
KR & R © Brachman & Levesque 2005 255

15.

Planning

KR & R © Brachman & Levesque 2005 256

Planning

So far, in looking at actions, we have considered how an agent
could figure out what to do given a high-level program or complex
action to execute.

Now, we consider a related but more general reasoning problem:
figure out what to do to make an arbitrary condition true. This is
called planning.

• the condition to be achieved is called the goal

• the sequence of actions that will make the goal true is called the plan

Plans can be at differing levels of detail, depending on how we
formalize the actions involved

• “do errands” vs. “get in car at 1:32 PM, put key in ignition, turn key
clockwise, change gears,…”

In practice, planning involves anticipating what the world will be
like, but also observing the world and replanning as necessary...

KR & R © Brachman & Levesque 2005 257

Using the situation calculus

The situation calculus can be used to represent what is known
about the current state of the world and the available actions.

The planning problem can then be formulated as follows:

Given a formula Goal(s), find a sequence of actions a such that

KB |= Goal(do(a, S0)) ∧ Legal(do(a, S0))
where do(〈a1,...,an〉, S0) is an abbreviation for

do(an, do(an-1, ..., do(a2, do(a1, S0)) ...))
and where Legal(〈a1,...,an〉, S0) is an abbreviation for

Poss(a1, S0) ∧ Poss(a2, do(a1, S0)) ∧ ... ∧ Poss(an, do(〈a1,...,an-1〉, S0))

So: given a goal formula, we want a sequence of actions such that
• the goal formula holds in the situation that results from executing the

actions, and

• it is possible to execute each action in the appropriate situation

KR & R © Brachman & Levesque 2005 258

Planning by answer extraction

Having formulated planning in this way, we can use Resolution
with answer extraction to find a sequence of actions:

KB |= ∃s. Goal(s) ∧ Legal(s)

We can see how this will work using a simplified version of a
previous example:

An object is on the table that we would like to have on the floor. Dropping
it will put it on the floor, and we can drop it, provided we are holding it. To
hold it, we need to pick it up, and we can always do so.

• Effects: OnFloor(x, do(drop(x),s))
Holding(x, do(pickup(x),s))

Note: ignoring frame problem

• Preconds: Holding(x, s) ⊃ Poss(drop(x), s)
Poss(pickup(x), s)

• Initial state: OnTable(B, S0)

• The goal: OnFloor(B, s)

KB

KR & R © Brachman & Levesque 2005 259

Deriving a plan

[¬OnFloor(B,s1), ¬Legal(s1), A(s1)]

[¬Legal(do(drop(B),s2)), A(do(drop(B),s2))]

[¬Legal(s2), ¬Poss(drop(B),s2), A(do(drop(B),s2))]

[¬Legal(s2), ¬Holding(B,s2), A(do(drop(B),s2))]

[A(do(drop(B),do(pickup(B),s3))), ¬Legal(do(pickup(B),s3))]

[¬Legal(s3), A(do(drop(B),do(pickup(B),s3))), ¬Poss(pickup(B),s3),]

[¬Legal(s3), A(do(drop(B),do(pickup(B),s3)))]

[A(do(drop(B), do(pickup(B), S0)))]

Axiom 1

expand Legal

Axiom 3

Axiom 2

expand Legal

Axiom 4

Legal for S0

Negated query + answer predicate

Here is the plan: in the initial situation, pickup
block B, and in the resulting situation, drop B.

KR & R © Brachman & Levesque 2005 260

Using Prolog

Because all the required facts here can be expressed as Horn
clauses, we can use Prolog directly to synthesize a plan:

onfloor(X,do(drop(X),S)).

holding(X,do(pickup(X),S)).

poss(drop(X),S) :- holding(X,S).

poss(pickup(X),S).

ontable(b,s0).

legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the Prolog goal ?- onfloor(b,S), legal(S).

we get the solution S = do(drop(b),do(pickup(b),s0))

But planning problems are rarely this easy!

Full Resolution theorem-proving can be problematic for a complex
set of axioms dealing with actions and situations explicitly...

