

Page 1

Command-line and Visual Simulation of Kitchen

Domain

Zheng Huang, Ganesh Arunachalam and Ranjani Nagarajan

{hz, ganesha, r.nagarajan}@pgrad.unimelb.edu.au

Abstract

In this paper, we attempt to simulate a Kitchen domain providing a visual as well as command-line

interface. The main focus of this work is to implement the agents as realistically as possible adhering

to the design developed as a part of previous project. The resources and environments have also been

modelled and implemented as a part of this work. The command-line simulator is implemented in

Java/JADE and the visual simulator has been implemented using GDI+ API on the .NET platform to

allow simulation of Kitchen Domain (including all activities of agents and messages exchanged

between agents). The visual simulator application has been designed to run the simulation at a later

time based on the simulation log generated by the Kitchen Domain command-line simulation written

using JADE on Java.

1 Introduction

The objective of our project is to simulate/implement cooking domain. The implementation captures

the communication model between the different agents apart from modelling their behaviour. It also

implements various resources and environments involved. The command-line simulation application

has been implemented using agent programming platform -Java Agent Development Framework

(JADE) [1, 2, 3, 4].

The visual simulator application has been implemented using the GDI+ library on .NET. This

application may load XML files generated by real agent programming language and represent the raw

data with animated agent roles. The format of XML file must comply with the format requested by the

application. Alternatively, it may also produce data by its own agent simulator.

2 Design

For the sake of clarity, the goal model of the design has been provided in Figure 1. The sections 2.1 -

2.4 describe the various aspects of the domain being modelled and simulated in this paper.

2.1 Agents
The various agents in our system are:

1. Kitchen Manager (KM): This agent is responsible for organizing the dinner, deciding the

menu and interacting with the guests. Once all the guests leave it closes down the restaurant.

Page 2

2. Cook (CK): This agent is responsible for cooking the various dishes. It interacts with Kitchen

Helper and Cleaner. It requests the Kitchen Helper for preparing raw materials and the cleaner

for cleaning utensils. Based on the required amount of dishes to be prepared, this agent

chooses one at a time (starting from Entrée to Main-Course to Dessert) and prepares and

sends it to the prepared dishes. The synchronization between cooks is achieved by exchanging

information about what a particular cook is cooking currently.

3. Kitchen Helper (KH): This agent caters to needs of the cooks except for cleaning utensils. It

finishes preparing a particular raw material it informs the cooks about the same. It also

informs the cleaners about the dirty utensils.

4. Cleaner (CR): This agent is responsible for cleaning utensils. It receives messages from the

kitchen helper and cooks for cleaning utensils. It cleans the utensils in the dirty utensils and

put it to clean utensils.

Figure 1: Goal Model

5. Server (SR): This agent serves the prepared dishes to the buffet table. It replenishes the

buffet with the prepared dishes if any of the dishes on the buffet table is below a certain

threshold value.

6. Guest: This agent is responsible for having dinner. It consumes the prepared dishes in a very

random fashion. We have tried to model guest in a very realistic way; it makes intelligent

choice of which dish to eat after looking at the menu. It is also possible that it consumes more

of a certain dish than the other dishes, and does not eat a particular dish at all.

2.2 Resources

There are four different types of resources that are modelled as a part of this system.

Page 3

1. Raw Materials: The term ‘raw materials’ has been used to indicate the ingredients in their

basic form. For example- lettuce before it is washed and cut is a raw material in this project.

These are the materials that the kitchen helpers work on. Cooks add raw materials and inform

kitchen helps about the same. The kitchen helps prepare one raw material at a time and send it

to prepared-raw-materials stack.

2. Prepared Raw Materials: These are the raw materials that are ready for cooking, for

example-lettuce that is washed and cut is a prepared raw material in this project. The cooks

remove the all the prepared raw materials for a particular dish and prepare the dish.

3. Prepared Dishes: This contains all the cooked dishes. Once the cooks complete a particular

dish they send it to the prepared dishes for the server to serve to the buffet.

4. Buffet: This is the only resource that is accessible to the guests. They consume food from the

buffet by making choices between various food types, and whether to eat more of a certain

dish.

2.3 Environment
1. Dining hall: This is the environment which simulates the Dining Hall of the Cooking

Domain. Agents who are present in the dining Hall Environment are- the kitchen manager,

guests and server. The only resource available in this environment is the buffet table.

2. Kitchen: The agents present in this environment the cooks, kitchen helpers, cleaners, server.

The resources present in this environment are raw materials, prepared raw materials, and

prepared dishes, clean and dirty utensils.

2.4 Assumptions
While implementing this project, we made some assumptions and also specified some constraints. We

have listed these below.

1. It is a Buffet dinner arrangement.

2. One plate of food is considered as one unit. While cooking, the cooks assume that the guests

would have one unit per dish per person. The guests behave differently- eating more of some

dishes and none of some other.

3. A cook can cook up to 5 units at a time.

4. There is no cleaning at the end of the dinner.

5. Cutlery, chairs, tables and money have not been implemented in this system.

3 JADE Platform [1]

JADE is multi-agent programming framework written in Java programming language. It allows for

multi-agent communication by following Foundation for Intelligent Physical Agents (FIPA)

specifications. JADE provides an API to cater to the various requirements of agent-oriented

programming. It also provides a GUI to manipulate and monitor agents, including remote agents.

Remote Method Invocation (RMI) is used to communicate between agents on different machines.

JADE supports three modes of communication between agents,

1) Sending/Receiving Messages: This is the most basic form of communication which

sends/receives string type as the message content. This is useful for atomic data but not for

abstract concepts and structured data. The ‘receive’ can be blocking or non-blocking.

Page 4

2) Sending/Receiving Objects: This form of communication uses the Java Serializable

interface to send/receive objects between agents. This can be used to represent the structure of

data but is not human readable. Here again, the ‘receive’ can be blocking or non-blocking.

3) Ontologies: This form of communication allows definition of objects to be transferred as set

of predefined classes adhering to FIPA format. This can be used to represent abstract

concepts, predicates and structure of data.

In our project we are using the fist two modes of communication-sending/receiving messages and

sending/receiving objects. We have used both blocking and non-blocking receives. We have also used

a broadcast style of communication where there is one sender and many receivers.

4 Implementation

The following sections describe the implementation details of both the applications.

4.1 Command-line Simulator – using JADE/Java
We have simulated a buffet dinner. The dishes are broadly classified as Entrée, Main-Course and

Dessert. There are different types of agents used in this project (explained in the next section). They

are- Kitchen Manager, Cook, Kitchen Helper, Server, Cleaner and Guest. The cooking is flagged off

by the kitchen manager and the cooks prepare the dishes according to the menu specified by the

kitchen manager. The prepared dishes are served by the server to the buffet. The guests come in at

intervals and consume dishes.

We have implemented the project using JAVA 5 and JADE 4.6 API. We have provided a GUI for the

user to specify the number of guests, cooks, servers, cleaners and kitchen helpers at run-time.

4.2 Visual Simulator- using .NET
The application is broadly a combination of two parts:

1) Functional engines, including Rendering Engine, XML Translator, and Graph Engine.

The Rendering Engine creates all those sprites graphic items, and paints them onto windows

desktop application panels. XML Translator reads in the XML files and translates them into

proper data structures that the agent simulator can understand. The Graph Engine contains the

physical structure of the kitchen domain and provides path finding information to Agent

Simulator.

2) Agent Simulator, including Action Engine and Role Manager.

In order to simulate multiple-Agent environment, each role, to some extend, needs to have

Artificial Intelligence feature. This was achieved by the Role Manager. Raw data from AI will be

processed by the Action Engine and then translate into movements / messages / events, which can

be understood by other functional engines.

The whole system was developed under the environment of .Net Framework 2.0, with the IDE Visual

Studio 2005.

Here is a brief architecture view of our visual simulator (Figure 2).

Page 5

Figure 2: Architecture

4.3 Screen-shots
Screenshots of the command-line as well as visual simulator have been provided below (Figures 3-5).

Figure 3: Interface to start command-line simulator

Main Controller
Rendering

Engine

Graph Engine

XML

translator

Action Engine

Role

Manager

Sprite

Manager

Sprite Role

AI Module

* *

Agent

Agent

Simulator

Application

Container

1 1

Page 6

Figure 4: Output of the command-line simulator

Figure 5: Visual Simulator

Page 7

5 Challenges

While implementing this project we faced various challenges. Firstly, being staunch object-oriented

believers we had to undergo a paradigm shift from object-oriented to agent-oriented design and

development. This paradigm shift was initially difficult to cope with and led to some rework to be

done. It took a while for us to start thinking of agents as intelligent entities, and information sharing

between agents must happen using message passing and not method invocation as in object –oriented

style of programming. But eventually it was a rewarding experience. Another problem we

encountered was due to concurrent access of shared resources by different agents. Debugging multi-

threaded applications is not straightforward at times. ‘Synchronized’ access to all resources was

enforced which alleviated the problem.

6 Conclusion

A simplified Kitchen Domain was implemented in this project. We got a hands-on experience in

implementing agent behaviour and learnt quite a lot about agent-oriented programming from this

experience. A lot of improvement can be made to this system in terms of making more realistic and

introducing more resources and also al a carte mode of dining. A more extensive GUI can also be

implemented that depicts graphically the state and current activity of each agent.

References

[1] JADE Primer: http://www.iro.umontreal.ca/~vaucher/Agents/Jade/JadePrimer.html

[2] JADE Documentation: http://jade.tilab.com/papers-index.htm

[3] JADE Tutorials: http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/jadeStart.html

[4] JADE Resources: http://agents.cs.bath.ac.uk/cm30174/jade/index.html

http://www.iro.umontreal.ca/~vaucher/Agents/Jade/JadePrimer.html
http://jade.tilab.com/papers-index.htm
http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/jadeStart.html
http://agents.cs.bath.ac.uk/cm30174/jade/index.html
http://agents.cs.bath.ac.uk/cm30174/jade/index.html

