
1

433-682
Software Agents

Term project, 2008

A Study of MindiGolog by implementing an
Extreme Kitchen Management System

Xiaohui Wu Wade Huang Xi Liang

May 25, 2008

Abstract

MIndiGolog is a Golog variant suitable for distributed, cooperative execution by a multi-
agent team. In MIndiGolog, agents work concurrently to perform a sequence of actions
in order to accomplish some task. The domain in which agents operate is static and
deterministic, meaning each discrete action produces a predetermined result. The
purpose of the report is to explore and demonstrate the functionality, capability, strength
and withdraws of MIndiGolog by implementing an Extreme Kitchen Management (EKM)
model. The MIndiGolog enables cooperative execution of a shared high-level program
by a team of autonomous agents.

2

Outline
1. Introduction... 3
2. Model description ... 3
3. Implementation and result... 4

3.1 A sample cooking procedure .. 4
3.3 Communications ... 7
3.4 Concurrent actions .. 8

4. Discussion and conclussion .. 9
4.1 Poor performance on the solver .. 9
4.2 Poor communication and knowledge sharing mechanism.................................. 10
4.3 Poor syntax checking system and error message report system. 10
4.4 Contribution .. 11

5. Further work.. 11

3

1. Introduction

The purpose of the report is to explore and demonstrate the functionality, capability,
strength and withdraws of MIndiGolog by implementing an Extreme Kitchen
Management (EKM) model. The EKM system enables organization of a dinner with a
number of people, a limited number of utensils, resources and time available within the
domain. The implementation of making a dish requires completing ordering, cooking,
having dinner and dish washing.

The key investigation focuses on achieving the best efficiency of accomplish a robust
combination of true concurrency of cooking actions. The results show MIndiGolog does
not have an efficient knowledge sharing mechanism or effective error checking and
reporting system. It also shows poor performance on the solver. In order to avoid failure
conditions, a checking procedure is performed before any cooking action takes place.

2. Model description

In the EKM system, the dinner is organized for a large number of people and there are a
limited number of utensils and time available within the domain. In Fig.1, it illustrates the
goal model for EKM system which has eight roles including Guest, Utensil Manager,
Resource Manager, Waiter, Chopper, Assorter, Roaster and Dish washer.

Figure 1: The goal model for an EKM system

4

3. Implementation and result

The EMK system is implemented in MindiGolog and many effects are spent on achieving
the best efficiency of accomplish a robust combination of true concurrency of cooking
actions.

A complete cooking procedure is defined within an approach of 8 steps. Each step is in
charged by a corresponding agent shown as Table 1.

Step Task Corresponding agent
1 Acquiring an order Waiter agent
2 Checking the order Resource Manager
3 Provides plate(s) Utensil Manager
4 Chopper agents acquire relevant resources Chopper agent
5 Roaster agents acquire relevant resources Roaster agent
6 Assorter agents acquire relevant resources Assorter agent
7 Having dinner People (Guest)
8 Washing dishes Dish washer

Table 1. Cooking steps and the corresponding agent

3.1 A sample cooking procedure

Figure 2 gives a sample cooking procedure and the followings paragraphs are the
explanation for each step.

1> the model starts from acquiring an order from the user: (by waiter agent). The
following code shows the input format.

: steak.

Order list could consist more than 1 dish. e.g., if users input 3 dishes in the command
line, these 3 dishes will be processed concurrently.

:steak salad salad.

2> Resource Manager checks the availabilities of the required resources (e.g. beef and
onion) and the capability of the agents. If the required resource is missing or lack of
capability, the agents therefore recognize that the dinner can not be cooked at the
end which resulting the program legally terminates. A detailed explanation of
resource availability checking and evaluation will be illustrated in the following
section.

3> Utensil Manager (agent type of Resource manager) provides plate1. (Plate1 is the
communication medium we introduced for providing effective communication
between the agents.) In the section 3.3, a detailed explanation of how the
communication is implemented will be given.

5

4> Chopper1 (agent type of Chopper) acquires onion1and board1, then transfers the
onion to plate1 after it is chopped. At the same time, chopper2 acquires onion2 and
board2, and then transfers the onion to plate1 after it is chopped which effects the
concurrent attributes of MIndigolog.

Figure 2: A sample cooking procedure

5> After both chopper1 and chopper2 completing their task, roaster1 (agent type of
Roaster) acquires oven1 and plate1, then transfer the stuff from plate1 to oven1.
After steak is roasted, it will be transferred to plate1 again.

6> After assorter1 (agent type of Assorter) assorts dish in plate1, steak will be transfer
from plate1 to guest’s main plate.

6

7> Guest1(agent type of Guest) having dinner

8> dishwasher1 (agent type of Dish washer) will wash plate1 in sink, and then put the
plate into cupboard.

3.2 Checking

In the program, the checking of the capability and ability of each agent and availability of
each object is implemented before any action and communication among agents.

Before executing a task, the estimated task processing costs will be evaluated against a
check of availability and capacity of kitchen resources. The processing cost for this
check is much cheaper than the execution of a task that potentially ends in failure after
running for too long, or is determined to eventually fail due to lack of available resources.
For instance, in Fig. 3, there are not enough resources for the current cooking task but it
still tries to run as far as it can by exhausting all the available resources. This is
meaningless and time consuming to start and implement a task that is unable to
complement. In a comparison, in Fig.4, it legally terminates the program by printing out
the evaluation and checking message which improves the performance of the solver.

1 ?- main(X).

do [acquire_object(thomas, lettuce1), acquire_object(richard, tomato1),
acquire_object(harriet, egg1)] at 1
do [acquire_object(thomas, board1), acquire_object(richard, carrot1),
acquire_object(harriet, bowl2)] at 2
do [place_in(thomas, lettuce1, board1), acquire_object(richard, board2), place_in(harriet,
egg1, bowl2)] at 3
do [begin_task(thomas, chop(board1)), place_in(richard, carrot1, board2),
release_object(harriet, bowl2)] at 4
do [begin_task(richard, chop(board2)), end_task(thomas, chop(board1))] at 7
do [acquire_object(thomas, bowl1), end_task(richard, chop(board2))] at 12
do [transfer(thomas, board1, bowl1)] at 13
do [release_object(thomas, board1)] at 14
do [release_object(thomas, bowl1), acquire_object(richard, board1)] at 15
do [place_in(richard, tomato1, board1)] at 16
do [begin_task(richard, chop(board1))] at 17
do [end_task(richard, chop(board1))] at 22
do [acquire_object(richard, bowl1)] at 23
FAILED!
Remaining: conc(nil, seq(seq(seq(test(agent(_G19390)), doPlaceTypeIn(_G19390, flour,
bowl2)), pi(agt, ?agent(agt):doPlaceTypeIn(agt, sugar, bowl2)):pi(agt,
?agent(agt):acquire_object(agt, bowl2):begin_task(agt, mix(bowl2, 5)):end_task(agt,
mix(bowl2, 5)):release_object(agt, bowl2))), pi(myOven, ?obj_is_type(myOven,
oven):pi(agt, ensureHas(agt, myOven):ensureHas(agt, bowl2):place_in(agt, bowl2,
myOven):set_timer(agt, cakeTimer, 35)):ring_timer(cakeTimer):pi(agt, pi(myBoard,
?obj_is_type(myBoard, board):doTransfer(agt, myOven, myBoard))))))

Figure 3: Cooking without checking

7

2 ?- main(X).
|: stead salad salad steak
[stead, salad, salad, steak]not enough resource for cooking
[stead, salad, salad, steak]not enough resource for cooking
FAILED!
Remaining: control

With the checking procedure, the program avoids failure conditions and legally
terminates before reaching any other cooking actions therefore avoids loss of efficiency.

Figure 4: Checking before the cooking action.

3.3 Communications

To achieve the cooperation among agents effective communication is required. We can
view a collection of agents that work together co-operatively as a small society and for
any society to function coherently we need a communication medium. In MindiGolog, the
communication medium is critical for the cooperation between agents. If each agent
works in isolation and is unable to interact with their peers, the software agents would be
very inefficient and ineffective. A good solution to this is to use an existing agent
communication mechanism; therefore we introduced Plate as a communication medium
between different agents.

The plate is involved within the following listed 4 activities as the communication medium,
and Fig. 5 shows how the plate is defined in the program.

pi(myPlate, ?obj_is_type(myPlate, plate)
 : takeCont(AgtUtensil, myPlate)
 : make(H,myPlate): eatDish(myPlate) : washDish(myPlate)
 : return_cont(AgtUtensil, myPlate)
)

Figure 5: Checking before the cooking action.

The following parts demonstrate the communication mechanism by showing the
MindiGolog code.

1> Assign myPlate(a plate) for each dish firstly.

pi(myPlate, ?obj_is_type(myPlate, plate)
 : takeCont(AgtUtensil, myPlate)

………..)

Figure 6: assign a plate for each dish

However, after an agent getting an obj which is the cooking resource by using
acquire_object(agt,obj), this obj couldn’t be used by other agents until it is released . In
order to solve this problem, a new procedure takeCont(agt,obj) is designed to assign a
plate for each dish. After a “utensil” agent gets a cooking resource obj by using

8

takeCont(agt,obj), obj could not be used by any other “utensil” agents, but is available for
other agent type, such as chopper and dishwasher.

2> myPlate is transferred in the chain of
chopperroasterassorterguestdishwasher, which is implemented in MindiGolog
as shown in the following clause.

: make(H,myPlate): eatDish(myPlate) : washDish(myPlate)

Figure 7: transfer chain

3> Release myPlate after it is washed.

: return_cont(AgtUtensil, myPlate)

Figure 8: release myPlate after it is washed.

4> Then myPlate is read to be assigned for another dish.

3.4 Concurrent actions

In order to achieve the best efficiency of accomplish all cooking tasks; this was done by
assigning different cooking actions to the corresponding agents. e.g., cook steak
involves 3 tasks: chopping, roasting and assorting. Thus in the implementation, tasks are
assigned to different agent types like chopper, roaster and assorter.

1> The following code illustrates different dishes are cooked concurrently, and
cooking each individual dish requires actions of ordering, cooking, having dinner
and dish washing

proc(makeList([H|T], AgtUtensil),
 makeList(T,AgtUtensil)
 //pi(myPlate, ?obj_is_type(myPlate, plate)

 : takeCont(AgtUtensil, myPlate)
 : make(H,myPlate): eatDish(myPlate) : washDish(myPlate)
 : return_cont(AgtUtensil, myPlate)
)
).

Figure 9: Differebt dishes are cooked concurrently

2> Concurrent actions in cooking. Here is an example of acquiring beef and onion
concurrently in cooking steak shown in Fig. 10.

9

proc(make(steak, Dest),
 pi(agt,?prim_agent(agt,chopper): pi(obj, ?obj_is_type(obj,onion)
 : acquire_object(agt,obj)
 : doChopInto(agt,obj,Dest)
)
)
 //
 pi(agt,?prim_agent(agt,chopper): pi(obj, ?obj_is_type(obj,beef)
 : acquire_object(agt,obj)
 : doChopInto(agt,obj,Dest)
)
)
 ………..
).

Figure 10: concurrent actions in cooking

4. Discussion and conclussion

4.1 Poor performance on the solver

The interpreter takes significant time to conclude ‘no’ causing the MIndiGolog program
seems to hang. The reason is that there are many legal executions of the program, and
different ways to interleave actions from the two procedures. MIndiGolog explores each
of these executions in turn, but of course they all fail when they are instructed to add an
ingredient that is not available, and it eventually returns 'No' as expected.

The interpreter has a low efficiency of picking the name object because it has a chance
of picking them over and over again, however the speed can be improved by make
object choices in a random order.

 prim_obj(Obj,sugar) :-
 randomize_list([item1,item2,item3,item4],RList),
 member(Obj,RList).

Figure 11: pick an object in random order

It would be interesting to make a placeNumTypeIn(agt,type,num,dest) procedure that
places a specific number of units of an ingredient in a bowl, which could fail early if the
ingredients were not available. This is also a case where MIndiGolog’s control of the
search space would be useful.

Using the if-then-else statement, the clause for concurrency doesn't leave any choice
points - it tries full concurrency, and if it doesn't work it goes straight ahead and does
either-or concurrency.

10

4.2 Poor communication and knowledge sharing mechanism

We find it is a challenge to communicate between different agents in MIndiGolog for this
language doesn’t provide effective message transfer mechanism.

In the beginning of each action, the agent must acquire a couple of resources, and then
release all resources at the end of the action. However, the consistency among multi
actions is not guaranteed. The following table compares the real world and ideal design

Real World Cases Ideal Design
Step 1: Chop action in steak: stuff has been chopped and placed in the plate A.

Step 2: End of chop action in steak: the agent releases the relation with plate A.

Step 3: Chop action in steak: stuff has been
chopped and placed in the plate A.

Begin of roast action in steak: the
agent acquires plate A which
contains stuff.

Step 4: Begin of roast action in steak

Results: The agent fails to acquire plate A
which contains stuff.

The agent succeeds in acquiring
plate A which contains stuff.

Table 2: A comparison of real world and ideal design

4.3 Poor syntax checking system and error message report system.

The MindiGolog has poor syntax checking and error message report system. As an
example, the program compiles after the syntax checking but fails during the runtime as
shown in Fig. 13, when the source code apparently misses a closing blanket as shown in
Fig.12.

proc(control,
 pi(agt,?prim_agent(agt,utensil))

Figure 12: A example of syntax error

3 ?- main(X).
FAILED!
Remaining: control

Figure 13: an syntax error causes failsure in the runtime

11

4.4 Contribution

The model legally terminates earlier by doing preliminary checking before the solver
starting to find the first valid solution. By doing so, the program will not start to do the
tasks without knowing whether the model is able to find a valid solution. This highly
improves the ability and performance of the search solver.

5. Further work

The implementation only checks the availability of cooking resources. However, it does
not check the availabilities of utensils and cooks. These functionalities will be further
extended, while more tasks will run concurrently. We also considered that the checking
and evaluation of resource and utensil are quite different, because the utensil is reusable
which makes it very hard to predict.

There are some work can be done to improve the efficiency of cooking cooperation
among different agents:

1> Multi-agent cooperation will adopt hierarchical tree structure. For example, “Head
chef” is the parent node of “Waiter” and “Dish washer”, and parent node share all
the knowledge of his children nodes, so “Head chef” could wash dish if there is
no enough “Dish washer” in the system.

2> Assigns agents based on there current position. For example, after the stuff in
the board has been chopped by agent A, system should assign a “Roaster” who
is closest to A in order to save stuff transfer time.

3> Assigns agents based on their experience. System should assign the agent who
has more experience firstly.

In the previous sections it has been shown that there are a couple of problems in
MindiGolog, such as poor performance on the solver, bad communication and bad
knowledge sharing. So the improvement of the implementation of MindiGolog itself will
be part of our future work.

