.

Proof: straightforward induction.

• Theorem. (Completeness of resolution)

If S is unsatisfiable, there is a resolution refutation of

S.

Proof: delicate induction, using the compactness

theorem to reduce the problem to a finite one.

367

Q 15.7 Summary: Propositional Logic so
Far

• syntax: the shape of “legal” formulae

• semantics: defined using truth tables. A valid iff ¬A

unsatisfiable

• proof definitions - axioms, inference rules

• notation
A � B B is deducible from A

A |= B B is semantically entailed by A

• techniques

– truth tables

– axioms and inference

– resolution

• key results: � A iff |= A iff there is a resolution refutation of

A

368

Q 15.7.1 Discussion

• Any problem that involves deciding amongst a finite

number of choices can be expressed in propositional

satisfiability.

• resolution implementable easily, but no polynomial

time algorithm known (for this or any of the other

techniques)

• the satisfiability problem (SAT) for propositional logic

is “typical” of a large class of difficult problems –

so-called NP-complete problems – for which there are

no known efficient algorithms.

• however, by limiting expression to restricted forms of

formulae, resolution can lead to a practical

programming language – Prolog

369

370

371

372

Q 16 Linear Resolution

• present linear resolution – a more efficient form of

resolution

• show connections between linear (input) resolution and

Prolog

• Introduce negation as failure

373

Q Linear Resolution (2)

• Linear resolution is a refinement of resolution (restricts

the search space).

•

A linear (resolution) deduction (Definition 10.1) or

proof of C from S is a sequence of pairs

(C0, B0), . . . , (Cn, Bn) such that C = Cn+1 and

1. C0 and each Bi are elements of S or some Cj with

j < i

2. each Ci+1, i ≤ n is a resolvent of Ci and Bi.

• A linear refutation (Definition 10.1) is a linear

deduction of ⊥ from S

374

Q Linear Resolution (3)

Basic idea: when choosing two clause to resolve, always

make one be the result of the previous resolution

(10.3) centre clauses, side clauses ancestors

{¬A, B} {A}
��������������������

{B} {¬C,¬B}
����������������

{¬C} {C}
���������������������

⊥
•

Main result: linear resolution is complete — if S is an

unsatisfiable set of propositional Horn clauses then there is

a linear refutation of S

375

Q Linear Resolution Illustration
Resolution in general

{¬A, B}

{C}
���������� {A}

���������� {¬C,¬B}
���

{B}
������� {¬B}

�������

⊥

versus

Linear Resolution

{¬A, B} {A}
������

{B} {¬C,¬B}
����

{¬C} {C}
�������

⊥

376

Q 16.1 Horn clauses and Prolog

• conjunctive normal form = conjunction of clauses

• clause {L1, . . . , Ln} represents

(A1 ∨A2 · · · ∨ Am ∨ ¬B1 ∨ · · · ∨ ¬Bk) [n = m + k]

• which, using DeMorgan’s laws, can be written

B1 ∧ · · · ∧Bk → A1 ∨A2 · · · ∨Am

• a clause with at most one positive literal is called a

Horn clause

B1 ∧ · · · ∧Bk → A

• written with :− for ← and , for ∧ in Prolog notation

A :− B1, . . . , Bk

377

Q Horn clauses and Prolog (2)

• with one positive and some negative literals – rule e.g.

A :− B1, . . . , Bk

• with no negative literals – fact e.g. A

• with no positive literals – goal e.g. :− B1, . . . , Bk.

subgoal

A

��
��
��
�

:− B1, . . . , Bj, . . . , Bk

���������

head neck body

378

Q 16.2 Propositional Logic Programs

• a propositional logic program P is a collection of facts

and rules; typically, we want to know if some other

fact(s) are a logical consequence of P

Example:
mg :− mgo, h2. i.e. h2 ∧ mgo → mg

h20 :− mgo, h2. h2 ∧ mgo → h20

co2 :− c, o2. c ∧ o2 → co2

h2co3 :− co2, h2o. co2 ∧ h2o → h2co3

mgo. mgo

h2. h2

o2. o2

c. c

• given these facts and rules, can you prove h2co3 is

generated?

379

Q 16.2.1 Clausal Form of Logic Program
A1 h2 ∧ mgo → mg ¬h2 ∨ ¬mgo ∨ mg

A2 h2 ∧ mgo → h20 ¬h2 ∨ ¬mg0 ∨ h20

A3 c ∧ o2 → co2 ?

A4 co2 ∧ h2o → h2co3 ?

A5 mgo mgo

A6 h2 h2

A7 o2 o2

A8 c c

A9 ¬h2co3 ¬h2co3

380

Q 16.2.2 Propositional Logic Programs and
Resolution

• given a propositional logic program P to know if some

other fact(s) are a logical consequence of P

• add the conjunction of the facts as the goal clause G

:− h2co3

and, using resolution, show that P ∪{G} is unsatisfiable

• remember, in clausal form :− h2co3 is ¬h2co3

• i.e. adding the goal is just adding the negation of the

query

381

Q 16.3 Linear Input Resolution

•

(Nerode and Shore Definition 10.8) A linear input

(LI) resolution of a Goal G from a set of program

clauses P is a linear resolution refutation of

S = P ∪ {G} that starts with G and in which all the

side clauses are from P (input clauses).

• Theorem (Nerode and Shore Theorem 10.10) For

propositional logic programs, there is a linear

refutation which starts with the goal clause and uses

only clauses from the program as side clauses;

• i.e. linear input resolution is complete for propositional

logic programs.

• but linear input resolution is not complete for arbitrary

clause sets.

382

Q 16.3.1 Counterexample

• e.g. consider given clauses

{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}

• unsatisfiable, but not detected by linear input

resolution

• one attempt looks like . . . {¬p,¬q} {p,¬q}
�������

{¬q} {p, q}
���������

{p} {¬p, q}
��������

{q} {p,¬q}
��������

{p} {¬p, q}
����������

• no attempt will work, because . . .

383

Q Exercise

Use linear input resolution to refute the clause set:

{{q,¬p,¬s}, {p,¬r}, {r}, {s}, {¬q}}

Show a resolution diagram.

384

Q 16.4 Connections with Prolog

• representation . . . a program, with a goal

1. {q,¬p,¬s} q :- p, s.

2. {p,¬r} p :- r.

2. {p,¬s} p :- t.

4. {s} r :- v.

4. {s} s.

3. {t} t.

5. {¬q} :- q

• execution – a form of linear input resolution

• the system responds YES, which is short for . . .

• issues of efficiency, completeness . . .

385

Q 16.4.1 (Abstract) Interpreter for Propositional
Prolog

Input: A query Q and a logic program P

Output: TRUE if Q ‘implied’ by P, FALSE otherwise

To Prove(G1,... Gn):

For each rule from P of the form

G1 :- B1, ... ,Bn:

if we can Prove(B1,...Bn,G2,...Gn):

return TRUE

return FALSE (no rule was satisfiable)

386

Q 16.4.2 SLD Resolution

• Selection rule: always resolve on first literal in clause

• Linear resolution: produce linear input refutations

• Definite clauses: Horn clauses with exactly one

positive literal

387

Q 16.4.3 SLD Tree

Prove q with earlier example program:

q :- p, s. p :- r. p :- t.

r :- v. s. t.

q

p, s

��
�� ���

�

r, s t, s

v, s s

⊥
Branching represents choice points (revisited on

backtracking)

⊥ indicates success; underlined goals indicate failure

388

Q 16.4.4 SLDNF Resolution

• Prolog actually uses a variation on SLD resolution

called SLDNF

• SLDNF resolution is SLD resolution with negation

as failure

•
negation as failure means a negated literal is

proved by trying to prove the positive literal; if this

succeeds, the negation fails, and vice versa

• Negation as failure allows Prolog clauses to have

negations in the body

• Never needed for Horn (or definite) clauses

• E.g.: p :- t, \+r.

• Equivalent to {p,¬t, r}: not Horn

389

Q Negation as Failure Example

Prove q with updated program:

q :- p, s. p :- r. p :- t, \+r.

r :- v. s. t.

q

p, s

��
�� ����

r, s t,¬r, s

v, s ¬r, s r

s v

⊥
¬r is proved because separate proof of r fails

390

Q 16.5 Summary: Linear Resolution and
Prolog

• Nerode and Shore Theorem 10.15 ensures that the

resolution method underlying Prolog, SLD-resolution,

is complete; however, Prolog’s search strategy is not

guaranteed to find a refutation even if one exists!

• All of this needs further care when dealing with

predicate logic programs – i.e. admitting variables –

more later.

• Note: The tree structures in SLD-trees seen in

tracing program execution are generated by searching

the different possibilities for side clauses.

391

Q 16.6 Summary: Prolog “theory”

• SLD resolution – a refinement of linear resolution

– SLD resolution is sound and complete

• Prolog = SLD resolution + search strategy

– Prolog is sound – answers indicate logical

consequence

– Prolog is not complete – will not always give an

answer

• other issues with Prolog (undermining soundness!):

– occur check, cut, negation, . . .

392

393

394

395

396

∀x 17 Predicate Logic

• Relations and Functions

• From English to Predicate Logic

• Formal Language of Predicate Logic

397

∀x History
• Propositional logic can only make

absolute statements, not statements

about some/all individual(s)

• Can say “if it rains, I will get wet”

• Can’t say “if it rains, anyone who is

outside will get wet”

• Gotlob Frege proposed the Predicate

Calculus in 1879 to solve this problem

• can reason about properties of

individuals

• can make sweeping statements about

all individuals

• can reason about relationships between

individuals

398

∀x Examples of Predicate Logic Formulae

• every shark eats a tadpole

∀x(S(x)→ ∃y(T (y) ∧ E(x, y)))

• all large white fish are sharks

∀x(W (x)→ S(x))

• colin is a large white fish living in deep water

W (colin) ∧D(colin)

• any tadpole eaten by a deep water fish is miserable

∀z((T (z) ∧ ∃y(D(y) ∧ E(y, z)))→M(z))

• ∴ some tadpole(s) are miserable

∴ ∃z(T (z) ∧M(z))

Is this argument valid?

399

∀x 17.1 Relations and Functions
A relation relates objects in the domain

• cf. Prolog predicates

• E.g., < is a relation over integers (or reals), “is parent

of” is a relation on humans

• Can relate any number of objects, e.g., “are the

lengths of the sides of a right triangle” relates triples

of numbers

400

∀x 17.1.1 Relations

• A relation is a set of tuples of objects

• E.g., < on the integers is the set:

{〈0, 1〉, 〈0, 2〉, . . . , 〈1, 2〉, . . . , 〈−1, 0〉,}

• E.g., Difference is:

{〈0, 0, 0〉, 〈1, 0, 1〉, . . . 〈0, 1,−1〉, . . .}

• Nothing wrong with infinite sets (just don’t try to

compute with them!)

• Usually write this as, e.g., Less(0, 1), or Difference(3, 1, 2)

401

∀x 17.1.2 Functions

• A function is a relation where the last element of each

tuple is unique for each combination of the others

• Difference is a function, because given any a and b,

there is only one c such that 〈a, b, c〉 ∈ Difference

• Less is not a function because, e.g., 〈0, 1〉 ∈ Less and

〈0, 2〉 ∈ Less

• Functions are usually written as function applications,

which show all but the last argument, and stand for

the unique value for the last argument given the other

arguments

• difference(3, 1) stands for the unique x such that

difference(3, 1, x) holds

• Function applications can be nested

402

∀x 17.2 From English to Predicate Logic

• Take predicates (i.e. sentences with the subject

abstracted away) and use symbols for them.

• e.g. Sentence: “He is a man.” Predicate: is a man

Symbol for predicate: M()

“x is a man”, M(x), cannot be assigned a truth value.

Bill is a man, M(bill), can be assigned a truth value.

• Can abstract away sentence object as well as subject:

“Bob is taller than Bill” T (bob, bill)

• Quantifier examples:

“Every man is mortal” ∀x(man(x)→ mortal(x))

“Some cat is mortal” ∃x(cat(x) ∧mortal(x))

• Usually use → with ∀ and ∧ with ∃

403

∀x 17.2.1 Examples

Let L(x, y) be “x loves y”; let I(x, y) be “x is y”

L(james, jean) James loves Jean

∀xL(x, jean) Everyone loves Jean (including

Jean!)

∀x(¬I(x, jean)→ L(x, jean)) Jean is loved by everyone else

∃x(¬I(x, james) ∧ L(x, james) Someone other than James loves

James

∀x(∃yL(x, y)) Everybody loves somebody

∃y(∀xL(x, y)) Someone is loved by everybody

∃x(∀yL(x, y)) Someone loves everybody

404

∀x Exercise

Translate the following statement to predicate logic:

Everyone barracks for a footy team

Use the following predicates:

P (x) x is a person

T (x) x is a footy team

B(x, y) x barracks for y

405

∀x 17.2.2 Word Order

• follow word order with care

– “there is something which is not P”:

∃y¬P (y)

– “there is not something which is P” (“nothing is

P”):

¬∃yP (y)

– “all S are not P” vs. “not all S are P :”

∀x(S(x)→ ¬P (x)) or ¬∀x(S(x)→ P (x))?

∗ consider: “all that glitters is not gold”

∗ consider: “all 255 students are not asleep”

406

∀x 17.2.3 Quantification Order

• Order of different quantifiers is important

• ∀x∃y is not the same as ∃y∀x

• First says each x has a y that satisfies P (x, y), second

says there’s an individual y that satisfies P (x, y) for

every x

• But ∀x∀y is the same as ∀y∀x and ∃x∃y is the same as

∃y∃x

407

∀x Quantification Order (2)

• May help to think of a game where I make a claim and

you try to disprove it

• If I claim ∀x∃yP (x, y), then you can challenge me by

choosing an x and asking me to find the y that

satisfies P (x, y), but I get to know the x you chose

• If I claim ∃y∀xP (x, y), then you can challenge me by

asking me to find the y, then you just have to find an

x that does not satisfy P (x, y), and you get to know

the y I chose

• If I claim ∃x∃yP (x, y), then I have to find both x and y,

so it doesn’t matter what order they appear

• If I claim ∀y∀xP (x, y), then you get to pick both x and

y, so again it doesn’t matter what order they appear

408

∀x 17.2.4 Implicit Quantifiers

Sometimes quantifiers are implicit in English

Look for nouns (especially plural) without determiners

(words to indicate which members of a group are intended)

• “Men are mortal” means “all men are mortal:”

∀x(Man(x)→Mortal(x))

• “A woman is stronger than a man” would usually

mean:

∀x∀y((Woman(x) ∧Man(y))→ Stronger(x, y))

• “A woman is stronger than a man” could also mean:

∃x∃y(Woman(x) ∧Man(y) ∧ Stronger(x, y))

• Must consider context of statement; ask yourself what

speaker was trying to say

409

∀x 17.2.5 Ambiguity

• Often, English statements are ambiguous; just do your

best to determine what was intended

• Logic is unambiguous

• “A blue-eyed person is a dole bludger” could mean

(1)∀x(Blueeyed(x)→ Dolebludger(x)) or

(2)∃x(Blueeyed(x) ∧Dolebludger(x))

• If previous sentence is “I know several blue-eyed people

who are dole bludgers,” then (2) is probably intended

• If following sentence is “Joe has blue eyes, so Joe is a

dole bludger,” then must have intended (1)

410

∀x 17.2.6 Choice of Predicates

Often there are many ways to encode an idea in predicate

logic

“People who live in glass houses shouldn’t throw stones”

could be expressed in any of these ways:

• ∀x((Person(x) ∧Glasshouseresident(x))→
¬Shouldthrowstones(x))

• ∀x∀y((Person(x) ∧Glasshouse(y) ∧ Livesin(x, y))→
¬Shouldthrowstones(x))

• ∀x∀y∀z((Person(x) ∧Glasshouseresident(x) ∧ Stone(y) ∧
Throwingaction(z) ∧ Performs(x, z, y))→ ¬Advisable(z))

Choose predicates to expose important concepts and hide

unimportant detail, depending on your goals

411

∀x Exercise

Given the following interpretation, translate the formula

∃x(P (x) ∧ ∀y((P (y) ∧ x �= y)→ h(x) > h(y)))

to English

P (x) x is a person

x > y x is greater than y

x �= y x and y are different

h(x) the height of x

412

∀x 17.2.7 What Logic Cannot Handle

• Logic is not good with imprecise concepts

• Words like “many,” “most,” “few,” “usually,”

“seldom,” etc, are not easy to handle

• Sentences like “most birds can fly” are difficult to

express in logic

413

∀x 17.3 The Language of Predicate Logic

• Alphabet

– constants (c)

– variables (x, y in P (x, y))

– function letters (f in P (f(x)))

– relation symbols (P in P (x, y))

– logical connectives (¬ ∧ ∨ → ↔)

– quantifiers (∀, ∃)

– punctuation symbols (,) and ,

414

∀x The Language of Predicate Logic (2)

• Understanding Quantifiers

– ∀xA(x) “For each and every thing, A(that thing) is

true”

– ∃xA(x) “There is at least one thing for which

A(that thing) is true”

• Terms (Kelly 6.4.1)

(i) every constant is a term

(ii) every variable is a term

(iii) If t1, . . . , tn are terms and f is a function letter of

arity n, then f(t1, . . . , tn) is a term

(iv) nothing else is a term.

415

∀x The Language of Predicate Logic (3)

• A predicate symbol of arity n applied to n terms, e.g.

P (t1, . . . , tn), is called an atom

(note Prolog terminology conflicts)

• Well formed formulae (wff) (Kelly 6.4.1)

(i) An atom is a wff

(ii) if A and B are wff, so are ¬A, (A ∧B), (A ∨B),

(A→ B), (A↔ B)

(iii) if A is a wff and x is a variable, then ∀xA is a wff

(iv) if A is a wff and x is a variable, then ∃xA is a wff

(v) Nothing else is a wff

416

∀x 17.3.1 Scope, Bound and Free Variables

• scope: a quantifier applies to the formula immediately

to its right

– in ∀x(P (x)→ Q(x)), ∀x applies to P (x)→ Q(x)

– in ∀xP (x)→ Q(x), ∀x applies to P (x)

• a variable x occuring within the scope of a quantifier

∀x or ∃x is bound

• a variable outside the scope of any quantification of

that variable is free

417

∀x 17.3.2 Bound, Free, Sentences and Formulae

• Examples

– in ∃xA(x, c), x occurs bound

– in ∃x(A(x, c) ∧B(y)), x occurs bound, y occurs free

– in ∃x(A(x, y) ∧ ∀yB(y)), x occurs bound, y is free in

its first occurrence and bound in its second

• Sentence

–
a sentence, or closed formula, is a wff where every

variable occurrence is bound

– e.g ∃x∀y(A(x, y) ∧ ∃z(B(z, y)→ B(x, z)))

418

∀x 17.4 Summary

• Language of Predicate Logic extends Propositional

Logic with predicates, functions, universal and

existential quantifiers

• Order of quantifiers in formulae is significant

• English is ambiguous, translating to logic is not always

straightforward

• Logic is unambiguous, translating to English is OK

• In ∀xF and ∃xF, x is bound throughout F

• Variable that is not bound is free

419

420

∀x 18 Determining Truth

• Domains of Interpretation

• Truth and Satisfaction

• Valuations

421

∀x 18.1 Domains of Interpretation

•
Truth value of a Predicate Logic formula depends on

the set of things we limit our attention to, called the

domain of interpretation or domain of discourse

• A domain of interpretation is a non-empty set

• Can be anything: e.g., the students taking this

subject, the integers, the atoms in the universe

• Can only make statements about the objects in the

domain

• Consider ∀x(x ≥ 0):

– True if domain is the set of natural numbers

– False if domain is the set of integers

422

∀x 18.1.1 Interpretations
An interpretation relates the constant, function,

and relation symbols of our language to the objects,

functions and relations over the domain

Gives a meaning to our language

Example: language with binary predicate symbols P and Q,

unary function symbol f and constant symbol c

• domain U is the set of integers

• PU the relation {(n, m) : n < m} i.e.

{(0, 1), . . . , (23, 12345), . . .}
• QU the relation {(u, v) : v = u2 and u > 0} i.e.

{(1, 1), (2, 4), . . .}
• fU(x) = x + 7

• cU is 0

423

∀x Interpretations (2)

• We use domains of interpretation all the time without

thinking about it

• In a discussion with friends, you might ask “has

anyone read The Hitchhiker’s Guide to the Galaxy?”

• Of course someone has read it; you’re asking if anyone

in the group of friends has read it

• You’re implicitly restricting the domain of discourse to

your group of friends

• “Nobody goes there anymore; it’s too crowded.”

— Yogi Berra

• Only makes sense if domain of discourse is narrower

than all people

424

∀x 18.1.2 Valuations

•
A valuation over an interpretation is an assignment

of domain objects to the free variables of the

language

example: θ = {x �→ 7, y �→ 2, z �→ 4}
• A term is assigned a value in the domain under a

valuation.

ex: f(c) under U and θ is fU(cU) = 7

ex: f(f(y)) under U and θ is

fU(fU (θ(y))) = fU(fU(2)) = 16.

• An atom of the form P (t1, · · · , tn) is true (or satisfied)

under interpretation U and valuation θ if t′i is the

interpretation of ti under U and θ, and (t′1, · · · , t′n) ∈ PU .

ex: Q(y, z) is true under U and θ since (2, 4) ∈ QU .

ex: P (f(c), x) is not true under U and θ since

(7, 7) �∈ PU .

425

∀x 18.1.3 Relation to Propositional Logic

• Predicate logic has interpretations and valuations

• Propositional logic just had assignments

• Can think of a proposition as a niladic (0-arity)

predicate

• Then an interpretation fills the role of an assignment

• With no arguments, no terms and no variables

• With no variables, no need for quantifiers or valuations

426

∀x 18.2 Truth and Satisfaction
A formula A is satisfied by an interpretation U and some

valuation θ over that interpretation:

• an atom is true or not according to the interpretation

U , after applying the valuation θ

• connectives ¬, ∧, ∨, →, ↔: as for Propositional Logic

• ∀xA: if for every value u in the domain of U , the

interpretation U and the valuation

θ′ = (θ − {x �→ }) ∪ {x �→ u} satisfies A(x).

Alternatively A(u1) ∧A(u2) ∧ · · · ∧ A(uN) is satisfied

• ∃xA: if for some value u in the domain of U , the

interpretation U and the valuation

θ′ = (θ − {x �→ }) ∪ {x �→ u} satisfies A(x).

Alternatively A(u1) ∨A(u2) ∨ · · · ∨ A(uN) is satisfied

427

∀x 18.2.1 Truth, Satisfiability, Validity

• A formula A is true in an interpretation if it is

satisfied by every valuation over that interpretation.

• For sentences (closed wffs), there are no free variables

so the valuation is irrelevant

• A sentence A is satisfiable if it is true in some

interpretation.

• A sentence A is valid, written |= A, if A is true in

every interpretation.

428

∀x Truth, Satisfiability, Validity (2)

example: interpretations U where P (x) is “x is a woman” :

• domain of U is {Mary, Kathleen, Teresa}:
∀xP (x) is true in this interpretation

• domain of U is {Mary, Fred, Teresa}:
∀xP (x) is false in this interpretation

• So, ∀xP (x) is satisfiable, but not valid

429

∀x Exercise

In the interpretation of slide 423:

• domain U is the set of integers

• PU the relation {(n, m) : n < m}

• QU the relation {(u, v) : v = u2 and u > 0}

• fU(x) = x + 7

which of the following are true:

1. ∀x∃yP (x, y)

2. ∀x∃yQ(y, x)

3. ∀x∃xP (x, f(x))

430

∀x 18.3 Deciding Validity
To determine validity of a sentence:

• What to do: For all possible interpretations, use

(propositional) refutation to show that the set of

formulae is unsatisfiable.

• How: For each interpretation:

1. Eliminate quantifiers by substituting all values from

the domain for the variables

2. I.e., a big conjunction for ∀ and big disjunction for ∃

3. Consider each atom to be a propositional variable

• Similarly for determining satisfiability : try different

interpretations until one makes sentence true

431

∀x 18.3.1 The Problems

• There are infinitely many interpretations; can’t check

them all!

• Most interpretations are infinite, how to truth of

quantified formulas?

•

Jacques Herbrand (1929) solved first

problem: restricted the number of

interpretations that need to be

considered to just one (the Herbrand

interpretation)

•
J. Alan Robinson (1965) solved second

problem: work with variables directly

using resolution with unification

432

∀x 18.4 Herbrand Approach
Herbrand’s Theorem (1929) A set of clauses is

unsatisfiable iff there is a finite subset of ground instances

of its clauses which is unsatisfiable as propositional logic

formulas

• Each ground instance of an atom can be treated as a

separate propositional variable

• E.g., P (Mary), P (Fred), P (Teresa) can each be

assigned either true or false

• But what about P (x)?

433

∀x 18.4.1 Herbrand Interpretation

• Herbrand’s Theorem effectively says we don’t need to

consider the infinite number of possible interpretations

• We can consider only the Herbrand Interpretation of

the formula

• Given a formula f , the Herbrand Interpretation of

f maps every symbol in f to itself

• I.e., instead of having to worry about what each

symbol might mean, we only consider the symbols

themselves

• Our domain of interpretation is just the symbols of the

formula

434

∀x 18.4.2 Herbrand Universe
To find the Herbrand universe H for a set S of

clauses:

• If c is a constant occurring in a clause in S, H

contains c

• If no constants occur in any clause in S, add a

new constant symbol to H

• if f is a function symbol of arity n occurring in

any clause in S, and H contains t1, · · · , tn, add

f(t1, · · · , tn) to H

• Repeat ad infinitum

If S contains any function symbols, then H is infinite

435

∀x 18.4.3 Herbrand Base
The Herbrand base B of a set S of clauses is

defined as follows

• If P is a predicate symbol appearing in t1, · · · , tn

are members of the Herbrand universe of S, then

P (t1, · · · , tn) is in B

• Nothing else is in B

The Herbrand base is the set of all “propositions” we need

to find truth assignments for

If the Herbrand universe is infinite, so is the Herbrand base

436

∀x 18.4.4 Example

• Fido is a dog

All hungry dogs bark

Fido is hungry

Therefore, Fido barks

• D(F)

∀x(H(x) ∧D(x)→ B(x))

H(F)

∴ B(F)

• Herbrand universe = {F}
• Herbrand base = {D(F), H(F), B(F)}
• Only instances of ∀x(H(x) ∧D(x)→ B(x)) from the

Herbrand base

• That’s just H(F) ∧D(F)→ B(F))

437

∀x Example (2)

• Now it’s all just propositional logic — easy!

• D(F)

H(F) ∧D(F)→ B(F)

H(F)

∴ B(F)

• This is argument is valid

• So by Herbrand’s theorem, the original predicate logic

formula was valid

438

∀x 18.4.5 On To Resolution

• Not always so easy

• Usually the Herbrand universe and base are infinite

• Sadly, Herbrand died aged 23 before he could solve

this problem

• Solution to this problem would wait until Robinson’s

resolution principle

439

∀x 18.4.6 Summary

• Interpretation of a formula is what each of its symbols

mean

• Domain of interpretation is the set of things involved

in interpretation

• A formula is valid if it is true in all interpretations

• Herbrand’s theorem says we only need to consider

Herbrand interpretation, which interprets each symbol

as itself

• Herbrand universe is the set of all terms that can be

made from functions and constants of the formula

440

441

442

443

444

∀x 19 Resolution in Predicate Logic

• Aim: Use resolution to show that a Predicate Logic

formula is unsatisfiable

• Application: Proving that arguments which are

expressible in predicate logic are correct

• Problem: Resolution only defined for Propositional

Logic so far

• Strategy: Adapt Propositional techniques to

Predicate Logic

445

∀x History

• Resolution: J. Alan Robinson, 1965

– Computerized theorem prover

• Logic Programming: Robert Kowalski,

1974

– A program is a conjunction of

implications

– Each implication gives one way a

statement can be true

– Execution is finding ways a

statement can be true

446

∀x History (2)
• Prolog: Alain Colmerauer, 1973

– Designed for natural language

understanding

• Prolog compiler: David H. D. Warren, 1977

– Quite efficient

– Modern Prolog syntax follows this implementation

• Constraint Logic Programming: Jaffar

and Lassez, 1987

– Generalizes Logic Programming

– Developed at University of

Melbourne

447

∀x 19.0.7 Pre-Processing for Predicate Logic

We extend the algorithm for converting a formula to

conjunctive normal form to enable us to deal with variables

and quantifiers.

For each formula:

1. Convert to Prenex Normal Form (CNF with all

quantifiers at the start of the formula).

2. Eliminate existential quantifiers using Skolemisation.

3. Drop the universal quantifiers and convert to clausal

form.

448

∀x 19.0.8 Prenex Normal Form Algorithm
Stage 1 Use A↔ B ≡ (A→ B) ∧ (B → A) to eliminate ↔
Stage 2 Use A→ B ≡ ¬A ∨B to eliminate →
Stage 3 Use

a) De Morgan’s Laws

b) ¬∀xA(x) ≡ ∃x¬A(x)

c) ¬∃xA(x) ≡ ∀x¬A(x)

to push ¬ immediately before atomic wff

Simplify formula using ¬¬A ≡ A

Stage 4 Rename bound variables if necessary

Stage 5 Use the equivalences on (Kelly page 192) to bring all

quantifiers to the left

Stage 6 “Distribute” ∧, ∨

449

∀x 19.0.9 Example

Convert to Prenex Normal Form:

∀x
(
A(x)→ B(x)

)
↔ ∃xQ(x)

1.

„
∀x

“
A(x) → B(x)

”
→ ∃xQ(x)

«
∧

„
∃xQ(x) → ∀x

“
A(x) → B(x)

”«

2.

„
¬ ∀x

“
¬ A(x) ∨ B(x)

”
∨ ∃xQ(x)

«
∧

„
¬ ∃xQ(x) ∨ ∀x

“
¬ A(x) ∨ B(x)

”«

3a.

„
∃x¬

“
¬A(x) ∨ B(x)

”
∨ ∃xQ(x)

«
∧

„
∀x¬ Q(x) ∨ ∀x

“
¬A(x) ∨ B(x)

”«

3b.

„
∃x

“
¬ ¬A(x) ∧ ¬ B(x)

”
∨ ∃xQ(x)

«
∧

„
∀x¬Q(x) ∨ ∀x

“
¬A(x) ∨ B(x)

”«

4.

„
∃ w

“
A(w) ∧ ¬B(w)

”
∨ ∃xQ(x)

«
∧

„
∀ y ¬Q(y) ∨ ∀ z

“
¬A(z) ∨ B(z)

”«

5a. ∃w∃x

„“
A(w) ∧ ¬B(w)

”
∨ Q(x)

«
∧ ∀y∀z

„
¬Q(y) ∨

“
¬A(z) ∨ B(z)

”«

5b. ∃w∃x∀y∀z

„“`
A(w) ∧ ¬B(w)

´ ∨ Q(x)
”
∧

“
¬Q(y) ∨ ¬A(z) ∨ B(z)

”«

6. ∃w∃x∀y∀z

„ “
A(w) ∨ Q(x)

”
∧

“
¬B(w) ∨ Q(x)

”
∧

“
¬Q(y) ∨ ¬A(z) ∨ B(z)

”«

450

∀x Exercise

Convert the following formula to prenex normal form:

∀x(P (x)→ ((∃yQ(x, y)) ∧ (∃yR(x, y))))

451

∀x 19.0.10 Skolemisation

• Suggested by Thoralf Skolem

• Aim: Get rid of ∃ quantifiers

• How: Introduce new constants and functions, not

already existing in the formula, to replace variables

corresponding to existentially quantified variables.

Result is the Skolemisation of the formula.

• Definition:

– ∃ outside ∀: replace by new constant.

∃x∀yA(x, y) becomes ∀yA(c, y).

– ∃ inside ∀: replace by new function with arguments

all variables in outside ∀s.
∀y∃x∀z∃wA(x, y, z, w) ∧B(y, w) becomes

∀y∀zA(f1(y), y, z, f2(y, z)) ∧B(y, f2(y, z))

452

∀x 19.0.11 Intuition

• If ∃x∀yP (x, y) then there is some x that satisfies P (x, y)

for every y

• But we don’t know which x

• So we make up a name: we create a new constant and

define it to be some constant satisfying P

• New constant will represent be the same thing as some

old constant, but that’s OK

• E.g., P (x, y) means y = x + y

• Convert to ∀yP (c, y)

• c happens to be 0, but we don’t need to know that

453

∀x Intuition (2)

• If ∀y∃xP (x, y) then for each y there is some x that

satisfies P (x, y)

• Now the x that satisfies P (x, y) depends on y: it’s a

function of y

• So now we make up a function: for any y, we say that

f(y) satisfies P (f(y), y)

• E.g., P (x, y) means x > y

• convert to ∀yP (f(y), y)

• f(x) could be x + 1, but we don’t care

454

∀x 19.0.12 Important Result

Theorem. Let A be a formula and A′ its Skolemisation.

Then A is satisfiable iff A′ is satisfiable.

• A and A′ are not (in general) equivalent, since there

can be symbols in A′ not occurring in A.

• So the Skolemised formula (no ∃ quantifiers) can be

used in resolution.

• Prolog clauses do not allow existentially quantified

variables, so there is no Skolemisation to be done!

(Fortunate, since we generally don’t want two distinct

constants representing the same thing in Prolog)

455

∀x 19.0.13 Clausal Form

To find the clausal form of a formula:

1. Convert to Prenex normal form and then Skolemise.

2. Drop all ∀ quantifiers.

3. Convert to clausal form as for Propositional Logic.

• Once in Prenex normal form, all variables are

universally quantified and at the front of each clause

• Order of same quantifiers is unimportant

• Drop them, then consider all variables implicitly

universally quantified

• Simplifies resolution algorithm

456

∀x Exercise

Skolemize the following formula, then put it into clausal

form:

∀y∃x(P (y) ∨ ¬Q(x, y))

457

∀x An Example

Use resolution to prove that the following argument is valid.

All hungry animals are caterpillars.

All caterpillars have 42 legs.

Edward is a hungry caterpillar.

Therefore, Edward has 42 legs.

Translation to Logic:

∀x(H(x)→ C(x)) H(Edward) ∧ C(Edward)

∀x(C(x)→ L(x)) ∴ L(Edward)

458

∀x Prenex Normal Form

∀x(H(x)→ C(x)) H(Edward) ∧ C(Edward)

∀x(C(x)→ L(x)) ∴ L(Edward)

Negate conclusion and convert to Prenex Normal Form:

∀x(¬H(x) ∨ C(x)) ∧ H(Edward)

∧ ∀x(¬C(x) ∨ L(x)) ∧ C(Edward)

∧ ¬L(Edward)

459

∀x Clausal form

∀x(¬H(x) ∨ C(x)) ∧ H(Edward)

∧ ∀x(¬C(x) ∨ L(x)) ∧ C(Edward)

∧ ¬L(Edward)

Set of sets representation:

⎧⎪⎪⎨
⎪⎪⎩
{¬H(x), C(x)}, {H(Edward)},
{¬C(x), L(x)}, {C(Edward)},

{¬L(Edward)}

⎫⎪⎪⎬
⎪⎪⎭

460

∀x Resolution Refutation

8>><
>>:

{¬H(x), C(x)}, {H(Edward)},

{¬C(x), L(x)}, {C(Edward)},

{¬L(Edward)}

9>>=
>>;

~C(x), L(x) ~L(Ed) C(Ed)

~C(Ed)

⊥

~H(x), C(x) H(x)

Just one refutation, there are many.

Why C(Ed) on second line? See in next lecture

461

∀x 19.0.14 Summary: Herbrand Approach

Problems

• set of ground clauses may be infinite

• no adequate means to guide the search for refutation

• validity problem for predicate logic is undecidable

(problem with any method)

462

∀x 20 Resolution with Unification
How did Robinson solve the problem of detecting

unsatisfiability in predicate logic, and how did that give rise

to logic programming?

• Robinson’s Approach

• Unification

• Resolvents

• Resolution Theorems

• Horn Clauses and Prolog

• Summary: Robinson’s Approach

463

∀x 20.1 Robinson’s Approach

• Robinson’s Theorem (1965) A set of clauses is

unsatisfiable iff it has a resolution refutation, where

unification is used to match complementary literals.

• Avoid generating (possibly infinitely many) ground

instances of clauses.

• Still have search control problem but greatly reduced.

464

∀x 20.2 Unification

•

A substitution is a finite set of replacements of

variables by terms, i.e. a set σ of the form

{t1/x1, t2/x2, · · · , tn/xn}, where the xi are variables

and the ti are terms. If A is a formula, Aσ is the

result of simultaneously making the substitutions ti

for each occurrence of xi.

e.g. if A = {P (x), Q(y, y, b)}, σ = {h(y)/x, a/y, c/z} then

Aσ = {P (h(y)), Q(a, a, b)}
Note similar but not the same as a valuation.

• A unifier of two literals L1 and L2 is a substitution σ

such that L1σ = L2σ.

• L1 and L2 are unifiable if there exists a unifier for L1

and L2

465

∀x Unification (2)

•
A most general unifier (m.g.u.) for L1 and L2 is a

substitution σ such that σ is a unifier for L1 and L2

and every other unifier τ of L1 and L2 can be

expressed as σθ for some substitution θ.

(Aσθ is the composition of σ and θ applied to A, i.e.

performing σ first, then θ).

• Extend to sets of literals S = {L1, . . . , Ln} in the

obvious way. σ1 unifies L1 and L2, σ2 unifies L1σ1 and

L2, . . . , σn−1 unifies L1σ1 · · ·σn−2 and Ln. The unifier

of S is σ1 · · ·σn−1.

• Lemma. If a set S is unifiable, then it has a most

general unifier.

• Lemma. A most general unifier for a set S (if it

exists) is unique up to renaming of variables.

466

∀x 20.2.1 Examples

• {P (x, a), P (b, c)} is not unifiable

• {P (f(x), y), P (a, w)} is not unifiable.

• {P (x, c), P (b, c)} is unifiable by {b/x}.

• {P (f(x), y), P (f(a), w)} is unifiable by σ = {a/x, w/y},
τ = {a/x, a/y, a/w}, υ = {a/x, b/y, b/w}
Note that σ is an m.g.u. and τ = σθ where θ = · · ·

• {P (x), P (f(x))} is not unifiable. (c.f. occur check!)

467

∀x 20.2.2 Unification Algorithm

1. T1 = L1; T2 = L2; σ0 = {}; i = 0

2. If T1 is identical to T2, terminate with σi as the most

general unifier.

3. Find the leftmost position where T1 and T2 differ. If

the two terms at this position are a variable vi and a

term ti such that vi does not occur in ti (the occurs

check), then

σi+1 = σi{ti/vi}; T1 = T1{ti/vi}; T2 = T2{ti/vi}

Otherwise, terminate as S is not unifiable.

4. i = i + 1; resume from step 2.

468

∀x Unification Algorithm (2)

• T1 = L1 = f(x, g(x)) T2 = L2 = f(h(y), g(h(z)))

σ1 = {h(y)/x}
T1 = f(h(y), g(h(y))) T2 = f(h(y), g(h(z)))

σ2 = {h(y)/x, y/z}
T1 = f(h(y), g(h(y))) T2 = f(h(y), g(h(y)))

i.e. σ2 is an m.g.u.

469

∀x 20.2.3 Results on Unification

• Theorem. The unification algorithm is correct.

• Remark. The occur check can be exponential in the

size of the original terms, so Prolog simply omits this

part of the algorithm.

• Question. What does this mean for Prolog’s

correctness?

• Question. What happens when you type the following

queries to Prolog?

?- X = f(X).

?- X = f(X), Y = f(Y), X=Y.

470

∀x Exercise

Find the most general unifier of the following pairs of

terms, if possible. (a, b are constants, x, y, z are variables.)

1. f(x, y, f(x, y)) f(b, z, z)

2. f(f(x, y), y) f(z, g(a))

471

∀x 20.3 Resolvents

• Recall: For Propositional Logic:

– Two literals are complementary if one is L and the

other is ¬L.

– The resolvent of two clauses containing

complementary literals L, ¬L is their union

omitting L and ¬L.

• For Predicate Logic:

– Two literals L and ¬L′ are complementary if {L, L′}
is unifiable.

– Let σ be an m.g.u. of complementary literals

{L, L′} with L a literal in C1 and ¬L′ a literal in C2.

Then the resolvent of C1 and C2 is the union of

C1σ and C2σ omitting Lσ and ¬L′σ.

472

∀x 20.4 Resolution Theorems
Resolution Principle

If D is a resolvent of clauses C1 and C2, then C1 ∧ C2 |= D.

Resolution Theorem

A clause set S is unsatisfiable iff ⊥ ∈ R∗(S), where R∗(S) is

the set of all clauses obtainable after a finite number of

resolution steps, starting with S.

473

∀x 20.4.1 Example: The Miserable Tadpole
every shark eats a tadpole

∀x(S(x)→ ∃y(T (y) ∧ E(x, y))) {¬S(x), T (f(x))}, {¬S(x), E(x, f(x))}
all large white fish are sharks

∀x(W (x)→ S(x)) {¬W (x), S(x)}
colin is a large white fish living in deep water

W (colin) ∧D(colin) {W (colin)}, {D(colin)}
any tadpole eaten by a deep water fish is miserable

∀z(T (z) ∧ ∃y(D(y) ∧ E(y, z)→M(z)) {¬T (z),¬D(y),¬E(y, z), M(z)}
negation of: some tadpoles are miserable

¬∃z(T (z) ∧M(z)) {¬T (z),¬M(z)}

474

∀x 20.4.2 Refutation
C1 ¬S(x), T (f(x)) C2 ¬S(x), E(x, f(x))

C3 ¬W (x), S(x) C4 W (c)

C5 D(c) C6 ¬T (z), ¬D(y), ¬E(y, z), M(z)

C7 ¬T (z), ¬M(z)

C8 S(c) C4, C3 {c/x}
C9 T (f(c)) C8, C1 {c/x}
C10 E(c, f(c)) C8, C2 {c/x}
C11 ¬D(y), ¬E(y, f(c)), M(f(c)) C9, C6 {f(c)/z}
C12 ¬D(c), M(f(c)) C10, C11 {c/y}
C13 M(f(c)) C5, C12

C14 ¬T (f(c)) C7, C13 {f(c)/z}
C15 ⊥ C9, C14

So there is a miserable tadpole – the one eaten by colin.

475

∀x 20.5 Horn Clauses and Prolog

• Horn clause = clause with at most one positive literal.

e.g. {p(x),¬q(x, y),¬r(x, y)}
represents p(x) ∨ ¬q(x, y) ∨ ¬r(x, y)

rewritten as p(x) ∨ ¬(q(x, y) ∧ r(x, y))

rewritten as p(x)← (q(x, y) ∧ r(x, y))

or, in Prolog notation p(X) :- q(X, Y), r(X, Y).

• SLD-resolution is Robinson’s approach restricted to

linear input resolution.

476

∀x 20.5.1 Example

• Suppose C is the clause set

{{q(x),¬p(x),¬s(x)}, {p(x),¬r(x)}, {r(a)}, {r(b)}, {s(b)}}
Does C |= q(b)?

• check for unsatisfiability of C ∪ {¬q(b)}, i.e.

1. {q(x),¬p(x),¬s(x)}
2. {p(x),¬r(x)}
3. {r(a)}
4. {r(b)}
5. {s(b)}
6. {¬q(b)}

• and (in a few steps of linear resolution) you derive ⊥

477

∀x 20.5.2 Linear Resolution Diagram

Example, continued using linear input resolution.

¬q(b) q(x),¬p(x),¬s(x)

�����������
s(b)

��������������������������
p(x),¬r(x)

��������������������������������������
r(b)

���

¬p(b),¬s(b)

¬p(b)

¬r(b)

⊥

478

∀x Exercise

Draw a resolution diagram refuting this set of clauses:

{P (a, b)} {¬P (x, y), Q(x, y)} {¬P (x, y), Q(y, x)} {¬Q(b, a)}

479

∀x 20.5.3 (Abstract) Interpreter for Prolog

Input: A query Q and a logic program P

Output: yes if Q ‘implied’ by P , no otherwise

Initialise current goal set to Q;

While the current goal is not empty do

Choose G from the current goal;

Choose instance of a rule G′ :- B1, . . . , Bn from P ;

renaming all variables to new symbols giving G′′ :- B′
1, . . . , B

such that G and G′′ are unifiable, with mgu σ

(if no such rule exists, exit while loop)

Replace G by B′
1σ, . . . , B′

nσ in current goal set;

If current goal set is empty,

output yes;

else output no;

480

∀x 20.5.4 Prolog in Prolog

A basic Prolog interpreter in Prolog:

solve(true).

solve((G1,G2)) :-

solve(G1),

solve(G2).

solve(Goal) :-

clause(Goal, Body),

solve(Body).

Needs to be expanded to support built-ins, disjunction,

if-then-else, etc.

NB: Prolog takes care of backtracking and creating copies

of clauses with fresh variables for us!

481

∀x 20.5.5 SLD tree

q(b)

��
��

��
�

��
��

��
�

{b/x1}

p(b), s(b)

��
��

��
��

��
��

��
��

· · ·

{b/x2}

r(b), s(b)

��
��

�
!!!!!!!

· · · · · ·

s(b)

""
""

· · ·

⊥

q(x) :- p(x), s(x).

p(x) :- r(x).

r(a).

r(b).

s(b).

• branching represents choice points (revisited on

backtracking)

• x1, x2 are copies of x from original program

482

∀x 20.5.6 Summary: Robinson’s Approach

• based on resolution with unification of complementary

literals

• sound and complete inference method

• still need search control information to define an

implementation

• Prolog uses this method restricted to Horn clauses and

linear input resolution (plus rule and literal selection

strategy)

483

484

485

486

∀x 21 Semantics of Logic Programs
It is useful to be able to formally characterize what a logic

program means. This allows us to formally analyze

programs.

1. The Meaning of “Meaning”

2. The Meaning of a Logic Program

3. Finding Meaning

4. Approximating Meaning

5. Groundness Analysis

487

∀x 21.1 The Meaning of “Meaning”
What does this C function “mean?”

int sq(int n)

{

return n * n;

}

What about this?

int sq(int n)

{

int i, sum;

for (i=0, sum=0; i<n; ++i) {

sum += n;

}

return sum;

}

488

∀x The Meaning of “Meaning” (2)

What does this C function mean?

void hi(void)

{

printf("hello, world!\n");

}

or this:

int count;

void inc(void)

{

count++;

}

Meaning of a C function must include what it does as well

as what it returns

489

∀x The Meaning of “Meaning” (3)

Meaning of a program component gives understanding of

that component

Meaning of Haskell function

fact :: Integer -> Integer

fact n = product [1..n]

is (mathematical) factorial function:

{0 �→ 1, 1 �→ 1, 2 �→ 2, 3 �→ 6, 4 �→ 24, . . .}

Note: meaning is infinite set

490

∀x 21.2 The Meaning of a Logic Program
Meaning of logic program is what it makes true

Ignore Input/Output, assert/retract, etc.

Meaning of a program can be shown as a set of unit

clauses (facts)

This program is its meaning:

capital(tas, hobart). capital(vic, melbourne).

capital(nsw, sydney). capital(sa, adelaide).

capital(act, canberra). capital(qld, brisbane).

capital(nt, darwin). capital(wa, perth).

491

∀x The Meaning of a Logic Program (2)

parent(alice, harriet). parent(alice, george).

parent(bob, harriet). parent(bob, george).

parent(harriet, laura). parent(harriet, ken).

grandparent(C, G) :-

parent(C, P),

parent(P, G).

Meaning is:

parent(alice, harriet). parent(alice, george).

parent(bob, harriet). parent(bob, george).

parent(harriet, laura). parent(harriet, ken).

grandparent(alice, laura). grandparent(alice, ken).

grandparent(bob, laura). grandparent(bob, ken).

492

∀x The Meaning of a Logic Program (3)

Meaning of a recursive predicate is also a set of clauses

E.g., what is the meaning of:

num(0).

num(s(N)) :- num(N).

num/1 holds for numbers written in successor notation, so

meaning is:

num(0).

num(s(0)).

num(s(s(0))).

num(s(s(s(0)))).

...

493

∀x 21.3 Finding Meaning
Meaning of program P can be found using immediate

consequence function TP

TP (I) = {Hθ | (H : −G1, . . . Gn) ∈ P ∧ G1θ ∈ I ∧ . . . Gnθ ∈ I}

Here θ is any substitution that unifies G1, . . . Gn with

elements of I and grounds all variables in H

Take T 2
P (I) = TP (TP (I)), T 3

P (I) = TP (TP (TP (I))), etc.

Meaning of program P is T∞
P (∅)

494

∀x Example

Take program P = {num(0), num(s(N)) : −num(N)}
T 1

P (∅) = {num(0)}
(because body of clause is empty)

T 2
P (∅) = {num(0), num(s(0))}

T 3
P (∅) = {num(0), num(s(0)), num(s(s(0)))}

T∞
P (∅) =

{num(0), num(s(0)), num(s(s(0))), num(s(s(s(0)))), . . .}
Meaning of most programs is infinite

495

∀x Exercise

Give the semantics of the following Prolog program:

p(a,b).

p(b,c).

p(c,d).

q(X,Y) :- p(X,Y).

q(X,Y) :- p(Y,X).

496

∀x 21.4 Why Study Semantics?

• Programming (thinking about your code)

• Verification (is it correct)

• Debugging (the answer is wrong, but why)

• Implementation

• Language design

• Philosophy

Hundreds of papers have been written on the semantics of

logic programs, many concerning negation

497

∀x 21.4.1 Verification and Debugging

Suppose each clause/predicate of a program is true

according to my intended interpretation

Then everything computed by the program (the meaning,

the set of logical consequences) is true

Correctness can be verified just by reasoning about

individual components

If the program computes something false, one of

clauses/predicates must be false

Declarative debugging systems use the intended

interpretation to find which one

498

∀x 21.5 Approximating Meaning
Can also approximate meaning of a program: gives some

information about the program

Approximation can be made finite: can actually be

computed

Usual approach: replace data in program by an abstraction,

then compute meaning

Many interesting program properties are Boolean: use

propositional logic

E.g., parity (even/odd): abstract 0 by true

Abstract s(X) by ¬x

499

∀x Approximating Meaning (2)

Abstracted num predicate:
num(true)

num(¬x)← num(x)

num(0)

num(s(X))← num(X)

T 1
P (∅) = {num(true)}

T 2
P (∅) = {num(true), num(false)}

T 3
P (∅) = {num(true), num(false)}

Can stop here: further repetitions will not add anything

Result is finite

Says that both even and odd numbers satisfy num/1

500

∀x Approximating Meaning (3)

Program:

plus(0, Y, Y).

plus(s(X), Y, s(Z)) :- plus(X, Y, Z).

Abstracted version:

plus(true, y, y) y can be either true or false

plus(¬x, y,¬z)← plus(x, y, z)

T 1
P (∅) = {plus(true, true, true), plus(true, false, false)}

T 2
P (∅) =

⎧⎨
⎩

plus(true, true, true), plus(true, false, false),

plus(false, true, false), plus(false, false, true)

⎫⎬
⎭

T 3
P (∅) =

⎧⎨
⎩

plus(true, true, true), plus(true, false, false),

plus(false, true, false), plus(false, false, true)

⎫⎬
⎭

501

∀x Approximating Meaning (4)

This result is better shown as a table:

+ even odd

even even odd

odd odd even

Even such a simple analysis is able to discover interesting

properties of programs

502

∀x Exercise

Use parity analysis to determine the possible parities of the

arguments of p/1 defined as:

p(0,s(0)).

p(s(X), s(s(Y))) :- p(X, Y).

503

∀x 21.6 Groundness Analysis
A more useful property for optimization of Prolog code is

groundness

Again, a Boolean property

append([], Y, Y).

append([U|X], Y, [U|Z]) :- append(X, Y, Z).

Abstracted version:

append(true, y, y)

append(u ∧ x, y, u ∧ z)← append(x, y, z)

In second clause, u can be true or false, so:

append(true, y, y)

append(x, y, z)← append(x, y, z)

append(false, y, false)← append(x, y, z)

504

∀x Groundness Analysis (2)

append(true, y, y)

append(x, y, z)← append(x, y, z)

append(false, y, false)← append(x, y, z)

T 1
P (∅) = {append(true, true, true), append(true, false, false)}

T 2
P (∅) =

⎧⎨
⎩

append(true, true, true), append(true, false, false),

append(false, true, false), append(false, false, false)

⎫⎬
⎭

T 2
P (∅) =

⎧⎨
⎩

append(true, true, true), append(true, false, false),

append(false, true, false), append(false, false, false)

⎫⎬
⎭

505

∀x Groundness Analysis (3)

A truth table will help us understand this:

x y z append(x, y, z) ∈ T∞
P (∅)

true true true true

true true false false

true false true false

true false false true

false true true false

false true false true

false false true false

false false false true

We see when append(x, y, z) is true, (x ∧ y)↔ z

506

∀x Groundness Analysis (4)

So after a call append(X,Y,Z), X and Y will be ground iff Z is

We can use this result in analyzing predicates that call

append

rev([], []).

rev([U|X], Y) :-

rev(X, Z),

append(Z, [U], Y).

Abstracted version:

rev(true, true)

rev(u ∧ x, y)← (rev(x, z) ∧ append(z, u, y))

507

∀x Groundness Analysis (5)

Using what we’ve learned about append:

rev(true, true)

rev(u ∧ x, y)← (rev(x, z) ∧ ((z ∧ u)↔ y))

Since u can be either true or false:

rev(true, true)

rev(x, y)← (rev(x, z) ∧ (z ↔ y))

rev(false, y)← (rev(x, z) ∧ (false↔ y))

Simplifying biimplications:

rev(true, true)

rev(x, y)← rev(x, y)

rev(false, false)← rev(x, z)

508

∀x Groundness Analysis (6)

rev(true, true)

rev(x, y)← rev(x, y)

rev(false, false)← rev(x, z)

T 1
P (∅) = {rev(true, true)}

T 2
P (∅) = {rev(true, true), rev(false, false)}

T 3
P (∅) = {rev(true, true), rev(false, false)}

509

∀x Groundness Analysis (7)

So after rev(X,Y), X is ground iff Y is: x↔ y

This analysis gives quite precise results

Many other such abstractions have been proposed

This is an area of active research

510

∞ 22 Finite State Machines
What is a program? What is an algorithm? How simple

can we make them?

1. Introduction

2. Finite State Machines

3. FSMs in Prolog

4. Formally

5. NFAs

6. Power

511

∞ 22.1 Introduction
There are many programming languages, many

programming paradigms

All have a few things in common; programs:

• Are finite

• Take input

• Produce output

• Make decisions based on current input and possibly

earlier input

To facilitate recalling information about earlier inputs,

most languages allow state of computation to be changed

512

∞ 22.2 Finite State Machines
Simplest mechanism we can define to do this always has a

current state, which is one of a finite number of discrete

states

Each input, together with current state, determines next

state and any output

The state captures what is important about the history of

the computation

This is a finite state machine (FSM) or finite automaton

513

∞ Finite State Machines (2)

A touch light is an example of a finite state machine

1. Light is initially off;

2. when touched, the 50 watt filament is lit;

3. when touched again, the 50 watt filament is

extinguished and the 100 watt filament is lit;

4. when touched again, both filaments are lit

5. when touched again, both filaments are extinguished

(go back to step 1)

514

∞ 22.2.1 State Diagrams

We can depict machine as a state diagram or state

transition diagram

0 50

100150

touch

touch

touchtouch

Circles represent states; arrows represent transitions

between states in response to input

Initial state is indicated by sourceless arrow

515

∞ 22.2.2 Output

FSMs can produce output

0 50

100150
touch/+f1

touch/−f1,−f2

touch/+f1

touch/−f1,+f2

Here +f1 means that filament 1 should be turned on, −f2

means filament 2 should be turned off, etc.

516

∞ 22.2.3 Example

This FSM copies its input of binary numbers to its output,

stripping leading 0s:

q0 q11/1

0 1/1

0/0

The transition from the initial state for 0 leaves it in that

state without any output

States capture the history of the computation

Think of state q0 as meaning “no 1s seen yet” and q1 as

“some 1s seen”

517

∞ Exercise

What output does the following FSM produce with input

aabbaaabbb?

q2

q0 q1

b/b

b/b b/b

a

a/a

a/a

More generally, describe what it does.

518

∞ 22.2.4 Accepting States

Many problems amount to simply determining if the input

is “acceptable” — does it satisfy some criterion

Double circle around state indicates accepting state

When input runs out, if machine is in an accepting state, it

accepts that input string; otherwise it doesn’t

Can have as many accepting states as needed

519

∞ Accepting States (2)

Determine if the input is one a followed by one or more bs

followed by a single c:

a b
q2

c
q1 q3

q4

q0

b, c
a, c a

b

a, b, c

a, b, c

No output needed here, just accept or reject

Machine can do both: have output and accept or reject

520

∞ 22.3 FSMs in Prolog
To simulate FSMs in Prolog, we can specify state

transition by a predicate delta(State0, Input, State) which

says that when in State0 we receive Input as input, we

transition into State

Also specify initial and accepting states

delta(q0, a, q1). delta(q0, b, q4). delta(q0, c, q4).

delta(q1, a, q4). delta(q1, b, q2). delta(q1, c, q4).

delta(q2, a, q4). delta(q2, b, q2). delta(q2, c, q3).

delta(q3, a, q4). delta(q3, b, q4). delta(q3, c, q4).

delta(q4, a, q4). delta(q4, b, q4). delta(q4, c, q4).

initial(q0).

accepting(q3).

521

∞ FSMs in Prolog (2)

Code to similate an FSM is simple:

recognize(Input) :-

initial(State0),

run(Input, State0, State),

accepting(State).

run([], State, State).

run([I|Is], State0, State) :-

delta(State0, I, State1),

run(Is, State1, State).

522

∞ Exercise

Design an FSM to recognize strings containing an even

number of as. The input can include both as and bs.

523

∞ 22.4 Formally
What does it take to define a FSM?

Q a set of states

Σ a set of input symbols, called the alphabet

δ specifies the state transitions

q0 the initial state

F the set of accepting states

(assuming we do not need output).

So an FSM is a 5-tuple:

〈Q, Σ, δ, q0, F 〉

524

∞ 22.4.1 δ

State transition is specified by a function δ

Given any state and any input, δ yields the state to

transition into

δ : (Q× Σ)→ Q

Can specify δ as a table (as we did for Prolog

implementation):

state s input i δ(s, i)

q0 a q1

q0 b q4

q0 c q4

q1 a q4
...

...
...

525

∞ 22.5 NFAs
What if state transition were specified by a relation rather

than a function?

δ ⊆ Q× Σ×Q

When δ is a function, only one next state given current

state and input

When δ is a relation, may be more than one next state

Such a FSM is called a Nondeterministic Finite Automaton

or NFA

If δ is a function: Deterministic Finite Automaton or DFA

An NFA accepts an input string if some selection of the

state transitions specified by δ leads to an accepting state

526

∞ 22.5.1 λ transitions

NFAs also often allow λ transitions to be specified

A λ transition is a spontaneous transition — a transition in

response to no input at all

Specify this formally by pretending the input alphabet

contains an extra symbol λ, and there can be as many λs

as you like between any two real symbols

Then, formally δ becomes a relation

δ ⊆ Q× (Σ ∪ {λ})×Q

527

∞ 22.5.2 Example

This NFA accepts all input that is either some as optionally

followed by some bs or some bs optionally followed by some

as:

b a

q4q3

a b

q2q1

q0 q5

a

b

λ

λ

a

b

b

a

528

∞ Example (2)

Important result: any NFA can be converted into an

equivalent DFA

Intuition: state in new DFA corresponds to set of states in

NFA

This is an equivalent DFA to the previous NFA:

b a

q4q3

a b

q2q1

q0 q5

a

b

b

a

a

b

a,b

529

∞ 22.6 Power
FSMs cannot do everything real programs can do

FSMs can recognize ab or aabb or aaabbb:

q0 q1 q2
aa a

q3

q3q4q5

bbb

q5
b b

b

a,b

a
a

a

a,b

This regular structure can be extended to recognize anbn

for n up to any fixed limit

But it’s not possible to build a FSM to recognize anbn for

any n

530

531

532

533

534

∞ 23 Turing Machines

1. Turing Machines

2. Nondeterministic Turing Machines

535

∞ 23.1 Turing Machines

• Introduced by Alan Turing

• Abstract machine with many features of computer

• Designed before the stored program computer!

• No memory limit!

• An infinite tape, and a tape reader, that reads one

symbol at a time.

536

∞ Turing Machines (2)
0 1 2 3 4 5 6 ...

...

A quintuple M = (Q, Σ, Γ, δ, q0)

• A finite set of states Q.

• A finite set Γ, the tape alphabet, which includes blank

B

• A subset Σ ⊆ Γ− {B} called the input alphabet

• A partial transition function δ : Q× Γ→ Q× Γ× {L, R}

• A start state q0 ∈ Q

537

∞ 23.1.1 Turing Machines: Initial
0 1 2 n

...

q0

c1 c2 cn B B

...

B

Computation begins with

• An input string s = c1 · · · cn in Σ∗ on the tape from

position 1 to n

• The remaining tape blank (filled with B)

• Initial state q0

538

∞ 23.1.2 Turing Machines: Transition

......

q

x y

q’

• Machine in state q reading tape symbol x ∈ Γ

• δ(q, x) = [q′, y, d]

• Transitions have three parts:

– Change the state to q′

– Write symbol y on square scanned by tape head

– Move head left or right (depending on direction d)

539

∞ 23.1.3 Turing Machines: Final

......

q

x

• Machine halts if in state q reading tape symbol x ∈ Γ

there is no δ(q, x) = [q′, y, d]

• Remember δ is a partial function.

• Output is the result remaining on the tape.

• Machine halts abnormally if the head moves off the

left end of the tape.

540

∞ 23.1.4 Turing Machines: Example

Change all a’s to b’s and vice versa.

δ B a b

q0 q1, B, R

q1 q2, B, L q1, b, R q1, a, R

q2 q2, a, L q2, b, L

Represented as a state machine

B/B R

a/b R
b/a R

a/a L
b/b L

q0 q1 q2
B/B L

541

∞ 23.1.5 Turing Machines: Traces

• A configuration uqivB

– represents the tape uvBBB . . . (v includes

rightmost non blank)

– shows tape head over first symbol in v

– shows machine state qi

• notation uqivB � xqjyB indicates a transition from

configuration uqivB to xqjyB.

• uqivB �∗ xqjyB means result of any finite number of

steps

542

∞ 23.1.6 Turing Machines: Example Trace

q0BabaB

� Bq1abaB

� Bbq1baB

� Bbaq1aB

� Bbabq1B

� Bbaq2bB

� Bbq2abB

� Bq2babB

� q2BbabB

B/B R

a/b R
b/a R

a/a L
b/b L

q0 q1 q2
B/B L

543

∞ 23.1.7 Turing Machines: Another Example

Machine to add 1 to a binary number

B/B R
q0 q1 q2

B/B L

0/0 R
1/1 R

q3
0/1 R

1/0 L

B/1 R

q0B001B q0B11B

� Bq1001B � Bq111B

� B0q101B � B1q11B

� B00q11B � B11q1B

� B001q1B � B1q21B

� B00q21B � Bq210B

� B0q200B � q2B00B

� B01q30B � 1q300B

544

∞ 23.1.8 Turing Machines as Acceptors
0 1 2 3 4 5 6 ...

...

A sextuple M = (Q, Σ, Γ, δ, q0, F)

• F is the set of final states.

• If M halts in a state q ∈ F then the input is accepted

• If M halts in a state q �∈ F the input is rejected.

• L(M) is the set of strings accepted by M .

545

∞ Turing Machines as Acceptors (2)

q0

0/0 R
1/1 R

q1
B/B R 0/B R

1/B R

0/0 R
1/1 R

q2

q3

q4

q5

B/B L

B/B L

0/B L
q6

0/0 L
1/1 L

1/B L

B/B R

A machine that accepts a string which is an even length

palindrome of 0’s and 1’s. e.g 00, 0110, 0001001000 ∈ L(M)

546

∞ Exercise

Modify the even length palindrome machine to accept odd

length palindromes too e.g. 101

q0

0/0 R
1/1 R

q1
B/B R 0/B R

1/B R

0/0 R
1/1 R

q2

q3

q4

q5

B/B L

B/B L

0/B L
q6

0/0 L
1/1 L

1/B L

B/B R

547

∞ 23.1.9 Turing Machines in Prolog

• given delta(State,Sym,NewState,NewSym,LR)

• (maybe) given accepting(State) for accepting states

• We can write a Turing machine simulator in Prolog

• So Prolog can do anything a Turing machine can

delta(q0, ’B’, q1, ’B’, right).

delta(q1, ’B’, q2, ’B’, left).

delta(q1, a, q1, b, right).

delta(q1, b, q1, a, right).

delta(q2, a, q2, a, left).

delta(q2, b, q2, b, left).

initial(q0).

548

∞ Main Code

run(Input, Output, State) :-

initial(State0),

tape_list_position(Tape0, Input, 0),

run(State0, Tape0, State, Tape),

tape_list_position(Tape, Output, _).

recognize(Input) :-

run(Input, _, State),

accepting(State).

549

∞ State Transition

run(State0, Tape0, State, Tape) :-

(step(State0, Tape0, State1, Tape1) ->

run(State1, Tape1, State, Tape)

; State = State0,

Tape = Tape0

).

step(State0, Tape0, State, Tape) :-

replace_tape_symbol(Tape0, Sym0, Tape1, Sym1),

delta(State0, Sym0, State, Sym1, Direction),

move_tape(Direction, Tape1, Tape).

550

∞ Handling the Tape

tape_list_position(tape(Left, Right), List, Pos) :-

length(Left, Pos),

reverse(Left, Left1),

append(Left1, Right, List).

replace_tape_symbol(tape(Left0,Right0), Sym0, tape(Left0,Right), Sym) :-

replace_next_of_infinite_tape(Right0, Sym0, Right, Sym).

move_tape(left, tape([Lsym|Left],Right), tape(Left,[Lsym|Right])).

move_tape(right, tape(Left,Right), tape([Rsym|Left],Right1)) :-

replace_next_of_infinite_tape(Right, Rsym, [_|Right1], Rsym).

replace_next_of_infinite_tape([Sym0|Rest], Sym0, [Sym|Rest], Sym).

replace_next_of_infinite_tape([], ’B’, [Sym], Sym).

551

∞ 23.2 Nondeterministic Turing Machines

• δ maps to a subset of Q× Γ× {L, R} rather than just

one (or zero)

• Computation chooses which one to take?

• A non-deterministic Turing machine M accepts input s

if some possible computation accepts s.

• Important result: Any language accepted by a

non-deterministic Turing machine can be accepted by

a deterministic Turing machine

552

∞ Example

q0 q1
B/B R c/c R

c/c L

q2

q3

q4

q5

a/a R

b/b L

b/b R
q6

a/a L

a/a R

b/b R
c/c R

A machine which accepts strings of a’s, b’s and c’s where

there is a c followed by or preceded by ab.

553

∞ Example (2)

Trace1 Trace2 Trace3

q0BacabB q0BacabB q0BacabB

� Bq1acabB � Bq1acabB � Bq1acabB

� Baq1cabB � Baq1cabB � Baq1cabB

� Bacq1abB � Bacq2abB � Bq3acabB

� Bacaq1bB � Bacaq4bB

� Bacabq1B � Bacabq6B

First and third do not accept, but second does

That’s good enough: the machine accepts

554

555

556

557

558

∞ 24 Undecidability

Are there some programs that cannot be written?

How many kinds of infinity are there?

559

∞ 24.1 Church-Turing Thesis
There is an effective procedure to solve a decision problem

P if, and only if, there is a Turing machine that answers

yes on inputs p ∈ P and no for p �∈ P .

• All computation can be performed by Turing

machines?

• Not a theorem since we have no formal definition of an

effective procedure!

• More like the definition of effective procedure!

Extended Church-Turing thesis A decision problem P is

partially solvable if, and only if, there is a Turing machine

thats answers yes on inputs p ∈ P .

560

∞ 24.1.1 Evidence for Church-Turing Thesis

• Every effective procedure in

– Partial recursive functions

– Lambda calculus

– Predicate logic

– Register machines

can be simulated by Turing machine.

• All known effective procedures can be transformed to

Turing machines

561

∞ 24.2 An undecidable problem

• The Halting Problem

– Given an arbitrary Turing machine

M = (Q, Σ, Γ, δ, q0)

– An input s ∈ Σ∗

– Does M halt on input s ?

• For particular Turing machines we may be able to

determine that they halt.

• But not for all possible machines

562

∞ 24.2.1 Prove the Halting Problem Undecidable

• Suppose to the contrary

• There is a Turing machine H which accepts

description of Turing machine M and input w and

accepts M and w if machine M halts on input w.

• Assume Σ = {0, 1} and Γ = {0, 1, B}, and states

{q0, . . . , qn} and q0 is the start state.

• Representing machine M (its δ function)

Symbol 0 1 B q0 q1 · · · qi · · · L R

Encoding 1 11 111 1 11 · · · 1i+1 · · · 1 11

• δ(qi, x) = [qj, y, d] as string

code(qi)0code(x)0code(qj)0code(y)0code(d)

563

∞ Prove the Halting Problem Undecidable (2)

• Represent δ function by 00 between two individual

transitions.

• Beginning and end represented by 000.

• Example

δ(q0, B) = [q1, B, R] 101110110111011

δ(q1, 0) = [q0, 0, L] 1101010101

δ(q1, 1) = [q2, 1, R] 110110111011011

δ(q2, 1) = [q0, 1, L] 1110110101101

• M is represented as R(M) by

00010111011011101100110101010100110110111011011001110110101101000

564

∞ Prove the Halting Problem Undecidable (3)

• Machine H takes a description of machine M , R(M)

and input s and accepts the input if M halts on s, and

otherwise halts and does not accept.

Halting

H
Machine

M halts with input s

M does not halt with input s
reject

accept

R(M)s

• Make a new machine D that copies its input and then

applies H, and loops if H accepts, otherwise halts.

Halting

H
Machine

halt

loop

R(M)R(M)COPYR(M)

D

M does not halt with input R(M)

M halts with input R(M)

565

∞ Prove the Halting Problem Undecidable (4)

• Execute D on the input R(D)

Halting

H
Machine

halt

loop

R(D)R(D)COPYR(D)

D

D does not halt with input R(D)

D halts with input R(D)

• Contradiction if D halts on input R(D) then D loops!

• Hence The language LH of strings R(M)s such that

machine M halts on input s is not decidable

566

∞ Exercise

Suppose Prolog had a builtin predicate halt(Goal) that

succeeds if Goal would eventually terminate, and fails

otherwise. Write a Prolog predicate contra/0 that calls

halt/1 in such a way that halt/1 cannot possibly work.

567

∞ 24.3 Universal Machines

• We can build a Universal Turing Machine that

simulates any Turing machine:

Universal

U
Machine

M halts with input s

M does not halt with input s
loop

accept

R(M)s

• The language LH of strings R(M)s such that machine

M halts on input s is semidecidable

568

∞ 24.3.1 A Universal Machine U (3 tape machine)

• If input is not of form R(M)s move indefinitely right

(loop)

• write string s on tape 3

• write 1 encoding state q0 on tape 2

• simulate M on tape 3:

– scan tape 1 for a transition for the state encoded

on tape 2 qi acting on the symbol x under the head

on tape 3

– if no transition, U halts

– otherwise δ(qi, x) = [qj, y, d]

∗ write new state code(qj) on tape 2

∗ write symbol y to tape 3

∗ move tape head on tape 3 in direction d

569

∞ 24.4 Reducability

• A decision problem P is (Turing) reducible to a

problem P ′ if:

– there is a Turing machine M which maps input p to

p′ such that p ∈ P iff p′ ∈ P ′

• Idea translate new problem P to old problem P ′

• Example: we can reduce the problem of detemining if

a string is even length to detecting if a string is an

even length palindrome

– M maps input replacing all 1s by 0s

palindrome
Even length

reject

accept

length of s in 0sMs

D

s is of odd length

s is if even length

570

∞ 24.4.1 Another Undecidable Problem

• The problem to determine if a Turing machine halts

on blank input is undecidable

• Assume contrary, machine B answers problem

• create the machine H from B, that is reduce halting

problem to blank tape problem

• Build machine N which takes input R(M)s and creates

output R(M ′) where M ′ is a machine which:

– takes a blank tape as input

– writes s on tape

– then executes machine M on tape

571

∞ Another Undecidable Problem (2)

• The machine N provides a reduction of the halting

problem to the halting on blank tape problem.

R(M)s R(M’)

M halts with input s

does not halt
reject

accept

H

B
Machine

BlankN

572

∞ 24.5 Countability

• There are infinitely many natural numbers {0, 1, 2, . . .}

• Are there more integers {. . . ,−2,−1, 0, 1, 2, . . .} than

natural numbers?

• Two sets have the same cardinality (size) if we can

match each element of one set to a different element

of the other, and vice versa

• A set that is either finite or has the same cardinality as

the natural numbers is countable

• Are all sets countable?

573

∞ 24.5.1 Integers

• The integers are countable:

0 1 2 3 4 5 6

−3−2−1 0 2 31

• Match nonnegative integers p with natural number 2p

• Match negative integers n with natural number −2n− 1

574

∞ 24.5.2 Rationals

• Rational numbers are numbers that can be expressed

as n/d for integers n and d

• The rational numbers are countable

All rationals appear in this:

0
4

321−1 −2 −3
4 4 4 4 4 4

0
3

321−1 −2 −3
3 3 3 3 3 3

0
2

321−1 −2 −3
2 2 2 2 22

0
1 1 1 1 1 1 1

321−1 −2 −3
Can match rationals with

naturals:

0
4

321−1 −2 −3
4 4 4 4 4 4

0
3

321−1 −2 −3
3 3 3 3 3 3

0
2

321−1 −2 −3
2 2 2 2 22

0
1 1 1 1 1 1 1

321−1 −2 −3

575

∞ 24.5.3 Reals

• Real numbers include rationals and irrational numbers

• Irrationals include e, π,
√

2, etc.

• The real numbers are not countable

• Proof by Georg Cantor (diagonal argument)

• Assume reals are countable

• Then reals between 0 and 1 are countable

576

∞ 24.5.4 Reals are Uncountable

• Then we can arrange all reals in [0, 1] like this:

0 0.D0
0D

0
1D

0
2D

0
3 · · ·

1 0.D1
1D

1
1D

1
2D

1
3 · · ·

2 0.D2
2D

2
1D

2
2D

2
3 · · ·

3 0.D3
3D

3
1D

3
2D

3
3 · · ·

...

Each Dn
m is the mth decimal digit of the nth real

number

• Create a real number X = 0.X0X1X2X3 · · · where each

Xi is 2 if Di
i is 1, or 1 otherwise

• X is not in our set of real numbers (it is different from

each in at least one digit)

• Contradiction!

577

∞ Exercise

Is the set of integer intervals, e.g. from 1 to 10, or from 0

to 99, or from -78 to -42, countable? Why or why not?

578

579

580

581

582

∞ 25 Complexity

1. What is Complexity?

2. Rates of Growth

3. Tractable Problems

4. NP Problems

583

∞ 25.1 What is Complexity?

• Performance of an algorithm = resources required for

its execution

– Time

– Space

• Complexity of a problem = resources required for

“best” possible algorithm

– there may be no universal best algorithm

– special cases may have better algorithms

• Examples

– Sorting

– Searching

584

∞ What is Complexity? (2)

• Require a formal definition of computation

– Turing Machine

– Partial recursive functions

– Lambda calculus

– Predicate Logic

– Register Machines

• Reason about “programs” in these formalisms

• Restrict to decision problems

– A decision problem asks if input p ∈ P

– It “decides” whether p is in the set P , or

alternatively “defines” set P

585

∞ What is Complexity? (3)

• Time complexity of a Turing Machine M :

– The (worst case) number of transitions steps

required to process input string of length n

• Space complexity of a Turing Machine:

– The (worst case) maximum length of the tape

required to process input string of length n

• Time complexity is always greater than space

complexity (why?).

• Note this is complexity of an algorithm not complexity

of a problem

586

∞ 25.1.1 Complexity Example

• Recall the Turing Machine that accepts even length

palindromes

q0

0/0 R
1/1 R

q1
B/B R 0/B R

1/B R

0/0 R
1/1 R

q2

q3

q4

q5

B/B L

B/B L

0/B L
q6

0/0 L
1/1 L

1/B L

B/B R

• Worst cases are: when we succeed: input s = uuR, or

when we fail at last step: input s = u0uR or u1uR

587

∞ Complexity Example (2)

q0BB q0B0B q0B00B q0B111B

� Bq1B � Bq10B � Bq100B � Bq1111B

accept � BBq2B � BBq20B � BBq311B

� Bq5BB � BB0q2B � BB1q31B

reject � BBq40B � BB11q3B

� Bq6BBB � BB1q51B

� BBq1BB � BBq61BB

accept � Bq6B1BB

� BBq11BB

� BBBq3BB

� BBq5BBB

reject

588

∞ Complexity Example (3)

• Worst case steps

length of input transition steps

0 1

1 3

2 6

3 10
...

...

n Σn+1
i=1 = (n + 2)(n + 1)/2

589

∞ 25.1.2 Different execution machines

• Some forms of execution machine offer better

complexity

• Random Access Machine (RAM) (closer to modern

computer)

– constant time access to all memory locations by

index

– for (i = 1; i <= n/2; i++)

if (s[i] != s[n+1-i]) return FALSE;

return TRUE;

– This version takes n steps.

590

∞ Different execution machines (2)

• the complexity of a problem P is the complexity of the

best algorithm for P (for a given class of execution

machine)

– (n + 2)(n + 1)/2 for Turing machine

– n for RAM

591

∞ 25.2 Rates of Growth

n 0 5 10 25 50 100 1000 10000

20n + 500 500 600 700 1000 1500 2500 20500 200500

n2 0 25 100 625 2500 10000 1000000 100000000

n2 + 2n + 5 5 40 125 680 2605 10205 1002005 100020005

n2/(n2 + 2n + 5) 0 .625 .800 .919 .960 .980 .998 .9999

• Contribution of n2 to n2 + 2n + 5 is almost all as n

increases

• key: only the fastest growing term is really important

in determining rates of growth.

592

∞ 25.2.1 Big O Notation

• A function f(n) is said to be order g(n) if there is a

positive constant c and positive integer n0 such that

f(n) ≤ c× g(n), ∀n ≥ n0

• Write f = O(g) if f is of order g.

• Example f(n) = n2 + 2n + 5, g(n) = n2 then f = O(g)

f(n) = n2 + 2n + 5

≤ n2 + 2n2 + 5n2 for n ≥ 1

= 8n2

= 8× g(n)

593

∞ 25.2.2 Big O Hierarchy

constant O(1) hash table lookup

logarithmic O(log(n)) binary search tree lookup

linear O(n) list lookup

n log n O(nlog(n)) sorting

quadratic O(n2)

cubic O(n3) solving linear equations

polynomial O(nr) for some r

exponential O(bn) for some b deciding propositional logic

factorial O(n!)

594

∞ 25.3 Tractable Problems
log2(n) n n2 n3 2n n!

5 2 5 25 125 32 120

10 3 10 100 1000 1024 3628800

20 4 20 400 8000 1048576 2.4× 1018

50 5 50 2500 125000 1.1× 1015 3.0× 1064

100 6 100 10000 1000000 1.2× 1030 > 10157

200 7 200 40000 8000000 1.6× 1060 > 10374

• A problem is polynomial complexity if it is O(nr) for

some fixed r

• Problems which are not polynomial complexity are

intractable

• Cannot be realistically solved for even medium

instances

• But we really want to solve these problems!

595

∞ 25.4 Nondeterministic Polynomial Time

• A problem is non-deterministic polynomial time if

there is a non-deterministic Turing machine M that

solves the problem of size n in at most a polynomial

number of transitions nr for some fixed r.

• Alternatively problem is non-deterministic polynomial

time if:

– Guessing stage (non-deterministically guess an

answer)

– Checking stage (in polynomial time, check the

guess)

596

∞ 25.4.1 SAT

Example: propositional satisfiability

Given a set of propositional clauses, guess a valuation for

all the truth values. Evaluate F under this valuation. If true

answer yes! Given a propositional formula in clausal form

• Nondeterministically guess a truth assignment for each

variable

• Check whether it makes the clauses true

– For each clause, is there a true literal in the clause

• O(n) where n is the size of the formula

597

∞ 25.4.2 P and NP

• A problem is in the class P if it is (deterministic)

polynomial time

• A problem is in the class NP if it is non-deterministic

polynomial time

• P ⊆ NP

• P = NP one of the most important problems in

Computer Science. Everyone believes that P �= NP !

598

∞ 25.4.3 A problem in P

• Solution of propositional horn clauses is O(n)

• Algorithm

– For each clause x← x0, . . . xn set count = n

– place all clauses with count 0 in queue

– Remove first from queue, set lhs to true

– Subtract 1 from the count of all clauses that

contain lhs

– Add new clauses with count 0 to queue.

– continue until queue empty

599

∞ 25.4.4 P and NP and reducibility

• If p is (polynomial time) reducible to q and q ∈ P , then

p ∈ P

• If p is (polynomial time) reducible to q and q ∈ NP ,

then p ∈ NP

• A problem p is NP -hard if every q ∈ NP can be

reduced to p.

• A problem p is NP -complete if p is NP -hard and

p ∈ NP

• Propositional satisfiability is the most famous

NP -complete problem.

600

∞ 25.4.5 Proving NP completeness

• If we can reduce problem p to q and p is NP -complete,

then q is NP -hard.

• 3SAT.

– A 3SAT problem is a SAT problem where each

clause has at most 3 literals.

– We can reduce SAT to 3SAT by adding new

variables.

∗ Long clause l1 ∨ l2 ∨ l3 ∨ l4 becomes

∗ (l1 ∨ l2 ∨ y) ∧ (¬y ∨ l3 ∨ l4)

∗ Any solution of the conjunction satisfies the

original clause

∗ Any solution of the original clause can be

extended to satisfy the conjunction (choose the

right value for y)

601

∞ 25.4.6 NP completeness

• Thousands of problems have been shown to be NP

complete!

• edge cover, Hamiltonian path, graph coloring

• scheduling, rostering, register allocation

• Constraint programming concentrates on solving just

these kind of problems

602

∞ 25.5 Summary

• Church Turing thesis: effective procedures

• Turing Machines

• Halting problem is undecidable

• Validity problem for predicate logic is semidecidable

• Satisfiability/Validity problem for propositional logic

(SAT) is NP-complete

• Tractable and Intractable problems

• Solution of predicate Horn clauses is undecidable

• Solution of propositional Horn clauses is O(n)

603

604

605

606

∞ 26 Review
Cannot cover the whole semester in one lecture, but we’ll

try. . . .

1. Propositional Logic

2. Predicate Logic

3. Automata

607

∞ 26.1 Propositional Logic
A proposition is statement that can be either true or false,

e.g. “interest rates are rising”

Assign propositional variable to simple propositions for

convenience, e.g. R for “interest rates are rising”

Combine propositions using connectives:

¬ (negation, not)

∧ (conjunction, and)

∨ (disjunction, or)

→ (material implication, if)

↔ (biimplication, iff)

608

∞ Exercise: From English

R = Interest rates rising

S = Share prices falling

U = Unemployment rising

1. If interest rates rise, share prices fall

2. Interest rates rise if share prices fall (Careful!)

3. Interest rates are rising, but unemployment is not

4. Unemployment rises exactly when interest rates do

5. If unemployment rises, then share prices fall if interest

rates rise

609

∞ 26.1.1 Truth Tables

Truth tables have a row for each combination of values of

propositional variables, column for each formula of interest

A B A ∧B A ∨B ¬A A→ B A↔ B

T T T T F T T

T F F T F F F

F T F T T T F

F F F F T T T

If all truth table rows for a formula are true, formula is a

tautology ; if all are false, formula is unsatisfiable

A model of a formula is an assignment of truth values to

variables that makes it true (truth table row)

610

∞ 26.1.2 Arguments

Argument is a sequence of propositions ending in a

conclusion, e.g.:

When interest rates rise, share prices fall.

Interest rates are rising. Therefore, share prices

will fall.

Conclusion is claimed to follow from premises

To check correctness, see if conjunction of premises imply

conclusion, e.g. ((R→ S) ∧R)→ S

R S R→ S (R→ S) ∧ R ((R→ S) ∧R)→ S

T T T T T

T F F F T

F T T F T

F F T F T

All rows of truth table are true, so argument is valid

611

∞ 26.1.3 Better Way

Usually faster to demonstrate argument validity by

contradiction: assume it is invalid, and show a

contradiction

Simple technique can help with the bookkeeping: write out

the formula and write T or F under each variable and

connective as you determine them, propagating variable

values

((R→ S) ∧ R)→ S

T X F T T F F

So the initial assumption (that the argument was invalid)

was wrong; the argument is valid

612

∞ 26.1.4 Axiomatic System (AL)

Axiom schemas — allow any wff for A, B, and C

Ax1 A→ (B → A)

Ax2 (A→ (B → C))→ ((A→ B)→ (A→ C))

Ax3 (¬A→ ¬B)→ (B → A)

One rule of deduction, or inference rule: modus ponens:

from A and A→ B infer B

AL system is:

1. Consistent: � A iff �� ¬A

2. Sound: � A implies |= A

3. Complete: |= A implies � A

4. Decidable: there is an algorithm to always decide if � A

613

∞ Exercise: Complete the proof

{A→ B, B → C} � A→ C

1 B → C Hyp

2 (B → C)→ (A→ (B → C)) Ax1

3 (a) MP 1,2

4 (A→ (B → C))→ ((A→ B)→ (A→ C)) Ax2

5 (A→ B)→ (A→ C) (b)

6 (c) Hyp

7 A→ C MP 5,6

(a)

(b)

(c)

614

∞ Exercise: Normal Forms

• A literal is a basic proposition or the negation of one

• Conjunctive normal form (CNF): conjunction of 1 or

more disjunctions of 1 or more literals

• Disjunctive normal form (DNF): the converse

• Exercise: which normal form are these?

(A ∧ ¬B) ∨ (C ∧D)

(A ∧B)

¬(A ∨B)

(¬A ∨B) ∧ C

(¬A ∨B) ∨ C

• Convert to normal form: replace ↔ and → using only

∧,∨,¬; push ¬ in; remove double ¬; distribute ∨ over ∧
and ∧ over ∨

615

∞ 26.1.5 Resolution

• Clausal form: CNF written as set of sets

• Complementary literals: e.g. A and ¬A

• Resolvent of 2 clauses with complementary literals is

union of 2 clauses with complementary literals removed

• E.g. resolvent of {A,¬B, C} and {A, B,¬D} is

{A, C,¬D}
• Horn clause has at most 1 positive literal

616

∞ Resolution (2)

Resolution

~B

~A, B

⊥

A, B ~A, ~BA, ~B

B

Resolve any 2

clauses

Linear Resolution
~A, BA, B

B

A

A, ~B

~A, ~B

~B B

⊥

Resolve result of

last step with any

other clause

Linear Input

Resolution

~p, ~s

~r, ~s r

~s s

⊥

p, ~r

q, ~p, ~s~q

Resolve result of

last step with

clause from

program

All are sound. All are complete, except L.I. Resolution:

complete only for Horn clauses

617

∞ 26.2 Predicate Logic

• Variables stand for anything

• Predicates describe properties of individuals or

relationships among individuals — “parameterized

propositions”

• Interpretation limits domain of discourse and gives

meaning of predicates, functions, and constants

• Truth value of formula usually depends on

interpretation

• Formula A is valid, written |= A, if A is true in every

interpretation; satisfiable if true in some interpretation

618

∞ 26.2.1 Quantifiers

• ∀xF means F is true for every x in the domain of

discourse

• ∃xF means F is true for some x in the domain

• ∀x∃yF not the same as ∃y∀xF

• ∀x∀yF is the same as ∀y∀xF

• ∀x¬F not the same as ¬∀xF

• ∀x¬F is the same as ¬∃xF

• Quantifier applies to single immediately following

formula, e.g. in ∀xP (x) ∧Q(x), the quantifier only

applies to P (x)

619

∞ 26.2.2 From English

• Translating from English to predicate logic, be careful

of order of quantifiers, and negation, parentheses

• Translate “every P does Q” to ∀x(P (x)→ Q(x))

• Translate “some P s do Q” to ∃x(P (x) ∧Q(x))

• Note usually use → with ∀ and ∧ with ∃

620

∞ Exercise: To and from English

B(x) x is a book

P (x) x is a person

O(x, y) x is older than y

A(x, y) x is the author of y

R(x, y) x is a reader of y

• Everyone is a book

• Everyone reads books

• ∀x(∃yA(x, y)→ ∃y(B(y) ∧R(x, y)))

• Every author is older than the books they write

621

∞ 26.2.3 Normal Forms

• Prenex normal form is like conjunctive normal form

with all quantifiers at the left

• Convert to PNF like CNF, but ¬∀xF =⇒ ∃x¬F and

¬∃xF =⇒ ∀x¬F

• When multiple quantifiers use same variable, rename

all but one to use new variables

• Once ↔ and → are gone and all ¬ are innermost, just

move all quantifiers in order to front of formula

622

∞ 26.2.4 Clausal Form

• Clausal form is PNF with no existential quantifiers

• Skolemisation eliminates existential quantifiers

• Replace existentially quantified variables by new

function of all variables universally quantified in outer

scope

• Function of no variables is a constant

• E.g., ∀x∀y∃zP (x, y, z) =⇒ ∀x∀yP (x, y, f(x, y)) and

∃x∀yP (x, y) =⇒ ∀yP (c, y)

• Clausal form usually written as set of sets

623

∞ 26.2.5 Resolution

• Herbrand interpretation: interpretation mapping every

constant, function and predicate symbol to that

symbol (identity interpretation)

• Herbrand Universe: set of all ground terms that can be

created from the function and constant symbols of the

program

• Herbrand: Set of clauses is unsatisfiable iff a finite

subset of ground instances is

• Robinson: Resolution is sound and complete for

predicate logic

• Resolution same as for propositional logic, except that

unification is used to match complementary literals

624

∞ 26.2.6 Unification

• Substitution specifies terms to substitute for some

variables in a term or atom; other variables are left

unchanged

• E.g., given substitution σ = {a/x, f(x)/y} and term

T = g(x, y, z), Tσ = g(a, f(x), z) (note new x not

replaced by a)

• Simplified algorithm to unify a and b:

1. If a is a variable not appearing anywhere in b, add a

substitution b/a

2. If b is a variable not appearing anywhere in a, add a

substitution a/b

3. If both are terms with the same function and arity,

recursively unify the arguments pairwise

4. otherwise, fail

625

∞ Exercise: Resolution Proof

Use resolution to prove the following set of clauses is

unsatisfiable:{
{A(c, v, v)}, {A(f(u, x), y, f(u, z)),¬A(x, y, z)}, {¬A(f(a, c), f(a, c), v)}

}

626

∞ 26.3 Automata

• Finite Automata (Finite State Machine) handles a

sequence of input symbols from input alphabet set Σ

• Machine’s reaction to input symbol depends on current

state, an element of Q

• Reaction to input specified by function δ : Q× Σ→ Q

• Machine must also specify initial state q0

• Machine may act as a recognizer ; then must also

specify a set of states F ; when input runs out, if state

of machine ∈ F then input is accepted by machine

• Machine may produce output; then δ may also specify

an output symbol to produce for given state and input

• Nondeterministic Finite Automaton (NFA) is FA where

δ is a relation rather than a function; Any NFA can be

rewritten as a DFA

627

∞ Exercise

Often drawn as diagram with circles representing states

and arcs labeled by input symbols representing transitions

(δ function)

What input does this FSM accept?

b c c
q1 q3

q4

q2q0

a a,b

a, b, c

b c

a, b
a

c

628

∞ 26.3.1 Pushdown Automata

• Pushdown automata are like FAs augmented with

unlimited stack

• Each transition may consume symbol from input, push

symbol, or pop (and check) symbol

• Extend FA with set Γ of symbols allowed on stack; δ

maps state, input symbol, and stack top to new state

and stack top

• Usually interested in nondeterministic pushdown

automata: δ is a relation

• Cannot rewrite every NPDA to equivalent DPDA

• Pushdown automata can recognize languages FAs

cannot, eg anbn

• NPDAs can recognize regular languages (cf regular

expressions, as used in many Unix tools)

629

∞ 26.3.2 Turing Machines

• Turing machines replace the stack with an infinite tape

• Input is provided on the tape, output is written there,

and tape can be used for intermediate results

• Tape always allows special blank symbol B; after finite

input, tape is all Bs

• Γ is tape alphabet; Σ ∪ {B} ⊆ Γ

• At each transition, tape is moved either left (L) or

right (R) one symbol

• δ : Q× Γ→ Q× Γ× {L, R}
• δ is a partial function; when δ has no value for current

state and tape symbol, machine halts

630

∞ Exercise

Which of these inputs does the following machine accept?

More generally, what inputs will the machine accept?

a/a R
x/x R

b/b R
x/x R

a/a L

b/b L
x/x L

x/x R

q0 q1
B/B R

q2

q3

q4

q5

b/x R

B/B R

c/x L
q6

a/B R

B/B R
x/x R B/B R

• abaca
• abc
• aabbcccc
• aaabbbccc

631

∞ 26.3.3 Undecidability

• Church-Turing Thesis: there is an effective procedure

to decide a problem iff a Turing machine can do so

• Cannot be proved, but has stood the test of time

• Halting problem (will a turing machine M ever halt if

given input s) is undecidable — can never be

implemented on any TM

• Halting problem is semidecidable — can built TM SH

that will accept when M will halt for input s; if it

won’t, SH will not terminate

• Problem P is reducible to Q if input for P can be

rewritten to input for Q

• If P is reducible to Q and Q is decidable, so is P ; if P

is undecidable, so is Q

• Satisfiability of predicate logic formulae is undecidable

632

∞ 26.3.4 Countability

• Two set are same cardinality if some function maps

every element of one to a unique element of the other

• A set is countable if it has same cardinality as the

natural numbers

• Integers are countable: e.g., map even naturals n to

n/2 and odd to −(n + 1)/2

• Rational numbers are countable

• Real numbers are not: Cantor diagonal argument

633

∞ 26.3.5 Complexity

• Complexity measures worst case time or space usage

of algorithm depending on size of input

• Complexity of problem measures complexity of best

possible algorithm

• Algorithm of “order f(n)” O(f(n)) means f(n)

dominates complexity of algorithm

• Complexity depends on computation model: e.g.,

RAM can test palindrome in O(n), TM O(n2)

• Problem is in NP if some Nondeterministic TM can

solve problem in polynomial time (O(nc) for some c)

• Problem is NP -hard if every problem in NP can be

reduced to it in polynomial time; NP -complete if in

NP and NP -hard

• Many problems are NP -complete, including SAT:

634

determining satisfiability of propositional logic formulae

635

636

